Properties

Label 800.6.d.a.401.2
Level $800$
Weight $6$
Character 800.401
Analytic conductor $128.307$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,6,Mod(401,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.401"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,96,0,-164,0,0,0,0,0,0,0,-200,0,0,0,0,0,2336] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(128.307055850\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.218489.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 8x + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.2
Root \(-1.88600 + 2.10784i\) of defining polynomial
Character \(\chi\) \(=\) 800.401
Dual form 800.6.d.a.401.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.25452i q^{3} -112.704 q^{7} +232.408 q^{9} -575.407i q^{11} +117.735i q^{13} +223.408 q^{17} +1752.26i q^{19} +366.797i q^{21} +2361.15 q^{23} -1547.22i q^{27} +3865.52i q^{29} +1591.55 q^{31} -1872.67 q^{33} +4736.44i q^{37} +383.172 q^{39} +8153.88 q^{41} -4920.23i q^{43} -21062.0 q^{47} -4104.79 q^{49} -727.085i q^{51} -12709.0i q^{53} +5702.75 q^{57} -14111.1i q^{59} +42030.6i q^{61} -26193.3 q^{63} -54153.4i q^{67} -7684.41i q^{69} -43879.9 q^{71} +31290.6 q^{73} +64850.7i q^{77} +50211.5 q^{79} +51439.7 q^{81} +43707.0i q^{83} +12580.4 q^{87} +64418.7 q^{89} -13269.3i q^{91} -5179.73i q^{93} +62350.9 q^{97} -133729. i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 96 q^{7} - 164 q^{9} - 200 q^{17} + 2336 q^{23} + 12928 q^{31} + 2352 q^{33} - 35104 q^{39} - 4568 q^{41} - 54720 q^{47} + 9828 q^{49} + 2032 q^{57} - 153440 q^{63} - 206688 q^{71} - 39976 q^{73}+ \cdots + 99576 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.25452i − 0.208777i −0.994537 0.104389i \(-0.966711\pi\)
0.994537 0.104389i \(-0.0332886\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −112.704 −0.869350 −0.434675 0.900587i \(-0.643137\pi\)
−0.434675 + 0.900587i \(0.643137\pi\)
\(8\) 0 0
\(9\) 232.408 0.956412
\(10\) 0 0
\(11\) − 575.407i − 1.43382i −0.697167 0.716909i \(-0.745557\pi\)
0.697167 0.716909i \(-0.254443\pi\)
\(12\) 0 0
\(13\) 117.735i 0.193219i 0.995322 + 0.0966093i \(0.0307997\pi\)
−0.995322 + 0.0966093i \(0.969200\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 223.408 0.187489 0.0937447 0.995596i \(-0.470116\pi\)
0.0937447 + 0.995596i \(0.470116\pi\)
\(18\) 0 0
\(19\) 1752.26i 1.11356i 0.830660 + 0.556781i \(0.187964\pi\)
−0.830660 + 0.556781i \(0.812036\pi\)
\(20\) 0 0
\(21\) 366.797i 0.181501i
\(22\) 0 0
\(23\) 2361.15 0.930689 0.465344 0.885130i \(-0.345930\pi\)
0.465344 + 0.885130i \(0.345930\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1547.22i − 0.408455i
\(28\) 0 0
\(29\) 3865.52i 0.853518i 0.904365 + 0.426759i \(0.140345\pi\)
−0.904365 + 0.426759i \(0.859655\pi\)
\(30\) 0 0
\(31\) 1591.55 0.297452 0.148726 0.988878i \(-0.452483\pi\)
0.148726 + 0.988878i \(0.452483\pi\)
\(32\) 0 0
\(33\) −1872.67 −0.299349
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4736.44i 0.568785i 0.958708 + 0.284392i \(0.0917918\pi\)
−0.958708 + 0.284392i \(0.908208\pi\)
\(38\) 0 0
\(39\) 383.172 0.0403397
\(40\) 0 0
\(41\) 8153.88 0.757538 0.378769 0.925491i \(-0.376347\pi\)
0.378769 + 0.925491i \(0.376347\pi\)
\(42\) 0 0
\(43\) − 4920.23i − 0.405802i −0.979199 0.202901i \(-0.934963\pi\)
0.979199 0.202901i \(-0.0650370\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −21062.0 −1.39077 −0.695385 0.718637i \(-0.744766\pi\)
−0.695385 + 0.718637i \(0.744766\pi\)
\(48\) 0 0
\(49\) −4104.79 −0.244231
\(50\) 0 0
\(51\) − 727.085i − 0.0391435i
\(52\) 0 0
\(53\) − 12709.0i − 0.621470i −0.950497 0.310735i \(-0.899425\pi\)
0.950497 0.310735i \(-0.100575\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5702.75 0.232486
\(58\) 0 0
\(59\) − 14111.1i − 0.527752i −0.964557 0.263876i \(-0.914999\pi\)
0.964557 0.263876i \(-0.0850010\pi\)
\(60\) 0 0
\(61\) 42030.6i 1.44624i 0.690721 + 0.723121i \(0.257293\pi\)
−0.690721 + 0.723121i \(0.742707\pi\)
\(62\) 0 0
\(63\) −26193.3 −0.831456
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 54153.4i − 1.47380i −0.676001 0.736901i \(-0.736289\pi\)
0.676001 0.736901i \(-0.263711\pi\)
\(68\) 0 0
\(69\) − 7684.41i − 0.194307i
\(70\) 0 0
\(71\) −43879.9 −1.03305 −0.516523 0.856273i \(-0.672774\pi\)
−0.516523 + 0.856273i \(0.672774\pi\)
\(72\) 0 0
\(73\) 31290.6 0.687238 0.343619 0.939109i \(-0.388347\pi\)
