Properties

Label 8001.2.a.t.1.9
Level $8001$
Weight $2$
Character 8001.1
Self dual yes
Analytic conductor $63.888$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8001,2,Mod(1,8001)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8001, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8001.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8001 = 3^{2} \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8001.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,2,0,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8883066572\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(0.102239\) of defining polynomial
Character \(\chi\) \(=\) 8001.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.102239 q^{2} -1.98955 q^{4} -0.280585 q^{5} -1.00000 q^{7} -0.407889 q^{8} -0.0286868 q^{10} -0.974733 q^{11} -1.41349 q^{13} -0.102239 q^{14} +3.93739 q^{16} -6.28548 q^{17} +1.00698 q^{19} +0.558236 q^{20} -0.0996561 q^{22} -1.39508 q^{23} -4.92127 q^{25} -0.144515 q^{26} +1.98955 q^{28} +2.24230 q^{29} -9.08093 q^{31} +1.21833 q^{32} -0.642624 q^{34} +0.280585 q^{35} +8.73158 q^{37} +0.102954 q^{38} +0.114447 q^{40} +3.37544 q^{41} -4.53376 q^{43} +1.93928 q^{44} -0.142632 q^{46} +3.98353 q^{47} +1.00000 q^{49} -0.503148 q^{50} +2.81221 q^{52} -12.4108 q^{53} +0.273495 q^{55} +0.407889 q^{56} +0.229251 q^{58} +2.70787 q^{59} -6.02128 q^{61} -0.928429 q^{62} -7.75022 q^{64} +0.396604 q^{65} -1.29868 q^{67} +12.5053 q^{68} +0.0286868 q^{70} -1.77583 q^{71} -14.2675 q^{73} +0.892711 q^{74} -2.00344 q^{76} +0.974733 q^{77} -9.13520 q^{79} -1.10477 q^{80} +0.345103 q^{82} -2.94615 q^{83} +1.76361 q^{85} -0.463529 q^{86} +0.397583 q^{88} +8.92572 q^{89} +1.41349 q^{91} +2.77558 q^{92} +0.407274 q^{94} -0.282544 q^{95} -1.25797 q^{97} +0.102239 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 12 q^{4} + 9 q^{5} - 16 q^{7} + 6 q^{8} - 2 q^{10} + 22 q^{11} - 4 q^{13} - 2 q^{14} + 12 q^{16} + 18 q^{17} - 15 q^{19} + 40 q^{20} - 11 q^{22} + 5 q^{23} + 15 q^{25} + 24 q^{26} - 12 q^{28}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.102239 0.0722942 0.0361471 0.999346i \(-0.488492\pi\)
0.0361471 + 0.999346i \(0.488492\pi\)
\(3\) 0 0
\(4\) −1.98955 −0.994774
\(5\) −0.280585 −0.125481 −0.0627406 0.998030i \(-0.519984\pi\)
−0.0627406 + 0.998030i \(0.519984\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −0.407889 −0.144211
\(9\) 0 0
\(10\) −0.0286868 −0.00907157
\(11\) −0.974733 −0.293893 −0.146947 0.989144i \(-0.546945\pi\)
−0.146947 + 0.989144i \(0.546945\pi\)
\(12\) 0 0
\(13\) −1.41349 −0.392032 −0.196016 0.980601i \(-0.562800\pi\)
−0.196016 + 0.980601i \(0.562800\pi\)
\(14\) −0.102239 −0.0273246
\(15\) 0 0
\(16\) 3.93739 0.984348
\(17\) −6.28548 −1.52445 −0.762227 0.647310i \(-0.775894\pi\)
−0.762227 + 0.647310i \(0.775894\pi\)
\(18\) 0 0
\(19\) 1.00698 0.231018 0.115509 0.993306i \(-0.463150\pi\)
0.115509 + 0.993306i \(0.463150\pi\)
\(20\) 0.558236 0.124825
\(21\) 0 0
\(22\) −0.0996561 −0.0212468
\(23\) −1.39508 −0.290895 −0.145447 0.989366i \(-0.546462\pi\)
−0.145447 + 0.989366i \(0.546462\pi\)
\(24\) 0 0
\(25\) −4.92127 −0.984254
\(26\) −0.144515 −0.0283416
\(27\) 0 0
\(28\) 1.98955 0.375989
\(29\) 2.24230 0.416384 0.208192 0.978088i \(-0.433242\pi\)
0.208192 + 0.978088i \(0.433242\pi\)
\(30\) 0 0
\(31\) −9.08093 −1.63098 −0.815492 0.578769i \(-0.803533\pi\)
−0.815492 + 0.578769i \(0.803533\pi\)
\(32\) 1.21833 0.215373
\(33\) 0 0
\(34\) −0.642624 −0.110209
\(35\) 0.280585 0.0474275
\(36\) 0 0
\(37\) 8.73158 1.43546 0.717731 0.696320i \(-0.245181\pi\)
0.717731 + 0.696320i \(0.245181\pi\)
\(38\) 0.102954 0.0167013
\(39\) 0 0
\(40\) 0.114447 0.0180957
\(41\) 3.37544 0.527155 0.263577 0.964638i \(-0.415098\pi\)
0.263577 + 0.964638i \(0.415098\pi\)
\(42\) 0 0
\(43\) −4.53376 −0.691392 −0.345696 0.938346i \(-0.612357\pi\)
−0.345696 + 0.938346i \(0.612357\pi\)
\(44\) 1.93928 0.292357
\(45\) 0 0
\(46\) −0.142632 −0.0210300
\(47\) 3.98353 0.581057 0.290529 0.956866i \(-0.406169\pi\)
0.290529 + 0.956866i \(0.406169\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −0.503148 −0.0711559
\(51\) 0 0
\(52\) 2.81221 0.389983
\(53\) −12.4108 −1.70475 −0.852375 0.522930i \(-0.824839\pi\)
−0.852375 + 0.522930i \(0.824839\pi\)
\(54\) 0 0
\(55\) 0.273495 0.0368781
\(56\) 0.407889 0.0545065
\(57\) 0 0
\(58\) 0.229251 0.0301021
\(59\) 2.70787 0.352534 0.176267 0.984342i \(-0.443598\pi\)
0.176267 + 0.984342i \(0.443598\pi\)
\(60\) 0 0
\(61\) −6.02128 −0.770946 −0.385473 0.922719i \(-0.625962\pi\)
−0.385473 + 0.922719i \(0.625962\pi\)
