gp: [N,k,chi] = [8002,2,Mod(1,8002)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8002.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8002, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [77,-77,10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(2\)
\( +1 \)
\(4001\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{77} - 10 T_{3}^{76} - 101 T_{3}^{75} + 1309 T_{3}^{74} + 4091 T_{3}^{73} - 81236 T_{3}^{72} + \cdots - 1136453792 \)
T3^77 - 10*T3^76 - 101*T3^75 + 1309*T3^74 + 4091*T3^73 - 81236*T3^72 - 58955*T3^71 + 3179056*T3^70 - 1739128*T3^69 - 88005777*T3^68 + 122170944*T3^67 + 1832177308*T3^66 - 3731322116*T3^65 - 29760544649*T3^64 + 77504064294*T3^63 + 385976621530*T3^62 - 1220512228519*T3^61 - 4053007037824*T3^60 + 15293654807172*T3^59 + 34677558327839*T3^58 - 156695997017905*T3^57 - 241276740685738*T3^56 + 1335618616911880*T3^55 + 1344911059518492*T3^54 - 9581789587599100*T3^53 - 5746588999653173*T3^52 + 58325670773880505*T3^51 + 16212935084474016*T3^50 - 302935453421481411*T3^49 - 5063295526342807*T3^48 + 1347526846108526844*T3^47 - 270038410484461497*T3^46 - 5145167143437443797*T3^45 + 1978775099782948723*T3^44 + 16880211850267672557*T3^43 - 9180885345738572078*T3^42 - 47582476423385219056*T3^41 + 32555933950273954777*T3^40 + 115122682660121387704*T3^39 - 93251781501935223453*T3^38 - 238609811523101520261*T3^37 + 220663421243256716598*T3^36 + 422519688229083945121*T3^35 - 435652205980680846319*T3^34 - 637014121642055405540*T3^33 + 720215455560952526576*T3^32 + 814473767691492361122*T3^31 - 996876792756933370166*T3^30 - 879463615312755053667*T3^29 + 1152010959295415011217*T3^28 + 798900928465928095766*T3^27 - 1105903985337828154906*T3^26 - 608863511897896162153*T3^25 + 875583372251729913385*T3^24 + 389115334043857421547*T3^23 - 566279504379257945582*T3^22 - 209044216922940964461*T3^21 + 295413162702922238389*T3^20 + 94815003828695226658*T3^19 - 122208653898703769173*T3^18 - 36340235663620657904*T3^17 + 39136602239084656841*T3^16 + 11625827477915094762*T3^15 - 9352069801523313678*T3^14 - 2996756646385391385*T3^13 + 1566510482984339250*T3^12 + 584033575182202655*T3^11 - 161937243623747642*T3^10 - 77940904759308059*T3^9 + 6891957597552818*T3^8 + 6039494670006959*T3^7 + 252466787955852*T3^6 - 193717741279942*T3^5 - 20475082324400*T3^4 + 2049367178896*T3^3 + 307277154192*T3^2 - 4620514912*T3 - 1136453792
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8002))\).