0.343619 + 0.939109i \(0.388347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 64850.7i 1.24649i
\(78\) 0 0
\(79\) 50211.5 0.905180 0.452590 0.891719i \(-0.350500\pi\)
0.452590 + 0.891719i \(0.350500\pi\)
\(80\) 0 0
\(81\) 51439.7 0.871136
\(82\) 0 0
\(83\) 43707.0i 0.696395i 0.937421 + 0.348197i \(0.113206\pi\)
−0.937421 + 0.348197i \(0.886794\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 12580.4 0.178195
\(88\) 0 0
\(89\) 64418.7 0.862059 0.431030 0.902338i \(-0.358150\pi\)
0.431030 + 0.902338i \(0.358150\pi\)
\(90\) 0 0
\(91\) − 13269.3i − 0.167974i
\(92\) 0 0
\(93\) − 5179.73i − 0.0621012i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 62350.9 0.672843 0.336421 0.941712i \(-0.390783\pi\)
0.336421 + 0.941712i \(0.390783\pi\)
\(98\) 0 0
\(99\) − 133729.i − 1.37132i
\(100\) 0 0
\(101\) − 49960.5i − 0.487330i −0.969859 0.243665i \(-0.921650\pi\)
0.969859 0.243665i \(-0.0783497\pi\)
\(102\) 0 0
\(103\) 159260. 1.47915 0.739577 0.673072i \(-0.235026\pi\)
0.739577 + 0.673072i \(0.235026\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 135565.i − 1.14469i −0.820012 0.572346i \(-0.806033\pi\)
0.820012 0.572346i \(-0.193967\pi\)
\(108\) 0 0
\(109\) 115137.i 0.928218i 0.885778 + 0.464109i \(0.153625\pi\)
−0.885778 + 0.464109i \(0.846375\pi\)
\(110\) 0 0
\(111\) 15414.8 0.118749
\(112\) 0 0
\(113\) 19192.0 0.141392 0.0706960 0.997498i \(-0.477478\pi\)
0.0706960 + 0.997498i \(0.477478\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 27362.7i 0.184797i
\(118\) 0 0
\(119\) −25179.0 −0.162994
\(120\) 0 0
\(121\) −170043. −1.05583
\(122\) 0 0
\(123\) − 26536.9i − 0.158157i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 102000. 0.561163 0.280582 0.959830i \(-0.409473\pi\)
0.280582 + 0.959830i \(0.409473\pi\)
\(128\) 0 0
\(129\) −16013.0 −0.0847223
\(130\) 0 0
\(131\) 11296.1i 0.0575111i 0.999586 + 0.0287556i \(0.00915444\pi\)
−0.999586 + 0.0287556i \(0.990846\pi\)
\(132\) 0 0
\(133\) − 197487.i − 0.968074i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −102753. −0.467727 −0.233863 0.972269i \(-0.575137\pi\)
−0.233863 + 0.972269i \(0.575137\pi\)
\(138\) 0 0
\(139\) − 343928.i − 1.50984i −0.655818 0.754919i \(-0.727676\pi\)
0.655818 0.754919i \(-0.272324\pi\)
\(140\) 0 0
\(141\) 68546.7i 0.290361i
\(142\) 0 0
\(143\) 67745.8 0.277040
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 13359.1i 0.0509900i
\(148\) 0 0
\(149\) − 186446.i − 0.687998i −0.938970 0.343999i \(-0.888218\pi\)
0.938970 0.343999i \(-0.111782\pi\)
\(150\) 0 0
\(151\) 285769. 1.01994 0.509968 0.860194i \(-0.329657\pi\)
0.509968 + 0.860194i \(0.329657\pi\)
\(152\) 0 0
\(153\) 51921.9 0.179317
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 480654.i 1.55626i 0.628101 + 0.778132i \(0.283833\pi\)
−0.628101 + 0.778132i \(0.716167\pi\)
\(158\) 0 0
\(159\) −41361.5 −0.129749
\(160\) 0 0
\(161\) −266112. −0.809094
\(162\) 0 0
\(163\) − 176613.i − 0.520659i −0.965520 0.260329i \(-0.916169\pi\)
0.965520 0.260329i \(-0.0838312\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −218853. −0.607240 −0.303620 0.952793i \(-0.598195\pi\)
−0.303620 + 0.952793i \(0.598195\pi\)
\(168\) 0 0
\(169\) 357431. 0.962667
\(170\) 0 0
\(171\) 407239.i 1.06502i
\(172\) 0 0
\(173\) − 522746.i − 1.32793i −0.747764 0.663965i \(-0.768872\pi\)
0.747764 0.663965i \(-0.231128\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −45924.7 −0.110183
\(178\) 0 0
\(179\) − 411059.i − 0.958897i −0.877570 0.479449i \(-0.840837\pi\)
0.877570 0.479449i \(-0.159163\pi\)
\(180\) 0 0
\(181\) 133094.i 0.301970i 0.988536 + 0.150985i \(0.0482445\pi\)
−0.988536 + 0.150985i \(0.951755\pi\)
\(182\) 0 0
\(183\) 136789. 0.301943
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 128551.i − 0.268825i
\(188\) 0 0
\(189\) 174378.i 0.355090i
\(190\) 0 0
\(191\) −833447. −1.65308 −0.826541 0.562877i \(-0.809695\pi\)
−0.826541 + 0.562877i \(0.809695\pi\)
\(192\) 0 0
\(193\) 597550. 1.15473 0.577366 0.816486i \(-0.304081\pi\)
0.577366 + 0.816486i \(0.304081\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 688179.i − 1.26339i −0.775219 0.631693i \(-0.782360\pi\)
0.775219 0.631693i \(-0.217640\pi\)
\(198\) 0 0
\(199\) 977514. 1.74981 0.874904 0.484296i \(-0.160924\pi\)
0.874904 + 0.484296i \(0.160924\pi\)
\(200\) 0 0
\(201\) −176243. −0.307696
\(202\) 0 0