\(62\) −0.928429 −0.117911
\(63\) 0 0
\(64\) −7.75022 −0.968778
\(65\) 0.396604 0.0491927
\(66\) 0 0
\(67\) −1.29868 −0.158658 −0.0793292 0.996848i \(-0.525278\pi\)
−0.0793292 + 0.996848i \(0.525278\pi\)
\(68\) 12.5053 1.51649
\(69\) 0 0
\(70\) 0.0286868 0.00342873
\(71\) −1.77583 −0.210752 −0.105376 0.994432i \(-0.533605\pi\)
−0.105376 + 0.994432i \(0.533605\pi\)
\(72\) 0 0
\(73\) −14.2675 −1.66989 −0.834943 0.550336i \(-0.814500\pi\)
−0.834943 + 0.550336i \(0.814500\pi\)
\(74\) 0.892711 0.103776
\(75\) 0 0
\(76\) −2.00344 −0.229811
\(77\) 0.974733 0.111081
\(78\) 0 0
\(79\) −9.13520 −1.02779 −0.513895 0.857853i \(-0.671798\pi\)
−0.513895 + 0.857853i \(0.671798\pi\)
\(80\) −1.10477 −0.123517
\(81\) 0 0
\(82\) 0.345103 0.0381102
\(83\) −2.94615 −0.323382 −0.161691 0.986841i \(-0.551695\pi\)
−0.161691 + 0.986841i \(0.551695\pi\)
\(84\) 0 0
\(85\) 1.76361 0.191290
\(86\) −0.463529 −0.0499837
\(87\) 0 0
\(88\) 0.397583 0.0423825
\(89\) 8.92572 0.946124 0.473062 0.881029i \(-0.343149\pi\)
0.473062 + 0.881029i \(0.343149\pi\)
\(90\) 0 0
\(91\) 1.41349 0.148174
\(92\) 2.77558 0.289374
\(93\) 0 0
\(94\) 0.407274 0.0420071
\(95\) −0.282544 −0.0289884
\(96\) 0 0
\(97\) −1.25797 −0.127727 −0.0638636 0.997959i \(-0.520342\pi\)
−0.0638636 + 0.997959i \(0.520342\pi\)
\(98\) 0.102239 0.0103277
\(99\) 0 0
\(100\) 9.79110 0.979110
\(101\) 9.32514 0.927886 0.463943 0.885865i \(-0.346434\pi\)
0.463943 + 0.885865i \(0.346434\pi\)
\(102\) 0 0
\(103\) 11.5869 1.14169 0.570846 0.821057i \(-0.306615\pi\)
0.570846 + 0.821057i \(0.306615\pi\)
\(104\) 0.576548 0.0565351
\(105\) 0 0
\(106\) −1.26887 −0.123244
\(107\) 0.203921 0.0197138 0.00985689 0.999951i \(-0.496862\pi\)
0.00985689 + 0.999951i \(0.496862\pi\)
\(108\) 0 0
\(109\) 17.5817 1.68402 0.842012 0.539459i \(-0.181371\pi\)
0.842012 + 0.539459i \(0.181371\pi\)
\(110\) 0.0279620 0.00266607
\(111\) 0 0
\(112\) −3.93739 −0.372049
\(113\) 16.0844 1.51309 0.756546 0.653941i \(-0.226886\pi\)
0.756546 + 0.653941i \(0.226886\pi\)
\(114\) 0 0
\(115\) 0.391438 0.0365018
\(116\) −4.46116 −0.414208
\(117\) 0 0
\(118\) 0.276851 0.0254862
\(119\) 6.28548 0.576189
\(120\) 0 0
\(121\) −10.0499 −0.913627
\(122\) −0.615612 −0.0557349
\(123\) 0 0
\(124\) 18.0669 1.62246
\(125\) 2.78376 0.248987
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) −3.22905 −0.285410
\(129\) 0 0
\(130\) 0.0405486 0.00355634
\(131\) 16.7647 1.46474 0.732370 0.680907i \(-0.238414\pi\)
0.732370 + 0.680907i \(0.238414\pi\)
\(132\) 0 0
\(133\) −1.00698 −0.0873167
\(134\) −0.132776 −0.0114701
\(135\) 0 0
\(136\) 2.56378 0.219842
\(137\) −16.3690 −1.39849 −0.699247 0.714880i \(-0.746481\pi\)
−0.699247 + 0.714880i \(0.746481\pi\)
\(138\) 0 0
\(139\) 1.38049 0.117092 0.0585459 0.998285i \(-0.481354\pi\)
0.0585459 + 0.998285i \(0.481354\pi\)
\(140\) −0.558236 −0.0471796
\(141\) 0 0
\(142\) −0.181560 −0.0152362
\(143\) 1.37778 0.115215
\(144\) 0 0
\(145\) −0.629154 −0.0522484
\(146\) −1.45870 −0.120723
\(147\) 0 0
\(148\) −17.3719 −1.42796
\(149\) −16.3718 −1.34123 −0.670616 0.741804i \(-0.733970\pi\)
−0.670616 + 0.741804i \(0.733970\pi\)
\(150\) 0 0
\(151\) −22.0724 −1.79623 −0.898113 0.439765i \(-0.855062\pi\)
−0.898113 + 0.439765i \(0.855062\pi\)
\(152\) −0.410738 −0.0333153
\(153\) 0 0
\(154\) 0.0996561 0.00803052
\(155\) 2.54797 0.204658
\(156\) 0 0
\(157\) 5.31714 0.424354 0.212177 0.977231i \(-0.431945\pi\)
0.212177 + 0.977231i \(0.431945\pi\)
\(158\) −0.933978 −0.0743033
\(159\) 0 0
\(160\) −0.341846 −0.0270253
\(161\) 1.39508 0.109948
\(162\) 0 0
\(163\) 14.8072 1.15979 0.579896 0.814690i \(-0.303093\pi\)
0.579896 + 0.814690i \(0.303093\pi\)
\(164\) −6.71559 −0.524399
\(165\) 0 0
\(166\) −0.301213 −0.0233787
\(167\) −6.35017 −0.491391 −0.245696 0.969347i \(-0.579016\pi\)
−0.245696 + 0.969347i \(0.579016\pi\)
\(168\) 0 0
\(169\) −11.0020 −0.846311
\(170\) 0.180310 0.0138292
\(171\) 0 0
\(172\) 9.02014 0.687779
\(173\) −2.22737 −0.169344 −0.0846719 0.996409i \(-0.526984\pi\)
−0.0846719 + 0.996409i \(0.526984\pi\)
\(174\) 0 0
\(175\) 4.92127 0.372013
\(176\) −3.83791 −0.289293
\(177\) 0 0
\(178\) 0.912560 0.0683993
\(179\) −3.65043 −0.272846 −0.136423 0.990651i \(-0.543561\pi\)
−0.136423 + 0.990651i \(0.543561\pi\)
\(180\) 0 0
\(181\) 8.51775 0.633119 0.316560 0.948573i \(-0.397472\pi\)
0.316560 + 0.948573i \(0.397472\pi\)
\(182\) 0.144515 0.0107121
\(183\) 0 0
\(184\) 0.569038 0.0419501
\(185\) −2.44995 −0.180124
\(186\) 0 0
\(187\) 6.12667 0.448026
\(188\) −7.92542 −0.578021
\(189\) 0 0
\(190\) −0.0288872 −0.00209570
