Defining parameters
| Level: | \( N \) | \(=\) | \( 800 = 2^{5} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 800.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(720\) | ||
| Trace bound: | \(23\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(800, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 624 | 98 | 526 |
| Cusp forms | 576 | 92 | 484 |
| Eisenstein series | 48 | 6 | 42 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(800, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 800.6.d.a | $4$ | $128.307$ | 4.0.218489.1 | None | \(0\) | \(0\) | \(0\) | \(96\) | \(q+\beta _{1}q^{3}+(24+\beta _{3})q^{7}+(-41-2\beta _{3})q^{9}+\cdots\) |
| 800.6.d.b | $20$ | $128.307$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-196\) | \(q-\beta _{2}q^{3}+(-10+\beta _{1})q^{7}+(-3^{4}-\beta _{5}+\cdots)q^{9}+\cdots\) |
| 800.6.d.c | $20$ | $128.307$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-196\) | \(q-\beta _{1}q^{3}+(-10-\beta _{4})q^{7}+(-3^{4}-\beta _{4}+\cdots)q^{9}+\cdots\) |
| 800.6.d.d | $20$ | $128.307$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(196\) | \(q-\beta _{2}q^{3}+(10-\beta _{1})q^{7}+(-3^{4}-\beta _{5}+\cdots)q^{9}+\cdots\) |
| 800.6.d.e | $28$ | $128.307$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{6}^{\mathrm{old}}(800, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(800, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)