\(203\) − 435659.i − 0.742005i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 548751. 0.890122
\(208\) 0 0
\(209\) 1.00826e6 1.59664
\(210\) 0 0
\(211\) − 44234.7i − 0.0684001i −0.999415 0.0342000i \(-0.989112\pi\)
0.999415 0.0342000i \(-0.0108883\pi\)
\(212\) 0 0
\(213\) 142808.i 0.215677i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −179374. −0.258589
\(218\) 0 0
\(219\) − 101836.i − 0.143480i
\(220\) 0 0
\(221\) 26303.1i 0.0362264i
\(222\) 0 0
\(223\) −73883.6 −0.0994915 −0.0497458 0.998762i \(-0.515841\pi\)
−0.0497458 + 0.998762i \(0.515841\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 195146.i − 0.251359i −0.992071 0.125680i \(-0.959889\pi\)
0.992071 0.125680i \(-0.0401111\pi\)
\(228\) 0 0
\(229\) − 1.55451e6i − 1.95886i −0.201779 0.979431i \(-0.564672\pi\)
0.201779 0.979431i \(-0.435328\pi\)
\(230\) 0 0
\(231\) 211058. 0.260239
\(232\) 0 0
\(233\) 56457.4 0.0681289 0.0340644 0.999420i \(-0.489155\pi\)
0.0340644 + 0.999420i \(0.489155\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 163414.i − 0.188981i
\(238\) 0 0
\(239\) 551027. 0.623990 0.311995 0.950084i \(-0.399003\pi\)
0.311995 + 0.950084i \(0.399003\pi\)
\(240\) 0 0
\(241\) 1.31586e6 1.45938 0.729689 0.683779i \(-0.239665\pi\)
0.729689 + 0.683779i \(0.239665\pi\)
\(242\) 0 0
\(243\) − 543387.i − 0.590328i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −206303. −0.215161
\(248\) 0 0
\(249\) 142245. 0.145391
\(250\) 0 0
\(251\) − 95208.0i − 0.0953870i −0.998862 0.0476935i \(-0.984813\pi\)
0.998862 0.0476935i \(-0.0151871\pi\)
\(252\) 0 0
\(253\) − 1.35862e6i − 1.33444i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.73166e6 1.63542 0.817711 0.575630i \(-0.195243\pi\)
0.817711 + 0.575630i \(0.195243\pi\)
\(258\) 0 0
\(259\) − 533816.i − 0.494473i
\(260\) 0 0
\(261\) 898377.i 0.816315i
\(262\) 0 0
\(263\) 1.51692e6 1.35230 0.676150 0.736764i \(-0.263647\pi\)
0.676150 + 0.736764i \(0.263647\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 209652.i − 0.179978i
\(268\) 0 0
\(269\) − 1.89610e6i − 1.59765i −0.601565 0.798824i \(-0.705456\pi\)
0.601565 0.798824i \(-0.294544\pi\)
\(270\) 0 0
\(271\) −476326. −0.393986 −0.196993 0.980405i \(-0.563118\pi\)
−0.196993 + 0.980405i \(0.563118\pi\)
\(272\) 0 0
\(273\) −43185.0 −0.0350693
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 842760.i − 0.659940i −0.943991 0.329970i \(-0.892961\pi\)
0.943991 0.329970i \(-0.107039\pi\)
\(278\) 0 0
\(279\) 369889. 0.284486
\(280\) 0 0
\(281\) −1.64465e6 −1.24254 −0.621268 0.783598i \(-0.713382\pi\)
−0.621268 + 0.783598i \(0.713382\pi\)
\(282\) 0 0
\(283\) − 2.22864e6i − 1.65415i −0.562092 0.827074i \(-0.690003\pi\)
0.562092 0.827074i \(-0.309997\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −918975. −0.658565
\(288\) 0 0
\(289\) −1.36995e6 −0.964848
\(290\) 0 0
\(291\) − 202922.i − 0.140474i
\(292\) 0 0
\(293\) 692080.i 0.470964i 0.971879 + 0.235482i \(0.0756668\pi\)
−0.971879 + 0.235482i \(0.924333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −890284. −0.585649
\(298\) 0 0
\(299\) 277991.i 0.179826i
\(300\) 0 0
\(301\) 554530.i 0.352784i
\(302\) 0 0
\(303\) −162597. −0.101743
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.91707e6i 1.76645i 0.468952 + 0.883223i \(0.344632\pi\)
−0.468952 + 0.883223i \(0.655368\pi\)
\(308\) 0 0
\(309\) − 518314.i − 0.308814i
\(310\) 0 0
\(311\) −1.10725e6 −0.649151 −0.324575 0.945860i \(-0.605221\pi\)
−0.324575 + 0.945860i \(0.605221\pi\)
\(312\) 0 0
\(313\) 1.65389e6 0.954213 0.477107 0.878845i \(-0.341686\pi\)
0.477107 + 0.878845i \(0.341686\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 459259.i − 0.256691i −0.991730 0.128345i \(-0.959033\pi\)
0.991730 0.128345i \(-0.0409666\pi\)
\(318\) 0 0
\(319\) 2.22425e6 1.22379
\(320\) 0 0
\(321\) −441199. −0.238986
\(322\) 0 0
\(323\) 391469.i 0.208781i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 374717. 0.193791
\(328\) 0 0
\(329\) 2.37378e6 1.20907
\(330\) 0 0
\(331\) 1.55618e6i 0.780711i 0.920664 + 0.390356i \(0.127648\pi\)
−0.920664 + 0.390356i \(0.872352\pi\)
\(332\) 0 0
\(333\) 1.10079e6i 0.543993i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −919178. −0.440885 −0.220442 0.975400i \(-0.570750\pi\)
−0.220442 + 0.975400i \(0.570750\pi\)
\(338\) 0 0
\(339\) − 62460.8i − 0.0295194i
\(340\) 0 0
\(341\) − 915790.i − 0.426491i
\(342\) 0 0
\(343\) 2.35684e6 1.08167