\(191\) 17.7340 1.28319 0.641593 0.767045i \(-0.278274\pi\)
0.641593 + 0.767045i \(0.278274\pi\)
\(192\) 0 0
\(193\) −2.13995 −0.154037 −0.0770186 0.997030i \(-0.524540\pi\)
−0.0770186 + 0.997030i \(0.524540\pi\)
\(194\) −0.128614 −0.00923394
\(195\) 0 0
\(196\) −1.98955 −0.142111
\(197\) 17.0094 1.21187 0.605936 0.795513i \(-0.292799\pi\)
0.605936 + 0.795513i \(0.292799\pi\)
\(198\) 0 0
\(199\) −7.03395 −0.498624 −0.249312 0.968423i \(-0.580204\pi\)
−0.249312 + 0.968423i \(0.580204\pi\)
\(200\) 2.00733 0.141940
\(201\) 0 0
\(202\) 0.953397 0.0670808
\(203\) −2.24230 −0.157378
\(204\) 0 0
\(205\) −0.947095 −0.0661480
\(206\) 1.18464 0.0825378
\(207\) 0 0
\(208\) −5.56547 −0.385896
\(209\) −0.981541 −0.0678946
\(210\) 0 0
\(211\) 2.25672 0.155359 0.0776797 0.996978i \(-0.475249\pi\)
0.0776797 + 0.996978i \(0.475249\pi\)
\(212\) 24.6918 1.69584
\(213\) 0 0
\(214\) 0.0208488 0.00142519
\(215\) 1.27210 0.0867568
\(216\) 0 0
\(217\) 9.08093 0.616454
\(218\) 1.79754 0.121745
\(219\) 0 0
\(220\) −0.544131 −0.0366853
\(221\) 8.88447 0.597634
\(222\) 0 0
\(223\) −16.8223 −1.12650 −0.563252 0.826285i \(-0.690450\pi\)
−0.563252 + 0.826285i \(0.690450\pi\)
\(224\) −1.21833 −0.0814034
\(225\) 0 0
\(226\) 1.64446 0.109388
\(227\) 26.9785 1.79063 0.895314 0.445435i \(-0.146951\pi\)
0.895314 + 0.445435i \(0.146951\pi\)
\(228\) 0 0
\(229\) −11.5853 −0.765576 −0.382788 0.923836i \(-0.625036\pi\)
−0.382788 + 0.923836i \(0.625036\pi\)
\(230\) 0.0400204 0.00263887
\(231\) 0 0
\(232\) −0.914608 −0.0600470
\(233\) 10.3197 0.676064 0.338032 0.941135i \(-0.390239\pi\)
0.338032 + 0.941135i \(0.390239\pi\)
\(234\) 0 0
\(235\) −1.11772 −0.0729118
\(236\) −5.38743 −0.350692
\(237\) 0 0
\(238\) 0.642624 0.0416551
\(239\) 15.1850 0.982233 0.491116 0.871094i \(-0.336589\pi\)
0.491116 + 0.871094i \(0.336589\pi\)
\(240\) 0 0
\(241\) 5.19032 0.334338 0.167169 0.985928i \(-0.446537\pi\)
0.167169 + 0.985928i \(0.446537\pi\)
\(242\) −1.02750 −0.0660499
\(243\) 0 0
\(244\) 11.9796 0.766917
\(245\) −0.280585 −0.0179259
\(246\) 0 0
\(247\) −1.42336 −0.0905665
\(248\) 3.70401 0.235205
\(249\) 0 0
\(250\) 0.284610 0.0180003
\(251\) 21.6309 1.36533 0.682664 0.730732i \(-0.260821\pi\)
0.682664 + 0.730732i \(0.260821\pi\)
\(252\) 0 0
\(253\) 1.35983 0.0854919
\(254\) −0.102239 −0.00641507
\(255\) 0 0
\(256\) 15.1703 0.948144
\(257\) −10.2922 −0.642010 −0.321005 0.947077i \(-0.604021\pi\)
−0.321005 + 0.947077i \(0.604021\pi\)
\(258\) 0 0
\(259\) −8.73158 −0.542554
\(260\) −0.789062 −0.0489356
\(261\) 0 0
\(262\) 1.71401 0.105892
\(263\) 14.2342 0.877719 0.438859 0.898556i \(-0.355383\pi\)
0.438859 + 0.898556i \(0.355383\pi\)
\(264\) 0 0
\(265\) 3.48227 0.213914
\(266\) −0.102954 −0.00631249
\(267\) 0 0
\(268\) 2.58378 0.157829
\(269\) 24.6333 1.50192 0.750958 0.660350i \(-0.229592\pi\)
0.750958 + 0.660350i \(0.229592\pi\)
\(270\) 0 0
\(271\) −4.57306 −0.277794 −0.138897 0.990307i \(-0.544356\pi\)
−0.138897 + 0.990307i \(0.544356\pi\)
\(272\) −24.7484 −1.50059
\(273\) 0 0
\(274\) −1.67355 −0.101103
\(275\) 4.79693 0.289266
\(276\) 0 0
\(277\) −24.5754 −1.47659 −0.738296 0.674477i \(-0.764369\pi\)
−0.738296 + 0.674477i \(0.764369\pi\)
\(278\) 0.141141 0.00846505
\(279\) 0 0
\(280\) −0.114447 −0.00683954
\(281\) −13.4450 −0.802061 −0.401030 0.916065i \(-0.631348\pi\)
−0.401030 + 0.916065i \(0.631348\pi\)
\(282\) 0 0
\(283\) −25.9931 −1.54513 −0.772564 0.634937i \(-0.781026\pi\)
−0.772564 + 0.634937i \(0.781026\pi\)
\(284\) 3.53310 0.209651
\(285\) 0 0
\(286\) 0.140863 0.00832941
\(287\) −3.37544 −0.199246
\(288\) 0 0
\(289\) 22.5073 1.32396
\(290\) −0.0643243 −0.00377726
\(291\) 0 0
\(292\) 28.3859 1.66116
\(293\) 15.0055 0.876628 0.438314 0.898822i \(-0.355576\pi\)
0.438314 + 0.898822i \(0.355576\pi\)
\(294\) 0 0
\(295\) −0.759786 −0.0442364
\(296\) −3.56151 −0.207009
\(297\) 0 0
\(298\) −1.67385 −0.0969634
\(299\) 1.97193 0.114040
\(300\) 0 0
\(301\) 4.53376 0.261322
\(302\) −2.25667 −0.129857
\(303\) 0 0
\(304\) 3.96489 0.227402
\(305\) 1.68948 0.0967393
\(306\) 0 0
\(307\) 15.2999 0.873209 0.436605 0.899653i \(-0.356181\pi\)
0.436605 + 0.899653i \(0.356181\pi\)
\(308\) −1.93928 −0.110501
\(309\) 0 0
\(310\) 0.260503 0.0147956
\(311\) 7.23014 0.409984 0.204992 0.978764i \(-0.434283\pi\)
0.204992 + 0.978764i \(0.434283\pi\)
\(312\) 0 0
\(313\) 1.04458 0.0590433 0.0295217 0.999564i \(-0.490602\pi\)
0.0295217 + 0.999564i \(0.490602\pi\)
\(314\) 0.543622 0.0306784
\(315\) 0 0
\(316\) 18.1749 1.02242
\(317\) −4.47560 −0.251375 −0.125687 0.992070i \(-0.540114\pi\)
−0.125687 + 0.992070i \(0.540114\pi\)
\(318\) 0 0
