Properties

Label 800.4.d.a.401.2
Level $800$
Weight $4$
Character 800.401
Analytic conductor $47.202$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,4,Mod(401,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.401"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-16,0,-2,0,0,0,0,0,0,0,28,0,0,0,0,0,-304] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-7}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.2
Root \(0.500000 - 1.32288i\) of defining polynomial
Character \(\chi\) \(=\) 800.401
Dual form 800.4.d.a.401.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.29150i q^{3} -8.00000 q^{7} -1.00000 q^{9} +15.8745i q^{11} -52.9150i q^{13} +14.0000 q^{17} +37.0405i q^{19} -42.3320i q^{21} -152.000 q^{23} +137.579i q^{27} -158.745i q^{29} -224.000 q^{31} -84.0000 q^{33} -243.409i q^{37} +280.000 q^{39} -70.0000 q^{41} -439.195i q^{43} +336.000 q^{47} -279.000 q^{49} +74.0810i q^{51} -31.7490i q^{53} -196.000 q^{57} -534.442i q^{59} +95.2470i q^{61} +8.00000 q^{63} +174.620i q^{67} -804.308i q^{69} +72.0000 q^{71} +294.000 q^{73} -126.996i q^{77} +464.000 q^{79} -755.000 q^{81} -545.025i q^{83} +840.000 q^{87} +266.000 q^{89} +423.320i q^{91} -1185.30i q^{93} -994.000 q^{97} -15.8745i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{7} - 2 q^{9} + 28 q^{17} - 304 q^{23} - 448 q^{31} - 168 q^{33} + 560 q^{39} - 140 q^{41} + 672 q^{47} - 558 q^{49} - 392 q^{57} + 16 q^{63} + 144 q^{71} + 588 q^{73} + 928 q^{79} - 1510 q^{81}+ \cdots - 1988 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.29150i 1.01835i 0.860663 + 0.509175i \(0.170049\pi\)
−0.860663 + 0.509175i \(0.829951\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −8.00000 −0.431959 −0.215980 0.976398i \(-0.569295\pi\)
−0.215980 + 0.976398i \(0.569295\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.0370370
\(10\) 0 0
\(11\) 15.8745i 0.435122i 0.976047 + 0.217561i \(0.0698101\pi\)
−0.976047 + 0.217561i \(0.930190\pi\)
\(12\) 0 0
\(13\) − 52.9150i − 1.12892i −0.825460 0.564461i \(-0.809084\pi\)
0.825460 0.564461i \(-0.190916\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.0000 0.199735 0.0998676 0.995001i \(-0.468158\pi\)
0.0998676 + 0.995001i \(0.468158\pi\)
\(18\) 0 0
\(19\) 37.0405i 0.447246i 0.974676 + 0.223623i \(0.0717885\pi\)
−0.974676 + 0.223623i \(0.928212\pi\)
\(20\) 0 0
\(21\) − 42.3320i − 0.439886i
\(22\) 0 0
\(23\) −152.000 −1.37801 −0.689004 0.724757i \(-0.741952\pi\)
−0.689004 + 0.724757i \(0.741952\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 137.579i 0.980633i
\(28\) 0 0
\(29\) − 158.745i − 1.01649i −0.861212 0.508245i \(-0.830294\pi\)
0.861212 0.508245i \(-0.169706\pi\)
\(30\) 0 0
\(31\) −224.000 −1.29779 −0.648897 0.760877i \(-0.724769\pi\)
−0.648897 + 0.760877i \(0.724769\pi\)
\(32\) 0 0
\(33\) −84.0000 −0.443107
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 243.409i − 1.08152i −0.841177 0.540760i \(-0.818137\pi\)
0.841177 0.540760i \(-0.181863\pi\)
\(38\) 0 0
\(39\) 280.000 1.14964
\(40\) 0 0
\(41\) −70.0000 −0.266638 −0.133319 0.991073i \(-0.542564\pi\)
−0.133319 + 0.991073i \(0.542564\pi\)
\(42\) 0 0