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.87289e6i 0.835003i 0.908676 + 0.417502i \(0.137094\pi\)
−0.908676 + 0.417502i \(0.862906\pi\)
\(348\) 0 0
\(349\) − 2.41450e6i − 1.06112i −0.847649 0.530558i \(-0.821982\pi\)
0.847649 0.530558i \(-0.178018\pi\)
\(350\) 0 0
\(351\) 182163. 0.0789210
\(352\) 0 0
\(353\) 2.43268e6 1.03908 0.519539 0.854447i \(-0.326104\pi\)
0.519539 + 0.854447i \(0.326104\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 81945.5i 0.0340294i
\(358\) 0 0
\(359\) −2.14148e6 −0.876958 −0.438479 0.898741i \(-0.644483\pi\)
−0.438479 + 0.898741i \(0.644483\pi\)
\(360\) 0 0
\(361\) −594310. −0.240019
\(362\) 0 0
\(363\) 553407.i 0.220434i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.43273e6 0.555262 0.277631 0.960688i \(-0.410451\pi\)
0.277631 + 0.960688i \(0.410451\pi\)
\(368\) 0 0
\(369\) 1.89503e6 0.724519
\(370\) 0 0
\(371\) 1.43235e6i 0.540275i
\(372\) 0 0
\(373\) − 2.57608e6i − 0.958711i −0.877621 0.479356i \(-0.840870\pi\)
0.877621 0.479356i \(-0.159130\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −455108. −0.164915
\(378\) 0 0
\(379\) 1.88270e6i 0.673260i 0.941637 + 0.336630i \(0.109287\pi\)
−0.941637 + 0.336630i \(0.890713\pi\)
\(380\) 0 0
\(381\) − 331960.i − 0.117158i
\(382\) 0 0
\(383\) −929245. −0.323693 −0.161847 0.986816i \(-0.551745\pi\)
−0.161847 + 0.986816i \(0.551745\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.14350e6i − 0.388114i
\(388\) 0 0
\(389\) 1.88218e6i 0.630647i 0.948984 + 0.315324i \(0.102113\pi\)
−0.948984 + 0.315324i \(0.897887\pi\)
\(390\) 0 0
\(391\) 527501. 0.174494
\(392\) 0 0
\(393\) 36763.5 0.0120070
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 4.38186e6i − 1.39535i −0.716417 0.697673i \(-0.754219\pi\)
0.716417 0.697673i \(-0.245781\pi\)
\(398\) 0 0
\(399\) −642724. −0.202112
\(400\) 0 0
\(401\) 1.43544e6 0.445784 0.222892 0.974843i \(-0.428450\pi\)
0.222892 + 0.974843i \(0.428450\pi\)
\(402\) 0 0
\(403\) 187382.i 0.0574732i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.72538e6 0.815533
\(408\) 0 0
\(409\) −479384. −0.141702 −0.0708509 0.997487i \(-0.522571\pi\)
−0.0708509 + 0.997487i \(0.522571\pi\)
\(410\) 0 0
\(411\) 334411.i 0.0976508i
\(412\) 0 0
\(413\) 1.59038e6i 0.458801i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.11932e6 −0.315220
\(418\) 0 0
\(419\) − 4.82901e6i − 1.34376i −0.740658 0.671882i \(-0.765486\pi\)
0.740658 0.671882i \(-0.234514\pi\)
\(420\) 0 0
\(421\) − 918869.i − 0.252667i −0.991988 0.126333i \(-0.959679\pi\)
0.991988 0.126333i \(-0.0403209\pi\)
\(422\) 0 0
\(423\) −4.89498e6 −1.33015
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 4.73702e6i − 1.25729i
\(428\) 0 0
\(429\) − 220480.i − 0.0578397i
\(430\) 0 0
\(431\) 4.81272e6 1.24795 0.623975 0.781444i \(-0.285517\pi\)
0.623975 + 0.781444i \(0.285517\pi\)
\(432\) 0 0
\(433\) −5.84598e6 −1.49843 −0.749217 0.662324i \(-0.769570\pi\)
−0.749217 + 0.662324i \(0.769570\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.13735e6i 1.03638i
\(438\) 0 0
\(439\) 2.28777e6 0.566568 0.283284 0.959036i \(-0.408576\pi\)
0.283284 + 0.959036i \(0.408576\pi\)
\(440\) 0 0
\(441\) −953988. −0.233586
\(442\) 0 0
\(443\) − 982970.i − 0.237975i −0.992896 0.118987i \(-0.962035\pi\)
0.992896 0.118987i \(-0.0379648\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −606791. −0.143638
\(448\) 0 0
\(449\) −2.86769e6 −0.671299 −0.335650 0.941987i \(-0.608956\pi\)
−0.335650 + 0.941987i \(0.608956\pi\)
\(450\) 0 0
\(451\) − 4.69180e6i − 1.08617i
\(452\) 0 0
\(453\) − 930040.i − 0.212939i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 451218. 0.101064 0.0505319 0.998722i \(-0.483908\pi\)
0.0505319 + 0.998722i \(0.483908\pi\)
\(458\) 0 0
\(459\) − 345662.i − 0.0765809i
\(460\) 0 0
\(461\) − 242143.i − 0.0530665i −0.999648 0.0265332i \(-0.991553\pi\)
0.999648 0.0265332i \(-0.00844678\pi\)
\(462\) 0 0
\(463\) 4.80106e6 1.04084 0.520421 0.853910i \(-0.325775\pi\)
0.520421 + 0.853910i \(0.325775\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 306183.i − 0.0649664i −0.999472 0.0324832i \(-0.989658\pi\)
0.999472 0.0324832i \(-0.0103415\pi\)
\(468\) 0 0
\(469\) 6.10331e6i 1.28125i
\(470\) 0 0
\(471\) 1.56430e6 0.324913
\(472\) 0 0
\(473\) −2.83114e6 −0.581846
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 2.95366e6i − 0.594381i
\(478\) 0 0
\(479\) −3.99196e6 −0.794964 −0.397482 0.917610i \(-0.630116\pi\)