\(319\) −2.18564 −0.122372
\(320\) 2.17459 0.121563
\(321\) 0 0
\(322\) 0.142632 0.00794859
\(323\) −6.32938 −0.352176
\(324\) 0 0
\(325\) 6.95617 0.385859
\(326\) 1.51388 0.0838463
\(327\) 0 0
\(328\) −1.37680 −0.0760212
\(329\) −3.98353 −0.219619
\(330\) 0 0
\(331\) 17.2234 0.946683 0.473342 0.880879i \(-0.343048\pi\)
0.473342 + 0.880879i \(0.343048\pi\)
\(332\) 5.86151 0.321692
\(333\) 0 0
\(334\) −0.649238 −0.0355247
\(335\) 0.364388 0.0199087
\(336\) 0 0
\(337\) 6.92934 0.377465 0.188733 0.982029i \(-0.439562\pi\)
0.188733 + 0.982029i \(0.439562\pi\)
\(338\) −1.12484 −0.0611834
\(339\) 0 0
\(340\) −3.50878 −0.190291
\(341\) 8.85148 0.479335
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 1.84927 0.0997061
\(345\) 0 0
\(346\) −0.227725 −0.0122426
\(347\) 10.8206 0.580881 0.290441 0.956893i \(-0.406198\pi\)
0.290441 + 0.956893i \(0.406198\pi\)
\(348\) 0 0
\(349\) 17.2151 0.921502 0.460751 0.887529i \(-0.347580\pi\)
0.460751 + 0.887529i \(0.347580\pi\)
\(350\) 0.503148 0.0268944
\(351\) 0 0
\(352\) −1.18755 −0.0632967
\(353\) 35.8111 1.90603 0.953016 0.302921i \(-0.0979619\pi\)
0.953016 + 0.302921i \(0.0979619\pi\)
\(354\) 0 0
\(355\) 0.498270 0.0264454
\(356\) −17.7581 −0.941179
\(357\) 0 0
\(358\) −0.373218 −0.0197252
\(359\) −12.5791 −0.663899 −0.331950 0.943297i \(-0.607706\pi\)
−0.331950 + 0.943297i \(0.607706\pi\)
\(360\) 0 0
\(361\) −17.9860 −0.946631
\(362\) 0.870850 0.0457709
\(363\) 0 0
\(364\) −2.81221 −0.147400
\(365\) 4.00325 0.209539
\(366\) 0 0
\(367\) −3.95956 −0.206688 −0.103344 0.994646i \(-0.532954\pi\)
−0.103344 + 0.994646i \(0.532954\pi\)
\(368\) −5.49298 −0.286341
\(369\) 0 0
\(370\) −0.250481 −0.0130219
\(371\) 12.4108 0.644335
\(372\) 0 0
\(373\) 30.1501 1.56112 0.780558 0.625084i \(-0.214935\pi\)
0.780558 + 0.625084i \(0.214935\pi\)
\(374\) 0.626387 0.0323897
\(375\) 0 0
\(376\) −1.62484 −0.0837946
\(377\) −3.16947 −0.163236
\(378\) 0 0
\(379\) 22.0540 1.13284 0.566419 0.824117i \(-0.308328\pi\)
0.566419 + 0.824117i \(0.308328\pi\)
\(380\) 0.562135 0.0288369
\(381\) 0 0
\(382\) 1.81311 0.0927669
\(383\) −9.13278 −0.466663 −0.233332 0.972397i \(-0.574963\pi\)
−0.233332 + 0.972397i \(0.574963\pi\)
\(384\) 0 0
\(385\) −0.273495 −0.0139386
\(386\) −0.218788 −0.0111360
\(387\) 0 0
\(388\) 2.50279 0.127060
\(389\) 18.5278 0.939397 0.469699 0.882827i \(-0.344363\pi\)
0.469699 + 0.882827i \(0.344363\pi\)
\(390\) 0 0
\(391\) 8.76876 0.443455
\(392\) −0.407889 −0.0206015
\(393\) 0 0
\(394\) 1.73904 0.0876114
\(395\) 2.56320 0.128968
\(396\) 0 0
\(397\) −17.2658 −0.866545 −0.433272 0.901263i \(-0.642641\pi\)
−0.433272 + 0.901263i \(0.642641\pi\)
\(398\) −0.719147 −0.0360476
\(399\) 0 0
\(400\) −19.3770 −0.968849
\(401\) −29.4145 −1.46889 −0.734445 0.678668i \(-0.762558\pi\)
−0.734445 + 0.678668i \(0.762558\pi\)
\(402\) 0 0
\(403\) 12.8358 0.639397
\(404\) −18.5528 −0.923037
\(405\) 0 0
\(406\) −0.229251 −0.0113775
\(407\) −8.51095 −0.421872
\(408\) 0 0
\(409\) 36.8255 1.82090 0.910452 0.413615i \(-0.135734\pi\)
0.910452 + 0.413615i \(0.135734\pi\)
\(410\) −0.0968305 −0.00478212
\(411\) 0 0
\(412\) −23.0527 −1.13573
\(413\) −2.70787 −0.133245
\(414\) 0 0
\(415\) 0.826646 0.0405784
\(416\) −1.72211 −0.0844332
\(417\) 0 0
\(418\) −0.100352 −0.00490839
\(419\) −29.4840 −1.44039 −0.720193 0.693774i \(-0.755947\pi\)
−0.720193 + 0.693774i \(0.755947\pi\)
\(420\) 0 0
\(421\) −4.30802 −0.209960 −0.104980 0.994474i \(-0.533478\pi\)
−0.104980 + 0.994474i \(0.533478\pi\)
\(422\) 0.230726 0.0112316
\(423\) 0 0
\(424\) 5.06222 0.245843
\(425\) 30.9326 1.50045
\(426\) 0 0
\(427\) 6.02128 0.291390
\(428\) −0.405710 −0.0196108
\(429\) 0 0
\(430\) 0.130059 0.00627201
\(431\) 22.0058 1.05998 0.529992 0.848003i \(-0.322195\pi\)
0.529992 + 0.848003i \(0.322195\pi\)
\(432\) 0 0
\(433\) 15.7052 0.754744 0.377372 0.926062i \(-0.376828\pi\)
0.377372 + 0.926062i \(0.376828\pi\)
\(434\) 0.928429 0.0445660
\(435\) 0 0
\(436\) −34.9797 −1.67522
\(437\) −1.40483 −0.0672019
\(438\) 0 0
\(439\) 25.5991 1.22178 0.610889 0.791716i \(-0.290812\pi\)
0.610889 + 0.791716i \(0.290812\pi\)
\(440\) −0.111556 −0.00531821
\(441\) 0 0
\(442\) 0.908344 0.0432055
\(443\) −17.3757 −0.825545 −0.412772 0.910834i \(-0.635439\pi\)
−0.412772 + 0.910834i \(0.635439\pi\)
\(444\) 0 0
\(445\) −2.50442 −0.118721
\(446\) −1.71990 −0.0814397
\(447\) 0 0
\(448\) 7.75022 0.366164
\(449\) 26.0563 1.22967 0.614836 0.788655i \(-0.289222\pi\)
0.614836 + 0.788655i \(0.289222\pi\)
\(450\) 0 0
\(451\) −3.29015 −0.154927
\(452\) −32.0006 −1.50518
\(453\) 0 0
\(454\) 2.75827 0.129452