\(43\) − 439.195i − 1.55759i −0.627276 0.778797i \(-0.715830\pi\)
0.627276 0.778797i \(-0.284170\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 336.000 1.04278 0.521390 0.853319i \(-0.325414\pi\)
0.521390 + 0.853319i \(0.325414\pi\)
\(48\) 0 0
\(49\) −279.000 −0.813411
\(50\) 0 0
\(51\) 74.0810i 0.203400i
\(52\) 0 0
\(53\) − 31.7490i − 0.0822842i −0.999153 0.0411421i \(-0.986900\pi\)
0.999153 0.0411421i \(-0.0130996\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −196.000 −0.455453
\(58\) 0 0
\(59\) − 534.442i − 1.17929i −0.807661 0.589647i \(-0.799267\pi\)
0.807661 0.589647i \(-0.200733\pi\)
\(60\) 0 0
\(61\) 95.2470i 0.199920i 0.994991 + 0.0999601i \(0.0318715\pi\)
−0.994991 + 0.0999601i \(0.968128\pi\)
\(62\) 0 0
\(63\) 8.00000 0.0159985
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 174.620i 0.318406i 0.987246 + 0.159203i \(0.0508924\pi\)
−0.987246 + 0.159203i \(0.949108\pi\)
\(68\) 0 0
\(69\) − 804.308i − 1.40329i
\(70\) 0 0
\(71\) 72.0000 0.120350 0.0601748 0.998188i \(-0.480834\pi\)
0.0601748 + 0.998188i \(0.480834\pi\)
\(72\) 0 0
\(73\) 294.000 0.471371 0.235686 0.971829i \(-0.424266\pi\)
0.235686 + 0.971829i \(0.424266\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 126.996i − 0.187955i
\(78\) 0 0
\(79\) 464.000 0.660811 0.330406 0.943839i \(-0.392814\pi\)
0.330406 + 0.943839i \(0.392814\pi\)
\(80\) 0 0
\(81\) −755.000 −1.03567
\(82\) 0 0
\(83\) − 545.025i − 0.720774i −0.932803 0.360387i \(-0.882645\pi\)
0.932803 0.360387i \(-0.117355\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 840.000 1.03514
\(88\) 0 0
\(89\) 266.000 0.316808 0.158404 0.987374i \(-0.449365\pi\)
0.158404 + 0.987374i \(0.449365\pi\)
\(90\) 0 0
\(91\) 423.320i 0.487649i
\(92\) 0 0
\(93\) − 1185.30i − 1.32161i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −994.000 −1.04047 −0.520234 0.854024i \(-0.674155\pi\)
−0.520234 + 0.854024i \(0.674155\pi\)
\(98\) 0 0
\(99\) − 15.8745i − 0.0161156i
\(100\) 0 0
\(101\) 751.393i 0.740262i 0.928980 + 0.370131i \(0.120687\pi\)
−0.928980 + 0.370131i \(0.879313\pi\)
\(102\) 0 0
\(103\) 1176.00 1.12500 0.562499 0.826798i \(-0.309840\pi\)
0.562499 + 0.826798i \(0.309840\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 269.867i − 0.243822i −0.992541 0.121911i \(-0.961098\pi\)
0.992541 0.121911i \(-0.0389023\pi\)
\(108\) 0 0
\(109\) − 1894.36i − 1.66465i −0.554290 0.832324i \(-0.687010\pi\)
0.554290 0.832324i \(-0.312990\pi\)
\(110\) 0 0
\(111\) 1288.00 1.10137
\(112\) 0 0
\(113\) 1710.00 1.42357 0.711784 0.702398i \(-0.247887\pi\)
0.711784 + 0.702398i \(0.247887\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 52.9150i 0.0418119i
\(118\) 0 0
\(119\) −112.000 −0.0862775
\(120\) 0 0
\(121\) 1079.00 0.810669
\(122\) 0 0
\(123\) − 370.405i − 0.271531i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1664.00 −1.16265 −0.581323 0.813673i \(-0.697465\pi\)
−0.581323 + 0.813673i \(0.697465\pi\)
\(128\) 0 0
\(129\) 2324.00 1.58618
\(130\) 0 0
\(131\) 672.021i 0.448204i 0.974566 + 0.224102i \(0.0719449\pi\)
−0.974566 + 0.224102i \(0.928055\pi\)
\(132\) 0 0
\(133\) − 296.324i − 0.193192i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1062.00 0.662283 0.331142 0.943581i \(-0.392566\pi\)