−0.397482 + 0.917610i \(0.630116\pi\)
\(480\) 0 0
\(481\) −557647. −0.109900
\(482\) 0 0
\(483\) 866064.i 0.168920i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −6.45190e6 −1.23272 −0.616361 0.787464i \(-0.711394\pi\)
−0.616361 + 0.787464i \(0.711394\pi\)
\(488\) 0 0
\(489\) −574790. −0.108702
\(490\) 0 0
\(491\) 4.37221e6i 0.818459i 0.912432 + 0.409229i \(0.134202\pi\)
−0.912432 + 0.409229i \(0.865798\pi\)
\(492\) 0 0
\(493\) 863588.i 0.160025i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.94544e6 0.898078
\(498\) 0 0
\(499\) 5.17114e6i 0.929683i 0.885394 + 0.464842i \(0.153889\pi\)
−0.885394 + 0.464842i \(0.846111\pi\)
\(500\) 0 0
\(501\) 712260.i 0.126778i
\(502\) 0 0
\(503\) −4.16421e6 −0.733859 −0.366929 0.930249i \(-0.619591\pi\)
−0.366929 + 0.930249i \(0.619591\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 1.16327e6i − 0.200983i
\(508\) 0 0
\(509\) 4.71340e6i 0.806381i 0.915116 + 0.403190i \(0.132099\pi\)
−0.915116 + 0.403190i \(0.867901\pi\)
\(510\) 0 0
\(511\) −3.52658e6 −0.597450
\(512\) 0 0
\(513\) 2.71114e6 0.454839
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.21192e7i 1.99411i
\(518\) 0 0
\(519\) −1.70128e6 −0.277242
\(520\) 0 0
\(521\) 2.34479e6 0.378451 0.189225 0.981934i \(-0.439402\pi\)
0.189225 + 0.981934i \(0.439402\pi\)
\(522\) 0 0
\(523\) 8.17020e6i 1.30611i 0.757312 + 0.653053i \(0.226512\pi\)
−0.757312 + 0.653053i \(0.773488\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 355565. 0.0557690
\(528\) 0 0
\(529\) −861301. −0.133818
\(530\) 0 0
\(531\) − 3.27953e6i − 0.504749i
\(532\) 0 0
\(533\) 960000.i 0.146370i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.33780e6 −0.200196
\(538\) 0 0
\(539\) 2.36193e6i 0.350183i
\(540\) 0 0
\(541\) 3.53355e6i 0.519060i 0.965735 + 0.259530i \(0.0835677\pi\)
−0.965735 + 0.259530i \(0.916432\pi\)
\(542\) 0 0
\(543\) 433158. 0.0630445
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 657235.i − 0.0939187i −0.998897 0.0469594i \(-0.985047\pi\)
0.998897 0.0469594i \(-0.0149531\pi\)
\(548\) 0 0
\(549\) 9.76826e6i 1.38320i
\(550\) 0 0
\(551\) −6.77338e6 −0.950444
\(552\) 0 0
\(553\) −5.65903e6 −0.786918
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.35929e7i 1.85641i 0.372065 + 0.928207i \(0.378650\pi\)
−0.372065 + 0.928207i \(0.621350\pi\)
\(558\) 0 0
\(559\) 579286. 0.0784085
\(560\) 0 0
\(561\) −418370. −0.0561247
\(562\) 0 0
\(563\) 1.18702e7i 1.57829i 0.614206 + 0.789146i \(0.289477\pi\)
−0.614206 + 0.789146i \(0.710523\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5.79746e6 −0.757322
\(568\) 0 0
\(569\) −1.16590e7 −1.50966 −0.754831 0.655920i \(-0.772281\pi\)
−0.754831 + 0.655920i \(0.772281\pi\)
\(570\) 0 0
\(571\) − 1.14849e7i − 1.47414i −0.675819 0.737068i \(-0.736210\pi\)
0.675819 0.737068i \(-0.263790\pi\)
\(572\) 0 0
\(573\) 2.71247e6i 0.345126i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.93609e6 −0.992355 −0.496178 0.868221i \(-0.665264\pi\)
−0.496178 + 0.868221i \(0.665264\pi\)
\(578\) 0 0
\(579\) − 1.94474e6i − 0.241082i
\(580\) 0 0
\(581\) − 4.92595e6i − 0.605411i
\(582\) 0 0
\(583\) −7.31282e6 −0.891074
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 7.16597e6i − 0.858381i −0.903214 0.429190i \(-0.858799\pi\)
0.903214 0.429190i \(-0.141201\pi\)
\(588\) 0 0
\(589\) 2.78881e6i 0.331231i
\(590\) 0 0
\(591\) −2.23969e6 −0.263766
\(592\) 0 0
\(593\) 1.99624e6 0.233118 0.116559 0.993184i \(-0.462814\pi\)
0.116559 + 0.993184i \(0.462814\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 3.18134e6i − 0.365320i
\(598\) 0 0
\(599\) −1.20579e7 −1.37311 −0.686555 0.727078i \(-0.740878\pi\)
−0.686555 + 0.727078i \(0.740878\pi\)
\(600\) 0 0
\(601\) 1.50698e7 1.70185 0.850924 0.525289i \(-0.176043\pi\)
0.850924 + 0.525289i \(0.176043\pi\)
\(602\) 0 0
\(603\) − 1.25857e7i − 1.40956i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.03809e6 0.444841 0.222420 0.974951i \(-0.428604\pi\)
0.222420 + 0.974951i \(0.428604\pi\)
\(608\) 0 0
\(609\) −1.41786e6 −0.154914
\(610\) 0 0
\(611\) − 2.47975e6i − 0.268723i
\(612\) 0 0
\(613\) 1.07407e7i 1.15447i 0.816578 + 0.577236i \(0.195869\pi\)
−0.816578 + 0.577236i \(0.804131\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.37637e6 0.991567 0.495783 0.868446i \(-0.334881\pi\)
0.495783 + 0.868446i \(0.334881\pi\)
\(618\) 0 0
\(619\) 4.03378e6i 0.423141i 0.977363 + 0.211571i \(0.0678579\pi\)