\(455\) −0.396604 −0.0185931
\(456\) 0 0
\(457\) 4.60151 0.215250 0.107625 0.994192i \(-0.465675\pi\)
0.107625 + 0.994192i \(0.465675\pi\)
\(458\) −1.18447 −0.0553467
\(459\) 0 0
\(460\) −0.778785 −0.0363110
\(461\) 24.8341 1.15664 0.578320 0.815810i \(-0.303708\pi\)
0.578320 + 0.815810i \(0.303708\pi\)
\(462\) 0 0
\(463\) 25.8050 1.19926 0.599630 0.800277i \(-0.295314\pi\)
0.599630 + 0.800277i \(0.295314\pi\)
\(464\) 8.82880 0.409867
\(465\) 0 0
\(466\) 1.05508 0.0488755
\(467\) −13.0335 −0.603119 −0.301559 0.953447i \(-0.597507\pi\)
−0.301559 + 0.953447i \(0.597507\pi\)
\(468\) 0 0
\(469\) 1.29868 0.0599672
\(470\) −0.114275 −0.00527110
\(471\) 0 0
\(472\) −1.10451 −0.0508391
\(473\) 4.41921 0.203195
\(474\) 0 0
\(475\) −4.95565 −0.227381
\(476\) −12.5053 −0.573178
\(477\) 0 0
\(478\) 1.55250 0.0710097
\(479\) 2.00396 0.0915634 0.0457817 0.998951i \(-0.485422\pi\)
0.0457817 + 0.998951i \(0.485422\pi\)
\(480\) 0 0
\(481\) −12.3420 −0.562747
\(482\) 0.530656 0.0241707
\(483\) 0 0
\(484\) 19.9947 0.908852
\(485\) 0.352966 0.0160274
\(486\) 0 0
\(487\) −16.6173 −0.753003 −0.376502 0.926416i \(-0.622873\pi\)
−0.376502 + 0.926416i \(0.622873\pi\)
\(488\) 2.45601 0.111179
\(489\) 0 0
\(490\) −0.0286868 −0.00129594
\(491\) 20.9773 0.946692 0.473346 0.880876i \(-0.343046\pi\)
0.473346 + 0.880876i \(0.343046\pi\)
\(492\) 0 0
\(493\) −14.0939 −0.634758
\(494\) −0.145524 −0.00654743
\(495\) 0 0
\(496\) −35.7552 −1.60545
\(497\) 1.77583 0.0796568
\(498\) 0 0
\(499\) 18.9857 0.849916 0.424958 0.905213i \(-0.360289\pi\)
0.424958 + 0.905213i \(0.360289\pi\)
\(500\) −5.53841 −0.247685
\(501\) 0 0
\(502\) 2.21153 0.0987053
\(503\) 3.24409 0.144647 0.0723234 0.997381i \(-0.476959\pi\)
0.0723234 + 0.997381i \(0.476959\pi\)
\(504\) 0 0
\(505\) −2.61649 −0.116432
\(506\) 0.139028 0.00618057
\(507\) 0 0
\(508\) 1.98955 0.0882719
\(509\) 31.1652 1.38137 0.690686 0.723155i \(-0.257309\pi\)
0.690686 + 0.723155i \(0.257309\pi\)
\(510\) 0 0
\(511\) 14.2675 0.631158
\(512\) 8.00910 0.353956
\(513\) 0 0
\(514\) −1.05227 −0.0464136
\(515\) −3.25111 −0.143261
\(516\) 0 0
\(517\) −3.88288 −0.170769
\(518\) −0.892711 −0.0392235
\(519\) 0 0
\(520\) −0.161770 −0.00709410
\(521\) −37.3656 −1.63701 −0.818507 0.574496i \(-0.805198\pi\)
−0.818507 + 0.574496i \(0.805198\pi\)
\(522\) 0 0
\(523\) 8.19492 0.358339 0.179170 0.983818i \(-0.442659\pi\)
0.179170 + 0.983818i \(0.442659\pi\)
\(524\) −33.3542 −1.45708
\(525\) 0 0
\(526\) 1.45530 0.0634540
\(527\) 57.0780 2.48636
\(528\) 0 0
\(529\) −21.0537 −0.915380
\(530\) 0.356025 0.0154648
\(531\) 0 0
\(532\) 2.00344 0.0868603
\(533\) −4.77115 −0.206661
\(534\) 0 0
\(535\) −0.0572171 −0.00247371
\(536\) 0.529715 0.0228802
\(537\) 0 0
\(538\) 2.51849 0.108580
\(539\) −0.974733 −0.0419847
\(540\) 0 0
\(541\) −39.2494 −1.68747 −0.843733 0.536764i \(-0.819647\pi\)
−0.843733 + 0.536764i \(0.819647\pi\)
\(542\) −0.467547 −0.0200829
\(543\) 0 0
\(544\) −7.65782 −0.328326
\(545\) −4.93316 −0.211313
\(546\) 0 0
\(547\) 4.58146 0.195889 0.0979446 0.995192i \(-0.468773\pi\)
0.0979446 + 0.995192i \(0.468773\pi\)
\(548\) 32.5668 1.39119
\(549\) 0 0
\(550\) 0.490435 0.0209122
\(551\) 2.25796 0.0961923
\(552\) 0 0
\(553\) 9.13520 0.388468
\(554\) −2.51257 −0.106749
\(555\) 0 0
\(556\) −2.74655 −0.116480
\(557\) 15.9166 0.674410 0.337205 0.941431i \(-0.390518\pi\)
0.337205 + 0.941431i \(0.390518\pi\)
\(558\) 0 0
\(559\) 6.40843 0.271048
\(560\) 1.10477 0.0466851
\(561\) 0 0
\(562\) −1.37461 −0.0579843
\(563\) −7.61666 −0.321004 −0.160502 0.987036i \(-0.551311\pi\)
−0.160502 + 0.987036i \(0.551311\pi\)
\(564\) 0 0
\(565\) −4.51303 −0.189865
\(566\) −2.65752 −0.111704
\(567\) 0 0
\(568\) 0.724341 0.0303927
\(569\) −3.85842 −0.161754 −0.0808768 0.996724i \(-0.525772\pi\)
−0.0808768 + 0.996724i \(0.525772\pi\)
\(570\) 0 0
\(571\) 32.1197 1.34417 0.672085 0.740474i \(-0.265399\pi\)
0.672085 + 0.740474i \(0.265399\pi\)
\(572\) −2.74115 −0.114613
\(573\) 0 0
\(574\) −0.345103 −0.0144043
\(575\) 6.86557 0.286314
\(576\) 0 0
\(577\) 17.3278 0.721364 0.360682 0.932689i \(-0.382544\pi\)
0.360682 + 0.932689i \(0.382544\pi\)
\(578\) 2.30113 0.0957145
\(579\) 0 0
\(580\) 1.25173 0.0519753
\(581\) 2.94615 0.122227
\(582\) 0 0
\(583\) 12.0972 0.501014
\(584\) 5.81956 0.240815
\(585\) 0 0
\(586\) 1.53415 0.0633751
\(587\) −43.2794 −1.78633 −0.893166 0.449728i \(-0.851521\pi\)
−0.893166 + 0.449728i \(0.851521\pi\)
\(588\) 0 0
\(589\) −9.14436 −0.376787
\(590\) −0.0776800 −0.00319804
\(591\) 0 0
\(592\) 34.3796 1.41299
\(593\) 17.9037 0.735216 0.367608 0.929981i \(-0.380177\pi\)