0.331142 + 0.943581i \(0.392566\pi\)
\(138\) 0 0
\(139\) − 2693.37i − 1.64352i −0.569835 0.821759i \(-0.692993\pi\)
0.569835 0.821759i \(-0.307007\pi\)
\(140\) 0 0
\(141\) 1777.94i 1.06191i
\(142\) 0 0
\(143\) 840.000 0.491219
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1476.33i − 0.828337i
\(148\) 0 0
\(149\) 793.725i 0.436406i 0.975903 + 0.218203i \(0.0700195\pi\)
−0.975903 + 0.218203i \(0.929980\pi\)
\(150\) 0 0
\(151\) −744.000 −0.400966 −0.200483 0.979697i \(-0.564251\pi\)
−0.200483 + 0.979697i \(0.564251\pi\)
\(152\) 0 0
\(153\) −14.0000 −0.00739760
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 179.911i − 0.0914552i −0.998954 0.0457276i \(-0.985439\pi\)
0.998954 0.0457276i \(-0.0145606\pi\)
\(158\) 0 0
\(159\) 168.000 0.0837941
\(160\) 0 0
\(161\) 1216.00 0.595244
\(162\) 0 0
\(163\) − 1772.65i − 0.851809i −0.904768 0.425905i \(-0.859956\pi\)
0.904768 0.425905i \(-0.140044\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1960.00 −0.908200 −0.454100 0.890951i \(-0.650039\pi\)
−0.454100 + 0.890951i \(0.650039\pi\)
\(168\) 0 0
\(169\) −603.000 −0.274465
\(170\) 0 0
\(171\) − 37.0405i − 0.0165647i
\(172\) 0 0
\(173\) − 2000.19i − 0.879026i −0.898236 0.439513i \(-0.855151\pi\)
0.898236 0.439513i \(-0.144849\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2828.00 1.20094
\(178\) 0 0
\(179\) − 3264.86i − 1.36328i −0.731688 0.681639i \(-0.761267\pi\)
0.731688 0.681639i \(-0.238733\pi\)
\(180\) 0 0
\(181\) − 2338.84i − 0.960469i −0.877140 0.480235i \(-0.840552\pi\)
0.877140 0.480235i \(-0.159448\pi\)
\(182\) 0 0
\(183\) −504.000 −0.203589
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 222.243i 0.0869092i
\(188\) 0 0
\(189\) − 1100.63i − 0.423594i
\(190\) 0 0
\(191\) −3904.00 −1.47897 −0.739486 0.673172i \(-0.764931\pi\)
−0.739486 + 0.673172i \(0.764931\pi\)
\(192\) 0 0
\(193\) −3330.00 −1.24196 −0.620981 0.783826i \(-0.713266\pi\)
−0.620981 + 0.783826i \(0.713266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1195.88i 0.432502i 0.976338 + 0.216251i \(0.0693829\pi\)
−0.976338 + 0.216251i \(0.930617\pi\)
\(198\) 0 0
\(199\) 1736.00 0.618401 0.309200 0.950997i \(-0.399939\pi\)
0.309200 + 0.950997i \(0.399939\pi\)
\(200\) 0 0
\(201\) −924.000 −0.324248
\(202\) 0 0
\(203\) 1269.96i 0.439083i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 152.000 0.0510373
\(208\) 0 0
\(209\) −588.000 −0.194607
\(210\) 0 0
\(211\) 2915.62i 0.951277i 0.879641 + 0.475638i \(0.157783\pi\)
−0.879641 + 0.475638i \(0.842217\pi\)
\(212\) 0 0
\(213\) 380.988i 0.122558i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1792.00 0.560594
\(218\) 0 0
\(219\) 1555.70i 0.480021i
\(220\) 0 0
\(221\) − 740.810i − 0.225486i
\(222\) 0 0
\(223\) 1568.00 0.470857 0.235428 0.971892i \(-0.424351\pi\)
0.235428 + 0.971892i \(0.424351\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 1264.67i − 0.369775i −0.982760 0.184888i \(-0.940808\pi\)
0.982760 0.184888i \(-0.0591922\pi\)
\(228\) 0 0
\(229\) 5153.92i 1.48725i 0.668595 + 0.743626i \(0.266896\pi\)
−0.668595 + 0.743626i \(0.733104\pi\)
\(230\) 0 0