−0.977363 + 0.211571i \(0.932142\pi\)
\(620\) 0 0
\(621\) − 3.65323e6i − 0.380144i
\(622\) 0 0
\(623\) −7.26025e6 −0.749431
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 3.28141e6i − 0.333343i
\(628\) 0 0
\(629\) 1.05816e6i 0.106641i
\(630\) 0 0
\(631\) −3.01348e6 −0.301297 −0.150648 0.988587i \(-0.548136\pi\)
−0.150648 + 0.988587i \(0.548136\pi\)
\(632\) 0 0
\(633\) −143962. −0.0142804
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 483280.i − 0.0471900i
\(638\) 0 0
\(639\) −1.01980e7 −0.988017
\(640\) 0 0
\(641\) −2.09755e6 −0.201636 −0.100818 0.994905i \(-0.532146\pi\)
−0.100818 + 0.994905i \(0.532146\pi\)
\(642\) 0 0
\(643\) 3.48456e6i 0.332369i 0.986095 + 0.166185i \(0.0531448\pi\)
−0.986095 + 0.166185i \(0.946855\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.25999e6 0.869660 0.434830 0.900513i \(-0.356808\pi\)
0.434830 + 0.900513i \(0.356808\pi\)
\(648\) 0 0
\(649\) −8.11962e6 −0.756700
\(650\) 0 0
\(651\) 583777.i 0.0539876i
\(652\) 0 0
\(653\) − 1.12475e7i − 1.03222i −0.856523 0.516109i \(-0.827380\pi\)
0.856523 0.516109i \(-0.172620\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7.27220e6 0.657283
\(658\) 0 0
\(659\) 6.37278e6i 0.571630i 0.958285 + 0.285815i \(0.0922643\pi\)
−0.958285 + 0.285815i \(0.907736\pi\)
\(660\) 0 0
\(661\) 4.13736e6i 0.368315i 0.982897 + 0.184158i \(0.0589556\pi\)
−0.982897 + 0.184158i \(0.941044\pi\)
\(662\) 0 0
\(663\) 85603.7 0.00756326
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.12707e6i 0.794359i
\(668\) 0 0
\(669\) 240456.i 0.0207716i
\(670\) 0 0
\(671\) 2.41847e7 2.07365
\(672\) 0 0
\(673\) −1.50812e7 −1.28350 −0.641752 0.766913i \(-0.721792\pi\)
−0.641752 + 0.766913i \(0.721792\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 1.85553e7i − 1.55595i −0.628295 0.777975i \(-0.716247\pi\)
0.628295 0.777975i \(-0.283753\pi\)
\(678\) 0 0
\(679\) −7.02720e6 −0.584935
\(680\) 0 0
\(681\) −635105. −0.0524781
\(682\) 0 0
\(683\) 2.31850e7i 1.90176i 0.309558 + 0.950881i \(0.399819\pi\)
−0.309558 + 0.950881i \(0.600181\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −5.05917e6 −0.408966
\(688\) 0 0
\(689\) 1.49629e6 0.120080
\(690\) 0 0
\(691\) 1.04315e7i 0.831099i 0.909571 + 0.415549i \(0.136411\pi\)
−0.909571 + 0.415549i \(0.863589\pi\)
\(692\) 0 0
\(693\) 1.50718e7i 1.19216i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.82164e6 0.142030
\(698\) 0 0
\(699\) − 183742.i − 0.0142238i
\(700\) 0 0
\(701\) − 1.93026e7i − 1.48362i −0.670613 0.741808i \(-0.733969\pi\)
0.670613 0.741808i \(-0.266031\pi\)
\(702\) 0 0
\(703\) −8.29947e6 −0.633377
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.63075e6i 0.423660i
\(708\) 0 0
\(709\) − 5.90966e6i − 0.441517i −0.975329 0.220758i \(-0.929147\pi\)
0.975329 0.220758i \(-0.0708532\pi\)
\(710\) 0 0
\(711\) 1.16695e7 0.865725
\(712\) 0 0
\(713\) 3.75790e6 0.276835
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1.79333e6i − 0.130275i
\(718\) 0 0
\(719\) 2.58536e7 1.86509 0.932543 0.361058i \(-0.117584\pi\)
0.932543 + 0.361058i \(0.117584\pi\)
\(720\) 0 0
\(721\) −1.79492e7 −1.28590
\(722\) 0 0
\(723\) − 4.28250e6i − 0.304685i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −497513. −0.0349115 −0.0174558 0.999848i \(-0.505557\pi\)
−0.0174558 + 0.999848i \(0.505557\pi\)
\(728\) 0 0
\(729\) 1.07314e7 0.747889
\(730\) 0 0
\(731\) − 1.09922e6i − 0.0760836i
\(732\) 0 0
\(733\) 9.66956e6i 0.664732i 0.943150 + 0.332366i \(0.107847\pi\)
−0.943150 + 0.332366i \(0.892153\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.11603e7 −2.11316
\(738\) 0 0
\(739\) 1.83759e7i 1.23776i 0.785485 + 0.618881i \(0.212414\pi\)
−0.785485 + 0.618881i \(0.787586\pi\)
\(740\) 0 0
\(741\) 671416.i 0.0449207i
\(742\) 0 0
\(743\) 1.51555e7 1.00716 0.503578 0.863950i \(-0.332017\pi\)
0.503578 + 0.863950i \(0.332017\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.01579e7i 0.666040i
\(748\) 0 0
\(749\) 1.52788e7i 0.995138i
\(750\) 0 0
\(751\) −7.70448e6 −0.498475 −0.249238 0.968442i \(-0.580180\pi\)
−0.249238 + 0.968442i \(0.580180\pi\)
\(752\) 0 0
\(753\) −309856. −0.0199147
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.96934e7i − 1.24905i −0.781005 0.624525i \(-0.785293\pi\)
0.781005 0.624525i \(-0.214707\pi\)
\(758\) 0 0
\(759\) −4.42167e6 −0.278600
\(760\) 0 0
\(761\) −6.73562e6 −0.421615 −0.210807 0.977528i \(-0.567609\pi\)