0.367608 + 0.929981i \(0.380177\pi\)
\(594\) 0 0
\(595\) −1.76361 −0.0723009
\(596\) 32.5725 1.33422
\(597\) 0 0
\(598\) 0.201609 0.00824442
\(599\) −28.8831 −1.18013 −0.590066 0.807355i \(-0.700898\pi\)
−0.590066 + 0.807355i \(0.700898\pi\)
\(600\) 0 0
\(601\) 12.3997 0.505795 0.252898 0.967493i \(-0.418616\pi\)
0.252898 + 0.967493i \(0.418616\pi\)
\(602\) 0.463529 0.0188920
\(603\) 0 0
\(604\) 43.9141 1.78684
\(605\) 2.81985 0.114643
\(606\) 0 0
\(607\) −12.6815 −0.514726 −0.257363 0.966315i \(-0.582854\pi\)
−0.257363 + 0.966315i \(0.582854\pi\)
\(608\) 1.22684 0.0497551
\(609\) 0 0
\(610\) 0.172731 0.00699369
\(611\) −5.63068 −0.227793
\(612\) 0 0
\(613\) 4.45146 0.179793 0.0898965 0.995951i \(-0.471346\pi\)
0.0898965 + 0.995951i \(0.471346\pi\)
\(614\) 1.56425 0.0631280
\(615\) 0 0
\(616\) −0.397583 −0.0160191
\(617\) 24.0389 0.967769 0.483885 0.875132i \(-0.339225\pi\)
0.483885 + 0.875132i \(0.339225\pi\)
\(618\) 0 0
\(619\) 17.6987 0.711371 0.355686 0.934606i \(-0.384247\pi\)
0.355686 + 0.934606i \(0.384247\pi\)
\(620\) −5.06930 −0.203588
\(621\) 0 0
\(622\) 0.739205 0.0296394
\(623\) −8.92572 −0.357601
\(624\) 0 0
\(625\) 23.8253 0.953011
\(626\) 0.106798 0.00426849
\(627\) 0 0
\(628\) −10.5787 −0.422136
\(629\) −54.8822 −2.18830
\(630\) 0 0
\(631\) 4.02635 0.160286 0.0801432 0.996783i \(-0.474462\pi\)
0.0801432 + 0.996783i \(0.474462\pi\)
\(632\) 3.72615 0.148218
\(633\) 0 0
\(634\) −0.457583 −0.0181729
\(635\) 0.280585 0.0111347
\(636\) 0 0
\(637\) −1.41349 −0.0560046
\(638\) −0.223459 −0.00884681
\(639\) 0 0
\(640\) 0.906021 0.0358136
\(641\) 28.9089 1.14183 0.570917 0.821008i \(-0.306588\pi\)
0.570917 + 0.821008i \(0.306588\pi\)
\(642\) 0 0
\(643\) −4.68023 −0.184570 −0.0922851 0.995733i \(-0.529417\pi\)
−0.0922851 + 0.995733i \(0.529417\pi\)
\(644\) −2.77558 −0.109373
\(645\) 0 0
\(646\) −0.647113 −0.0254603
\(647\) −11.1375 −0.437860 −0.218930 0.975741i \(-0.570257\pi\)
−0.218930 + 0.975741i \(0.570257\pi\)
\(648\) 0 0
\(649\) −2.63945 −0.103607
\(650\) 0.711195 0.0278954
\(651\) 0 0
\(652\) −29.4597 −1.15373
\(653\) −36.8949 −1.44381 −0.721904 0.691993i \(-0.756733\pi\)
−0.721904 + 0.691993i \(0.756733\pi\)
\(654\) 0 0
\(655\) −4.70392 −0.183797
\(656\) 13.2904 0.518903
\(657\) 0 0
\(658\) −0.407274 −0.0158772
\(659\) 22.7628 0.886713 0.443357 0.896345i \(-0.353788\pi\)
0.443357 + 0.896345i \(0.353788\pi\)
\(660\) 0 0
\(661\) 33.3559 1.29740 0.648698 0.761046i \(-0.275314\pi\)
0.648698 + 0.761046i \(0.275314\pi\)
\(662\) 1.76091 0.0684397
\(663\) 0 0
\(664\) 1.20170 0.0466352
\(665\) 0.282544 0.0109566
\(666\) 0 0
\(667\) −3.12819 −0.121124
\(668\) 12.6340 0.488823
\(669\) 0 0
\(670\) 0.0372548 0.00143928
\(671\) 5.86914 0.226576
\(672\) 0 0
\(673\) −5.38199 −0.207461 −0.103730 0.994605i \(-0.533078\pi\)
−0.103730 + 0.994605i \(0.533078\pi\)
\(674\) 0.708452 0.0272885
\(675\) 0 0
\(676\) 21.8891 0.841888
\(677\) −35.4290 −1.36165 −0.680823 0.732448i \(-0.738378\pi\)
−0.680823 + 0.732448i \(0.738378\pi\)
\(678\) 0 0
\(679\) 1.25797 0.0482764
\(680\) −0.719357 −0.0275861
\(681\) 0 0
\(682\) 0.904970 0.0346531
\(683\) 8.04397 0.307794 0.153897 0.988087i \(-0.450818\pi\)
0.153897 + 0.988087i \(0.450818\pi\)
\(684\) 0 0
\(685\) 4.59288 0.175485
\(686\) −0.102239 −0.00390352
\(687\) 0 0
\(688\) −17.8512 −0.680571
\(689\) 17.5425 0.668317
\(690\) 0 0
\(691\) −16.1470 −0.614261 −0.307131 0.951667i \(-0.599369\pi\)
−0.307131 + 0.951667i \(0.599369\pi\)
\(692\) 4.43146 0.168459
\(693\) 0 0
\(694\) 1.10629 0.0419943
\(695\) −0.387345 −0.0146928
\(696\) 0 0
\(697\) −21.2162 −0.803622
\(698\) 1.76006 0.0666192
\(699\) 0 0
\(700\) −9.79110 −0.370069
\(701\) 31.0098 1.17122 0.585611 0.810592i \(-0.300855\pi\)
0.585611 + 0.810592i \(0.300855\pi\)
\(702\) 0 0
\(703\) 8.79256 0.331618
\(704\) 7.55440 0.284717
\(705\) 0 0
\(706\) 3.66130 0.137795
\(707\) −9.32514 −0.350708
\(708\) 0 0
\(709\) −13.3540 −0.501520 −0.250760 0.968049i \(-0.580681\pi\)
−0.250760 + 0.968049i \(0.580681\pi\)
\(710\) 0.0509429 0.00191185
\(711\) 0 0
\(712\) −3.64070 −0.136441
\(713\) 12.6686 0.474444
\(714\) 0 0
\(715\) −0.386583 −0.0144574
\(716\) 7.26270 0.271420
\(717\) 0 0
\(718\) −1.28608 −0.0479961
\(719\) −6.07809 −0.226674 −0.113337 0.993557i \(-0.536154\pi\)
−0.113337 + 0.993557i \(0.536154\pi\)
\(720\) 0 0
\(721\) −11.5869 −0.431519
\(722\) −1.83888 −0.0684359
\(723\) 0 0
\(724\) −16.9465 −0.629811
\(725\) −11.0350 −0.409828
\(726\) 0 0
\(727\) −18.5668 −0.688605 −0.344302 0.938859i \(-0.611885\pi\)
−0.344302 + 0.938859i \(0.611885\pi\)