\(231\) 672.000 0.191404
\(232\) 0 0
\(233\) 838.000 0.235619 0.117809 0.993036i \(-0.462413\pi\)
0.117809 + 0.993036i \(0.462413\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2455.26i 0.672937i
\(238\) 0 0
\(239\) −6288.00 −1.70183 −0.850914 0.525305i \(-0.823951\pi\)
−0.850914 + 0.525305i \(0.823951\pi\)
\(240\) 0 0
\(241\) −2926.00 −0.782076 −0.391038 0.920375i \(-0.627884\pi\)
−0.391038 + 0.920375i \(0.627884\pi\)
\(242\) 0 0
\(243\) − 280.450i − 0.0740364i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1960.00 0.504906
\(248\) 0 0
\(249\) 2884.00 0.734000
\(250\) 0 0
\(251\) − 5444.96i − 1.36925i −0.728894 0.684627i \(-0.759965\pi\)
0.728894 0.684627i \(-0.240035\pi\)
\(252\) 0 0
\(253\) − 2412.93i − 0.599602i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2562.00 −0.621841 −0.310921 0.950436i \(-0.600637\pi\)
−0.310921 + 0.950436i \(0.600637\pi\)
\(258\) 0 0
\(259\) 1947.27i 0.467172i
\(260\) 0 0
\(261\) 158.745i 0.0376478i
\(262\) 0 0
\(263\) −5896.00 −1.38237 −0.691184 0.722679i \(-0.742911\pi\)
−0.691184 + 0.722679i \(0.742911\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1407.54i 0.322622i
\(268\) 0 0
\(269\) − 5365.58i − 1.21615i −0.793878 0.608077i \(-0.791941\pi\)
0.793878 0.608077i \(-0.208059\pi\)
\(270\) 0 0
\(271\) 1680.00 0.376578 0.188289 0.982114i \(-0.439706\pi\)
0.188289 + 0.982114i \(0.439706\pi\)
\(272\) 0 0
\(273\) −2240.00 −0.496597
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1576.87i 0.342039i 0.985268 + 0.171019i \(0.0547061\pi\)
−0.985268 + 0.171019i \(0.945294\pi\)
\(278\) 0 0
\(279\) 224.000 0.0480664
\(280\) 0 0
\(281\) −2742.00 −0.582114 −0.291057 0.956706i \(-0.594007\pi\)
−0.291057 + 0.956706i \(0.594007\pi\)
\(282\) 0 0
\(283\) 2989.70i 0.627983i 0.949426 + 0.313991i \(0.101666\pi\)
−0.949426 + 0.313991i \(0.898334\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 560.000 0.115177
\(288\) 0 0
\(289\) −4717.00 −0.960106
\(290\) 0 0
\(291\) − 5259.75i − 1.05956i
\(292\) 0 0
\(293\) 9238.96i 1.84214i 0.389401 + 0.921068i \(0.372682\pi\)
−0.389401 + 0.921068i \(0.627318\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2184.00 −0.426695
\(298\) 0 0
\(299\) 8043.08i 1.55566i
\(300\) 0 0
\(301\) 3513.56i 0.672818i
\(302\) 0 0
\(303\) −3976.00 −0.753846
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2587.54i 0.481039i 0.970644 + 0.240520i \(0.0773178\pi\)
−0.970644 + 0.240520i \(0.922682\pi\)
\(308\) 0 0
\(309\) 6222.81i 1.14564i
\(310\) 0 0
\(311\) 2744.00 0.500315 0.250157 0.968205i \(-0.419518\pi\)
0.250157 + 0.968205i \(0.419518\pi\)
\(312\) 0 0
\(313\) −2282.00 −0.412097 −0.206048 0.978542i \(-0.566060\pi\)
−0.206048 + 0.978542i \(0.566060\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 9577.62i − 1.69695i −0.529237 0.848474i \(-0.677522\pi\)
0.529237 0.848474i \(-0.322478\pi\)
\(318\) 0 0
\(319\) 2520.00 0.442298
\(320\) 0 0
\(321\) 1428.00 0.248297
\(322\) 0 0
\(323\) 518.567i 0.0893308i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10024.0 1.69519
\(328\) 0 0
\(329\) −2688.00 −0.450438
\(330\) 0 0
\(331\) 4249.08i 0.705590i 0.935701 + 0.352795i \(0.114769\pi\)