−0.210807 + 0.977528i \(0.567609\pi\)
\(762\) 0 0
\(763\) − 1.29765e7i − 0.806946i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.66137e6 0.101972
\(768\) 0 0
\(769\) −6.67796e6 −0.407219 −0.203609 0.979052i \(-0.565267\pi\)
−0.203609 + 0.979052i \(0.565267\pi\)
\(770\) 0 0
\(771\) − 5.63571e6i − 0.341439i
\(772\) 0 0
\(773\) 2.85469e6i 0.171835i 0.996302 + 0.0859173i \(0.0273821\pi\)
−0.996302 + 0.0859173i \(0.972618\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.73731e6 −0.103235
\(778\) 0 0
\(779\) 1.42877e7i 0.843565i
\(780\) 0 0
\(781\) 2.52488e7i 1.48120i
\(782\) 0 0
\(783\) 5.98082e6 0.348623
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.38785e7i 0.798738i 0.916790 + 0.399369i \(0.130771\pi\)
−0.916790 + 0.399369i \(0.869229\pi\)
\(788\) 0 0
\(789\) − 4.93684e6i − 0.282330i
\(790\) 0 0
\(791\) −2.16302e6 −0.122919
\(792\) 0 0
\(793\) −4.94849e6 −0.279441
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.67764e6i 0.483900i 0.970289 + 0.241950i \(0.0777871\pi\)
−0.970289 + 0.241950i \(0.922213\pi\)
\(798\) 0 0
\(799\) −4.70543e6 −0.260755
\(800\) 0 0
\(801\) 1.49714e7 0.824484
\(802\) 0 0
\(803\) − 1.80049e7i − 0.985373i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.17089e6 −0.333553
\(808\) 0 0
\(809\) 7.54612e6 0.405371 0.202685 0.979244i \(-0.435033\pi\)
0.202685 + 0.979244i \(0.435033\pi\)
\(810\) 0 0
\(811\) 2.53731e7i 1.35463i 0.735692 + 0.677316i \(0.236857\pi\)
−0.735692 + 0.677316i \(0.763143\pi\)
\(812\) 0 0
\(813\) 1.55021e6i 0.0822554i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.62152e6 0.451886
\(818\) 0 0
\(819\) − 3.08388e6i − 0.160653i
\(820\) 0 0
\(821\) − 1.52925e7i − 0.791812i −0.918291 0.395906i \(-0.870431\pi\)
0.918291 0.395906i \(-0.129569\pi\)
\(822\) 0 0
\(823\) 4.47750e6 0.230428 0.115214 0.993341i \(-0.463245\pi\)
0.115214 + 0.993341i \(0.463245\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.21663e6i 0.417763i 0.977941 + 0.208882i \(0.0669823\pi\)
−0.977941 + 0.208882i \(0.933018\pi\)
\(828\) 0 0
\(829\) − 1.58318e7i − 0.800098i −0.916494 0.400049i \(-0.868993\pi\)
0.916494 0.400049i \(-0.131007\pi\)
\(830\) 0 0
\(831\) −2.74278e6 −0.137781
\(832\) 0 0
\(833\) −917045. −0.0457908
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.46249e6i − 0.121495i
\(838\) 0 0
\(839\) −1.29263e7 −0.633970 −0.316985 0.948430i \(-0.602671\pi\)
−0.316985 + 0.948430i \(0.602671\pi\)
\(840\) 0 0
\(841\) 5.56893e6 0.271508
\(842\) 0 0
\(843\) 5.35256e6i 0.259413i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.91645e7 0.917886
\(848\) 0 0
\(849\) −7.25316e6 −0.345349
\(850\) 0 0
\(851\) 1.11835e7i 0.529362i
\(852\) 0 0
\(853\) − 8.07995e6i − 0.380221i −0.981763 0.190110i \(-0.939115\pi\)
0.981763 0.190110i \(-0.0608846\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.51474e7 −0.704510 −0.352255 0.935904i \(-0.614585\pi\)
−0.352255 + 0.935904i \(0.614585\pi\)
\(858\) 0 0
\(859\) − 1.27089e7i − 0.587658i −0.955858 0.293829i \(-0.905070\pi\)
0.955858 0.293829i \(-0.0949297\pi\)
\(860\) 0 0
\(861\) 2.99082e6i 0.137494i
\(862\) 0 0
\(863\) −3.10500e7 −1.41917 −0.709585 0.704620i \(-0.751118\pi\)
−0.709585 + 0.704620i \(0.751118\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.45851e6i 0.201438i
\(868\) 0 0
\(869\) − 2.88920e7i − 1.29786i
\(870\) 0 0
\(871\) 6.37578e6 0.284766
\(872\) 0 0
\(873\) 1.44909e7 0.643515
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.45850e7i − 0.640336i −0.947361 0.320168i \(-0.896261\pi\)
0.947361 0.320168i \(-0.103739\pi\)
\(878\) 0 0
\(879\) 2.25239e6 0.0983265
\(880\) 0 0
\(881\) 5.73224e6 0.248820 0.124410 0.992231i \(-0.460296\pi\)
0.124410 + 0.992231i \(0.460296\pi\)
\(882\) 0 0
\(883\) 522077.i 0.0225337i 0.999937 + 0.0112669i \(0.00358643\pi\)
−0.999937 + 0.0112669i \(0.996414\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.52815e7 −1.07893 −0.539466 0.842007i \(-0.681374\pi\)
−0.539466 + 0.842007i \(0.681374\pi\)
\(888\) 0 0
\(889\) −1.14958e7 −0.487847
\(890\) 0 0
\(891\) − 2.95988e7i − 1.24905i
\(892\) 0 0
\(893\) − 3.69061e7i − 1.54871i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 904728. 0.0375437
\(898\) 0 0
\(899\) 6.15217e6i 0.253880i
\(900\) 0 0
\(901\) − 2.83928e6i − 0.116519i
\(902\) 0 0
\(903\) 1.80473e6 0.0736533
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.27692e7i 0.515402i 0.966225 + 0.257701i \(0.0829649\pi\)