\(728\) −0.576548 −0.0213683
\(729\) 0 0
\(730\) 0.409289 0.0151485
\(731\) 28.4969 1.05400
\(732\) 0 0
\(733\) 31.9202 1.17900 0.589499 0.807769i \(-0.299325\pi\)
0.589499 + 0.807769i \(0.299325\pi\)
\(734\) −0.404823 −0.0149423
\(735\) 0 0
\(736\) −1.69968 −0.0626509
\(737\) 1.26586 0.0466286
\(738\) 0 0
\(739\) −47.3446 −1.74160 −0.870799 0.491639i \(-0.836398\pi\)
−0.870799 + 0.491639i \(0.836398\pi\)
\(740\) 4.87428 0.179182
\(741\) 0 0
\(742\) 1.26887 0.0465817
\(743\) 1.56541 0.0574293 0.0287147 0.999588i \(-0.490859\pi\)
0.0287147 + 0.999588i \(0.490859\pi\)
\(744\) 0 0
\(745\) 4.59369 0.168300
\(746\) 3.08253 0.112860
\(747\) 0 0
\(748\) −12.1893 −0.445685
\(749\) −0.203921 −0.00745111
\(750\) 0 0
\(751\) −54.4033 −1.98520 −0.992601 0.121418i \(-0.961256\pi\)
−0.992601 + 0.121418i \(0.961256\pi\)
\(752\) 15.6847 0.571963
\(753\) 0 0
\(754\) −0.324044 −0.0118010
\(755\) 6.19317 0.225393
\(756\) 0 0
\(757\) −18.1815 −0.660817 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(758\) 2.25479 0.0818976
\(759\) 0 0
\(760\) 0.115247 0.00418044
\(761\) −26.0404 −0.943962 −0.471981 0.881609i \(-0.656461\pi\)
−0.471981 + 0.881609i \(0.656461\pi\)
\(762\) 0 0
\(763\) −17.5817 −0.636501
\(764\) −35.2826 −1.27648
\(765\) 0 0
\(766\) −0.933730 −0.0337370
\(767\) −3.82754 −0.138205
\(768\) 0 0
\(769\) −34.5026 −1.24419 −0.622097 0.782940i \(-0.713719\pi\)
−0.622097 + 0.782940i \(0.713719\pi\)
\(770\) −0.0279620 −0.00100768
\(771\) 0 0
\(772\) 4.25754 0.153232
\(773\) 23.2583 0.836542 0.418271 0.908322i \(-0.362636\pi\)
0.418271 + 0.908322i \(0.362636\pi\)
\(774\) 0 0
\(775\) 44.6897 1.60530
\(776\) 0.513111 0.0184196
\(777\) 0 0
\(778\) 1.89427 0.0679130
\(779\) 3.39901 0.121782
\(780\) 0 0
\(781\) 1.73096 0.0619386
\(782\) 0.896513 0.0320592
\(783\) 0 0
\(784\) 3.93739 0.140621
\(785\) −1.49191 −0.0532485
\(786\) 0 0
\(787\) −26.2539 −0.935850 −0.467925 0.883768i \(-0.654998\pi\)
−0.467925 + 0.883768i \(0.654998\pi\)
\(788\) −33.8411 −1.20554
\(789\) 0 0
\(790\) 0.262060 0.00932367
\(791\) −16.0844 −0.571895
\(792\) 0 0
\(793\) 8.51103 0.302235
\(794\) −1.76524 −0.0626462
\(795\) 0 0
\(796\) 13.9944 0.496018
\(797\) −34.9004 −1.23623 −0.618117 0.786086i \(-0.712104\pi\)
−0.618117 + 0.786086i \(0.712104\pi\)
\(798\) 0 0
\(799\) −25.0384 −0.885795
\(800\) −5.99576 −0.211982
\(801\) 0 0
\(802\) −3.00732 −0.106192
\(803\) 13.9070 0.490768
\(804\) 0 0
\(805\) −0.391438 −0.0137964
\(806\) 1.31233 0.0462247
\(807\) 0 0
\(808\) −3.80362 −0.133811
\(809\) −29.4086 −1.03395 −0.516975 0.856001i \(-0.672942\pi\)
−0.516975 + 0.856001i \(0.672942\pi\)
\(810\) 0 0
\(811\) 41.8547 1.46972 0.734859 0.678220i \(-0.237249\pi\)
0.734859 + 0.678220i \(0.237249\pi\)
\(812\) 4.46116 0.156556
\(813\) 0 0
\(814\) −0.870155 −0.0304989
\(815\) −4.15468 −0.145532
\(816\) 0 0
\(817\) −4.56543 −0.159724
\(818\) 3.76502 0.131641
\(819\) 0 0
\(820\) 1.88429 0.0658023
\(821\) 46.6870 1.62939 0.814694 0.579891i \(-0.196905\pi\)
0.814694 + 0.579891i \(0.196905\pi\)
\(822\) 0 0
\(823\) 15.4362 0.538071 0.269035 0.963130i \(-0.413295\pi\)
0.269035 + 0.963130i \(0.413295\pi\)
\(824\) −4.72618 −0.164644
\(825\) 0 0
\(826\) −0.276851 −0.00963287
\(827\) 22.0580 0.767030 0.383515 0.923535i \(-0.374713\pi\)
0.383515 + 0.923535i \(0.374713\pi\)
\(828\) 0 0
\(829\) 47.3457 1.64438 0.822191 0.569211i \(-0.192751\pi\)
0.822191 + 0.569211i \(0.192751\pi\)
\(830\) 0.0845158 0.00293359
\(831\) 0 0
\(832\) 10.9549 0.379792
\(833\) −6.28548 −0.217779
\(834\) 0 0
\(835\) 1.78176 0.0616604
\(836\) 1.95282 0.0675398
\(837\) 0 0
\(838\) −3.01442 −0.104132
\(839\) −33.7490 −1.16514 −0.582572 0.812779i \(-0.697954\pi\)
−0.582572 + 0.812779i \(0.697954\pi\)
\(840\) 0 0
\(841\) −23.9721 −0.826624
\(842\) −0.440450 −0.0151789
\(843\) 0 0
\(844\) −4.48986 −0.154547
\(845\) 3.08700 0.106196
\(846\) 0 0
\(847\) 10.0499 0.345319
\(848\) −48.8661 −1.67807
\(849\) 0 0
\(850\) 3.16253 0.108474
\(851\) −12.1813 −0.417568
\(852\) 0 0
\(853\) 6.51623 0.223111 0.111556 0.993758i \(-0.464417\pi\)
0.111556 + 0.993758i \(0.464417\pi\)
\(854\) 0.615612 0.0210658
\(855\) 0 0
\(856\) −0.0831771 −0.00284294
\(857\) −18.3967 −0.628419 −0.314209 0.949354i \(-0.601739\pi\)
−0.314209 + 0.949354i \(0.601739\pi\)
\(858\) 0 0
\(859\) 43.9167 1.49842 0.749209 0.662333i \(-0.230434\pi\)
0.749209 + 0.662333i \(0.230434\pi\)
\(860\) −2.53091 −0.0863034
\(861\) 0 0
\(862\) 2.24986 0.0766307
\(863\) 46.1967 1.57255 0.786277 0.617875i \(-0.212006\pi\)
0.786277 + 0.617875i \(0.212006\pi\)
\(864\) 0 0