−0.935701 + 0.352795i \(0.885231\pi\)
\(332\) 0 0
\(333\) 243.409i 0.0400563i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6130.00 −0.990868 −0.495434 0.868646i \(-0.664991\pi\)
−0.495434 + 0.868646i \(0.664991\pi\)
\(338\) 0 0
\(339\) 9048.47i 1.44969i
\(340\) 0 0
\(341\) − 3555.89i − 0.564699i
\(342\) 0 0
\(343\) 4976.00 0.783320
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2481.71i 0.383935i 0.981401 + 0.191967i \(0.0614868\pi\)
−0.981401 + 0.191967i \(0.938513\pi\)
\(348\) 0 0
\(349\) − 328.073i − 0.0503191i −0.999683 0.0251595i \(-0.991991\pi\)
0.999683 0.0251595i \(-0.00800937\pi\)
\(350\) 0 0
\(351\) 7280.00 1.10706
\(352\) 0 0
\(353\) 10206.0 1.53884 0.769420 0.638743i \(-0.220545\pi\)
0.769420 + 0.638743i \(0.220545\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 592.648i − 0.0878607i
\(358\) 0 0
\(359\) 3176.00 0.466916 0.233458 0.972367i \(-0.424996\pi\)
0.233458 + 0.972367i \(0.424996\pi\)
\(360\) 0 0
\(361\) 5487.00 0.799971
\(362\) 0 0
\(363\) 5709.53i 0.825545i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −11760.0 −1.67266 −0.836331 0.548225i \(-0.815304\pi\)
−0.836331 + 0.548225i \(0.815304\pi\)
\(368\) 0 0
\(369\) 70.0000 0.00987549
\(370\) 0 0
\(371\) 253.992i 0.0355434i
\(372\) 0 0
\(373\) 10974.6i 1.52344i 0.647908 + 0.761719i \(0.275644\pi\)
−0.647908 + 0.761719i \(0.724356\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8400.00 −1.14754
\(378\) 0 0
\(379\) − 3074.36i − 0.416674i −0.978057 0.208337i \(-0.933195\pi\)
0.978057 0.208337i \(-0.0668051\pi\)
\(380\) 0 0
\(381\) − 8805.06i − 1.18398i
\(382\) 0 0
\(383\) 2688.00 0.358617 0.179309 0.983793i \(-0.442614\pi\)
0.179309 + 0.983793i \(0.442614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 439.195i 0.0576887i
\(388\) 0 0
\(389\) 10487.8i 1.36697i 0.729966 + 0.683484i \(0.239536\pi\)
−0.729966 + 0.683484i \(0.760464\pi\)
\(390\) 0 0
\(391\) −2128.00 −0.275237
\(392\) 0 0
\(393\) −3556.00 −0.456429
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5704.24i 0.721127i 0.932735 + 0.360564i \(0.117416\pi\)
−0.932735 + 0.360564i \(0.882584\pi\)
\(398\) 0 0
\(399\) 1568.00 0.196737
\(400\) 0 0
\(401\) 12402.0 1.54445 0.772227 0.635346i \(-0.219143\pi\)
0.772227 + 0.635346i \(0.219143\pi\)
\(402\) 0 0
\(403\) 11853.0i 1.46511i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3864.00 0.470593
\(408\) 0 0
\(409\) −12278.0 −1.48437 −0.742186 0.670194i \(-0.766211\pi\)
−0.742186 + 0.670194i \(0.766211\pi\)
\(410\) 0 0
\(411\) 5619.58i 0.674436i
\(412\) 0 0
\(413\) 4275.53i 0.509407i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 14252.0 1.67368
\(418\) 0 0
\(419\) 8207.12i 0.956907i 0.878113 + 0.478454i \(0.158802\pi\)
−0.878113 + 0.478454i \(0.841198\pi\)
\(420\) 0 0
\(421\) − 1449.87i − 0.167844i −0.996472 0.0839221i \(-0.973255\pi\)
0.996472 0.0839221i \(-0.0267447\pi\)
\(422\) 0 0
\(423\) −336.000 −0.0386215
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 761.976i − 0.0863574i
\(428\) 0 0
\(429\) 4444.86i 0.500233i
\(430\) 0 0
\(431\) −7632.00 −0.852948 −0.426474 0.904500i \(-0.640244\pi\)
−0.426474 + 0.904500i \(0.640244\pi\)
\(432\) 0 0