−0.966225 + 0.257701i \(0.917035\pi\)
\(908\) 0 0
\(909\) − 1.16112e7i − 0.466088i
\(910\) 0 0
\(911\) −3.33197e7 −1.33017 −0.665083 0.746770i \(-0.731604\pi\)
−0.665083 + 0.746770i \(0.731604\pi\)
\(912\) 0 0
\(913\) 2.51493e7 0.998503
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.27312e6i − 0.0499973i
\(918\) 0 0
\(919\) 2.91253e7 1.13758 0.568789 0.822484i \(-0.307412\pi\)
0.568789 + 0.822484i \(0.307412\pi\)
\(920\) 0 0
\(921\) 9.49365e6 0.368794
\(922\) 0 0
\(923\) − 5.16622e6i − 0.199604i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.70133e7 1.41468
\(928\) 0 0
\(929\) 1.84988e7 0.703242 0.351621 0.936143i \(-0.385631\pi\)
0.351621 + 0.936143i \(0.385631\pi\)
\(930\) 0 0
\(931\) − 7.19266e6i − 0.271966i
\(932\) 0 0
\(933\) 3.60357e6i 0.135528i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 3.42891e7 1.27587 0.637936 0.770089i \(-0.279788\pi\)
0.637936 + 0.770089i \(0.279788\pi\)
\(938\) 0 0
\(939\) − 5.38261e6i − 0.199218i
\(940\) 0 0
\(941\) − 1.23906e7i − 0.456161i −0.973642 0.228080i \(-0.926755\pi\)
0.973642 0.228080i \(-0.0732449\pi\)
\(942\) 0 0
\(943\) 1.92525e7 0.705032
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 5.12809e7i − 1.85815i −0.369893 0.929074i \(-0.620606\pi\)
0.369893 0.929074i \(-0.379394\pi\)
\(948\) 0 0
\(949\) 3.68402e6i 0.132787i
\(950\) 0 0
\(951\) −1.49467e6 −0.0535912
\(952\) 0 0
\(953\) 1.10363e7 0.393634 0.196817 0.980440i \(-0.436940\pi\)
0.196817 + 0.980440i \(0.436940\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 7.23885e6i − 0.255499i
\(958\) 0 0
\(959\) 1.15807e7 0.406618
\(960\) 0 0
\(961\) −2.60961e7 −0.911523
\(962\) 0 0
\(963\) − 3.15065e7i − 1.09480i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4.54331e7 −1.56245 −0.781225 0.624249i \(-0.785405\pi\)
−0.781225 + 0.624249i \(0.785405\pi\)
\(968\) 0 0
\(969\) 1.27404e6 0.0435887
\(970\) 0 0
\(971\) − 6.77731e6i − 0.230680i −0.993326 0.115340i \(-0.963204\pi\)
0.993326 0.115340i \(-0.0367957\pi\)
\(972\) 0 0
\(973\) 3.87621e7i 1.31258i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4.58953e7 1.53827 0.769134 0.639087i \(-0.220688\pi\)
0.769134 + 0.639087i \(0.220688\pi\)
\(978\) 0 0
\(979\) − 3.70670e7i − 1.23604i
\(980\) 0 0
\(981\) 2.67589e7i 0.887759i
\(982\) 0 0
\(983\) 4.96160e7 1.63771 0.818857 0.573998i \(-0.194608\pi\)
0.818857 + 0.573998i \(0.194608\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 7.72549e6i − 0.252425i
\(988\) 0 0
\(989\) − 1.16174e7i − 0.377676i
\(990\) 0 0
\(991\) −2.24227e7 −0.725276 −0.362638 0.931930i \(-0.618124\pi\)
−0.362638 + 0.931930i \(0.618124\pi\)
\(992\) 0 0
\(993\) 5.06462e6 0.162995
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.13276e7i 1.63536i 0.575675 + 0.817679i \(0.304740\pi\)
−0.575675 + 0.817679i \(0.695260\pi\)
\(998\) 0 0
\(999\) 7.32834e6 0.232323
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.6.d.a.401.2 4
4.3 odd 2 200.6.d.a.101.1 4
5.2 odd 4 800.6.f.a.49.3 8
5.3 odd 4 800.6.f.a.49.6 8
5.4 even 2 32.6.b.a.17.3 4
8.3 odd 2 200.6.d.a.101.2 4
8.5 even 2 inner 800.6.d.a.401.3 4
15.14 odd 2 288.6.d.b.145.4 4
20.3 even 4 200.6.f.a.149.2 8
20.7 even 4 200.6.f.a.149.7 8
20.19 odd 2 8.6.b.a.5.4 yes 4
40.3 even 4 200.6.f.a.149.8 8
40.13 odd 4 800.6.f.a.49.4 8
40.19 odd 2 8.6.b.a.5.3 4
40.27 even 4 200.6.f.a.149.1 8
40.29 even 2 32.6.b.a.17.2 4
40.37 odd 4 800.6.f.a.49.5 8
60.59 even 2 72.6.d.b.37.1 4
80.19 odd 4 256.6.a.k.1.3 4
80.29 even 4 256.6.a.n.1.2 4
80.59 odd 4 256.6.a.k.1.2 4
80.69 even 4 256.6.a.n.1.3 4
120.29 odd 2 288.6.d.b.145.1 4
120.59 even 2 72.6.d.b.37.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.6.b.a.5.3 4 40.19 odd 2
8.6.b.a.5.4 yes 4 20.19 odd 2
32.6.b.a.17.2 4 40.29 even 2
32.6.b.a.17.3 4 5.4 even 2
72.6.d.b.37.1 4 60.59 even 2
72.6.d.b.37.2 4 120.59 even 2
200.6.d.a.101.1 4 4.3 odd 2
200.6.d.a.101.2 4 8.3 odd 2
200.6.f.a.149.1 8 40.27 even 4
200.6.f.a.149.2 8 20.3 even 4
200.6.f.a.149.7 8 20.7 even 4
200.6.f.a.149.8 8 40.3 even 4
256.6.a.k.1.2 4 80.59 odd 4
256.6.a.k.1.3 4 80.19 odd 4
256.6.a.n.1.2 4 80.29 even 4
256.6.a.n.1.3 4 80.69 even 4
288.6.d.b.145.1 4 120.29 odd 2
288.6.d.b.145.4 4 15.14 odd 2
800.6.d.a.401.2 4 1.1 even 1 trivial
800.6.d.a.401.3 4 8.5 even 2 inner
800.6.f.a.49.3 8 5.2 odd 4
800.6.f.a.49.4 8 40.13 odd 4
800.6.f.a.49.5 8 40.37 odd 4
800.6.f.a.49.6 8 5.3 odd 4