\(865\) 0.624966 0.0212495
\(866\) 1.60569 0.0545636
\(867\) 0 0
\(868\) −18.0669 −0.613232
\(869\) 8.90438 0.302060
\(870\) 0 0
\(871\) 1.83567 0.0621992
\(872\) −7.17139 −0.242854
\(873\) 0 0
\(874\) −0.143629 −0.00485831
\(875\) −2.78376 −0.0941081
\(876\) 0 0
\(877\) −41.8033 −1.41160 −0.705799 0.708412i \(-0.749412\pi\)
−0.705799 + 0.708412i \(0.749412\pi\)
\(878\) 2.61724 0.0883275
\(879\) 0 0
\(880\) 1.07686 0.0363009
\(881\) 17.9451 0.604587 0.302293 0.953215i \(-0.402248\pi\)
0.302293 + 0.953215i \(0.402248\pi\)
\(882\) 0 0
\(883\) 46.4060 1.56169 0.780843 0.624728i \(-0.214790\pi\)
0.780843 + 0.624728i \(0.214790\pi\)
\(884\) −17.6761 −0.594511
\(885\) 0 0
\(886\) −1.77648 −0.0596821
\(887\) −34.5487 −1.16003 −0.580016 0.814605i \(-0.696954\pi\)
−0.580016 + 0.814605i \(0.696954\pi\)
\(888\) 0 0
\(889\) 1.00000 0.0335389
\(890\) −0.256050 −0.00858283
\(891\) 0 0
\(892\) 33.4687 1.12062
\(893\) 4.01135 0.134235
\(894\) 0 0
\(895\) 1.02425 0.0342370
\(896\) 3.22905 0.107875
\(897\) 0 0
\(898\) 2.66398 0.0888982
\(899\) −20.3621 −0.679115
\(900\) 0 0
\(901\) 78.0077 2.59881
\(902\) −0.336383 −0.0112003
\(903\) 0 0
\(904\) −6.56064 −0.218204
\(905\) −2.38995 −0.0794446
\(906\) 0 0
\(907\) −15.3750 −0.510518 −0.255259 0.966873i \(-0.582161\pi\)
−0.255259 + 0.966873i \(0.582161\pi\)
\(908\) −53.6751 −1.78127
\(909\) 0 0
\(910\) −0.0405486 −0.00134417
\(911\) −25.2602 −0.836908 −0.418454 0.908238i \(-0.637428\pi\)
−0.418454 + 0.908238i \(0.637428\pi\)
\(912\) 0 0
\(913\) 2.87171 0.0950399
\(914\) 0.470456 0.0155613
\(915\) 0 0
\(916\) 23.0494 0.761575
\(917\) −16.7647 −0.553620
\(918\) 0 0
\(919\) 25.4760 0.840376 0.420188 0.907437i \(-0.361964\pi\)
0.420188 + 0.907437i \(0.361964\pi\)
\(920\) −0.159663 −0.00526395
\(921\) 0 0
\(922\) 2.53903 0.0836184
\(923\) 2.51012 0.0826216
\(924\) 0 0
\(925\) −42.9705 −1.41286
\(926\) 2.63829 0.0866996
\(927\) 0 0
\(928\) 2.73187 0.0896780
\(929\) −23.7913 −0.780566 −0.390283 0.920695i \(-0.627623\pi\)
−0.390283 + 0.920695i \(0.627623\pi\)
\(930\) 0 0
\(931\) 1.00698 0.0330026
\(932\) −20.5315 −0.672531
\(933\) 0 0
\(934\) −1.33254 −0.0436020
\(935\) −1.71905 −0.0562189
\(936\) 0 0
\(937\) −29.6899 −0.969927 −0.484964 0.874534i \(-0.661167\pi\)
−0.484964 + 0.874534i \(0.661167\pi\)
\(938\) 0.132776 0.00433528
\(939\) 0 0
\(940\) 2.22375 0.0725308
\(941\) 40.2348 1.31162 0.655809 0.754927i \(-0.272328\pi\)
0.655809 + 0.754927i \(0.272328\pi\)
\(942\) 0 0
\(943\) −4.70901 −0.153346
\(944\) 10.6619 0.347016
\(945\) 0 0
\(946\) 0.451817 0.0146899
\(947\) −48.3106 −1.56988 −0.784942 0.619569i \(-0.787307\pi\)
−0.784942 + 0.619569i \(0.787307\pi\)
\(948\) 0 0
\(949\) 20.1670 0.654649
\(950\) −0.506662 −0.0164383
\(951\) 0 0
\(952\) −2.56378 −0.0830926
\(953\) −46.8476 −1.51754 −0.758772 0.651357i \(-0.774200\pi\)
−0.758772 + 0.651357i \(0.774200\pi\)
\(954\) 0 0
\(955\) −4.97588 −0.161016
\(956\) −30.2112 −0.977099
\(957\) 0 0
\(958\) 0.204884 0.00661950
\(959\) 16.3690 0.528581
\(960\) 0 0
\(961\) 51.4633 1.66011
\(962\) −1.26184 −0.0406833
\(963\) 0 0
\(964\) −10.3264 −0.332591
\(965\) 0.600438 0.0193288
\(966\) 0 0
\(967\) −11.3136 −0.363822 −0.181911 0.983315i \(-0.558228\pi\)
−0.181911 + 0.983315i \(0.558228\pi\)
\(968\) 4.09924 0.131755
\(969\) 0 0
\(970\) 0.0360871 0.00115869
\(971\) 48.0486 1.54195 0.770976 0.636864i \(-0.219769\pi\)
0.770976 + 0.636864i \(0.219769\pi\)
\(972\) 0 0
\(973\) −1.38049 −0.0442565
\(974\) −1.69895 −0.0544378
\(975\) 0 0
\(976\) −23.7081 −0.758879
\(977\) 1.06017 0.0339177 0.0169588 0.999856i \(-0.494602\pi\)
0.0169588 + 0.999856i \(0.494602\pi\)
\(978\) 0 0
\(979\) −8.70019 −0.278059
\(980\) 0.558236 0.0178322
\(981\) 0 0
\(982\) 2.14471 0.0684404
\(983\) −2.35200 −0.0750172 −0.0375086 0.999296i \(-0.511942\pi\)
−0.0375086 + 0.999296i \(0.511942\pi\)
\(984\) 0 0
\(985\) −4.77259 −0.152067
\(986\) −1.44095 −0.0458893
\(987\) 0 0
\(988\) 2.83185 0.0900931
\(989\) 6.32497 0.201122
\(990\) 0 0
\(991\) −26.3037 −0.835564 −0.417782 0.908547i \(-0.637193\pi\)
−0.417782 + 0.908547i \(0.637193\pi\)
\(992\) −11.0636 −0.351270
\(993\) 0 0
\(994\) 0.181560 0.00575872
\(995\) 1.97362 0.0625679
\(996\) 0 0
\(997\) −24.0943 −0.763076 −0.381538 0.924353i \(-0.624605\pi\)
−0.381538 + 0.924353i \(0.624605\pi\)
\(998\) 1.94109 0.0614440
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8001.2.a.t.1.9 16
3.2 odd 2 889.2.a.c.1.8 16
21.20 even 2 6223.2.a.k.1.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.8 16 3.2 odd 2
6223.2.a.k.1.8 16 21.20 even 2
8001.2.a.t.1.9 16 1.1 even 1 trivial