\(433\) −3794.00 −0.421081 −0.210540 0.977585i \(-0.567522\pi\)
−0.210540 + 0.977585i \(0.567522\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5630.16i − 0.616309i
\(438\) 0 0
\(439\) 1848.00 0.200912 0.100456 0.994942i \(-0.467970\pi\)
0.100456 + 0.994942i \(0.467970\pi\)
\(440\) 0 0
\(441\) 279.000 0.0301263
\(442\) 0 0
\(443\) − 12334.5i − 1.32287i −0.750004 0.661433i \(-0.769949\pi\)
0.750004 0.661433i \(-0.230051\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4200.00 −0.444414
\(448\) 0 0
\(449\) −3582.00 −0.376492 −0.188246 0.982122i \(-0.560280\pi\)
−0.188246 + 0.982122i \(0.560280\pi\)
\(450\) 0 0
\(451\) − 1111.22i − 0.116020i
\(452\) 0 0
\(453\) − 3936.88i − 0.408324i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2714.00 −0.277802 −0.138901 0.990306i \(-0.544357\pi\)
−0.138901 + 0.990306i \(0.544357\pi\)
\(458\) 0 0
\(459\) 1926.11i 0.195867i
\(460\) 0 0
\(461\) 8349.99i 0.843596i 0.906690 + 0.421798i \(0.138601\pi\)
−0.906690 + 0.421798i \(0.861399\pi\)
\(462\) 0 0
\(463\) 2224.00 0.223236 0.111618 0.993751i \(-0.464397\pi\)
0.111618 + 0.993751i \(0.464397\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10292.0i 1.01982i 0.860228 + 0.509910i \(0.170321\pi\)
−0.860228 + 0.509910i \(0.829679\pi\)
\(468\) 0 0
\(469\) − 1396.96i − 0.137538i
\(470\) 0 0
\(471\) 952.000 0.0931334
\(472\) 0 0
\(473\) 6972.00 0.677744
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 31.7490i 0.00304756i
\(478\) 0 0
\(479\) −17696.0 −1.68800 −0.843999 0.536345i \(-0.819805\pi\)
−0.843999 + 0.536345i \(0.819805\pi\)
\(480\) 0 0
\(481\) −12880.0 −1.22095
\(482\) 0 0
\(483\) 6434.47i 0.606166i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1304.00 0.121334 0.0606672 0.998158i \(-0.480677\pi\)
0.0606672 + 0.998158i \(0.480677\pi\)
\(488\) 0 0
\(489\) 9380.00 0.867440
\(490\) 0 0
\(491\) − 16662.9i − 1.53154i −0.643112 0.765772i \(-0.722357\pi\)
0.643112 0.765772i \(-0.277643\pi\)
\(492\) 0 0
\(493\) − 2222.43i − 0.203029i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −576.000 −0.0519862
\(498\) 0 0
\(499\) − 3095.53i − 0.277705i −0.990313 0.138853i \(-0.955659\pi\)
0.990313 0.138853i \(-0.0443414\pi\)
\(500\) 0 0
\(501\) − 10371.3i − 0.924865i
\(502\) 0 0
\(503\) −19320.0 −1.71260 −0.856298 0.516481i \(-0.827242\pi\)
−0.856298 + 0.516481i \(0.827242\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 3190.78i − 0.279502i
\(508\) 0 0
\(509\) − 4476.61i − 0.389828i −0.980820 0.194914i \(-0.937557\pi\)
0.980820 0.194914i \(-0.0624427\pi\)
\(510\) 0 0
\(511\) −2352.00 −0.203613
\(512\) 0 0
\(513\) −5096.00 −0.438585
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5333.83i 0.453737i
\(518\) 0 0
\(519\) 10584.0 0.895156
\(520\) 0 0
\(521\) −2982.00 −0.250756 −0.125378 0.992109i \(-0.540014\pi\)
−0.125378 + 0.992109i \(0.540014\pi\)
\(522\) 0 0
\(523\) 2016.06i 0.168559i 0.996442 + 0.0842794i \(0.0268588\pi\)
−0.996442 + 0.0842794i \(0.973141\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3136.00 −0.259215
\(528\) 0 0
\(529\) 10937.0 0.898907
\(530\) 0 0
\(531\) 534.442i 0.0436776i
\(532\) 0 0
\(533\) 3704.05i 0.301014i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 17276.0 1.38830
\(538\) 0 0
\(539\) − 4428.99i − 0.353933i
\(540\) 0 0
\(541\) 15419.4i 1.22539i 0.790321 + 0.612693i \(0.209914\pi\)
−0.790321 + 0.612693i \(0.790086\pi\)
\(542\) 0 0
\(543\) 12376.0 0.978094
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 12609.7i − 0.985649i −0.870129 0.492824i \(-0.835965\pi\)
0.870129 0.492824i \(-0.164035\pi\)
\(548\) 0 0
\(549\) − 95.2470i − 0.00740445i
\(550\) 0 0
\(551\) 5880.00 0.454621
\(552\) 0 0
\(553\) −3712.00 −0.285444
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7143.53i 0.543413i 0.962380 + 0.271706i \(0.0875880\pi\)
−0.962380 + 0.271706i \(0.912412\pi\)
\(558\) 0 0
\(559\) −23240.0 −1.75840
\(560\) 0 0
\(561\) −1176.00 −0.0885040
\(562\) 0 0
\(563\) − 7572.14i − 0.566834i −0.958997 0.283417i \(-0.908532\pi\)
0.958997 0.283417i \(-0.0914681\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 6040.00 0.447365
\(568\) 0 0
\(569\) 15594.0 1.14892 0.574459 0.818533i \(-0.305212\pi\)
0.574459 + 0.818533i \(0.305212\pi\)
\(570\) 0 0
\(571\) 16737.0i 1.22666i 0.789827 + 0.613330i \(0.210170\pi\)
−0.789827 + 0.613330i \(0.789830\pi\)
\(572\) 0 0
\(573\) − 20658.0i − 1.50611i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −6594.00 −0.475757 −0.237879 0.971295i \(-0.576452\pi\)
−0.237879 + 0.971295i \(0.576452\pi\)
\(578\) 0 0
\(579\) − 17620.7i − 1.26475i
\(580\) 0 0
\(581\) 4360.20i 0.311345i
\(582\) 0 0
\(583\) 504.000 0.0358037
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 23213.8i − 1.63226i −0.577868 0.816130i \(-0.696115\pi\)
0.577868 0.816130i \(-0.303885\pi\)
\(588\) 0 0
\(589\) − 8297.08i − 0.580433i
\(590\) 0 0
\(591\) −6328.00 −0.440438
\(592\) 0 0
\(593\) −14322.0 −0.991794 −0.495897 0.868381i \(-0.665161\pi\)
−0.495897 + 0.868381i \(0.665161\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9186.05i 0.629749i
\(598\) 0 0
\(599\) 16088.0 1.09739 0.548696 0.836022i \(-0.315124\pi\)
0.548696 + 0.836022i \(0.315124\pi\)
\(600\) 0 0
\(601\) −21238.0 −1.44146 −0.720729 0.693217i \(-0.756193\pi\)
−0.720729 + 0.693217i \(0.756193\pi\)
\(602\) 0 0
\(603\) − 174.620i − 0.0117928i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −13664.0 −0.913681 −0.456841 0.889549i \(-0.651019\pi\)
−0.456841 + 0.889549i \(0.651019\pi\)
\(608\) 0 0
\(609\) −6720.00 −0.447140
\(610\) 0 0
\(611\) − 17779.4i − 1.17722i
\(612\) 0 0
\(613\) − 20393.5i − 1.34369i −0.740690 0.671846i \(-0.765501\pi\)
0.740690 0.671846i \(-0.234499\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3782.00 0.246771 0.123385 0.992359i \(-0.460625\pi\)
0.123385 + 0.992359i \(0.460625\pi\)
\(618\) 0 0
\(619\) − 5825.94i − 0.378295i −0.981949 0.189147i \(-0.939428\pi\)
0.981949 0.189147i \(-0.0605724\pi\)
\(620\) 0 0
\(621\) − 20912.0i − 1.35132i
\(622\) 0 0
\(623\) −2128.00 −0.136848
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 3111.40i − 0.198178i
\(628\) 0 0
\(629\) − 3407.73i − 0.216017i
\(630\) 0 0
\(631\) −2056.00 −0.129712 −0.0648558 0.997895i \(-0.520659\pi\)
−0.0648558 + 0.997895i \(0.520659\pi\)
\(632\) 0 0
\(633\) −15428.0 −0.968733
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 14763.3i 0.918278i
\(638\) 0 0
\(639\) −72.0000 −0.00445740
\(640\) 0 0
\(641\) 11842.0 0.729689 0.364845 0.931068i \(-0.381122\pi\)
0.364845 + 0.931068i \(0.381122\pi\)
\(642\) 0 0
\(643\) − 16250.2i − 0.996649i −0.866991 0.498325i \(-0.833949\pi\)
0.866991 0.498325i \(-0.166051\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19320.0 1.17395 0.586976 0.809604i \(-0.300318\pi\)
0.586976 + 0.809604i \(0.300318\pi\)
\(648\) 0 0
\(649\) 8484.00 0.513137
\(650\) 0 0
\(651\) 9482.37i 0.570881i
\(652\) 0 0
\(653\) 2317.68i 0.138894i 0.997586 + 0.0694470i \(0.0221235\pi\)
−0.997586 + 0.0694470i \(0.977877\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −294.000 −0.0174582
\(658\) 0 0
\(659\) − 27732.8i − 1.63932i −0.572847 0.819662i \(-0.694161\pi\)
0.572847 0.819662i \(-0.305839\pi\)
\(660\) 0 0
\(661\) 22467.7i 1.32208i 0.750352 + 0.661039i \(0.229884\pi\)
−0.750352 + 0.661039i \(0.770116\pi\)
\(662\) 0 0
\(663\) 3920.00 0.229623
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24129.3i 1.40073i
\(668\) 0 0
\(669\) 8297.08i 0.479497i
\(670\) 0 0
\(671\) −1512.00 −0.0869897
\(672\) 0 0
\(673\) 10078.0 0.577234 0.288617 0.957445i \(-0.406805\pi\)
0.288617 + 0.957445i \(0.406805\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 16160.2i − 0.917413i −0.888588 0.458707i \(-0.848313\pi\)
0.888588 0.458707i \(-0.151687\pi\)
\(678\) 0 0
\(679\) 7952.00 0.449440
\(680\) 0 0
\(681\) 6692.00 0.376561
\(682\) 0 0
\(683\) − 16356.0i − 0.916320i −0.888870 0.458160i \(-0.848509\pi\)
0.888870 0.458160i \(-0.151491\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −27272.0 −1.51454
\(688\) 0 0
\(689\) −1680.00 −0.0928925
\(690\) 0 0
\(691\) 29246.1i 1.61009i 0.593211 + 0.805047i \(0.297860\pi\)
−0.593211 + 0.805047i \(0.702140\pi\)
\(692\) 0 0
\(693\) 126.996i 0.00696130i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −980.000 −0.0532570
\(698\) 0 0
\(699\) 4434.28i 0.239943i
\(700\) 0 0
\(701\) 2465.84i 0.132858i 0.997791 + 0.0664290i \(0.0211606\pi\)
−0.997791 + 0.0664290i \(0.978839\pi\)
\(702\) 0 0
\(703\) 9016.00 0.483705
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 6011.15i − 0.319763i
\(708\) 0 0
\(709\) − 31674.9i − 1.67782i −0.544267 0.838912i \(-0.683192\pi\)
0.544267 0.838912i \(-0.316808\pi\)
\(710\) 0 0
\(711\) −464.000 −0.0244745
\(712\) 0 0
\(713\) 34048.0 1.78837
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 33273.0i − 1.73306i
\(718\) 0 0
\(719\) 9296.00 0.482173 0.241086 0.970504i \(-0.422496\pi\)
0.241086 + 0.970504i \(0.422496\pi\)
\(720\) 0 0
\(721\) −9408.00 −0.485953
\(722\) 0 0
\(723\) − 15482.9i − 0.796427i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 21672.0 1.10560 0.552799 0.833315i \(-0.313560\pi\)
0.552799 + 0.833315i \(0.313560\pi\)
\(728\) 0 0
\(729\) −18901.0 −0.960270
\(730\) 0 0
\(731\) − 6148.73i − 0.311106i
\(732\) 0 0
\(733\) 9471.79i 0.477283i 0.971108 + 0.238642i \(0.0767021\pi\)
−0.971108 + 0.238642i \(0.923298\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2772.00 −0.138545
\(738\) 0 0
\(739\) − 6863.08i − 0.341627i −0.985303 0.170814i \(-0.945360\pi\)
0.985303 0.170814i \(-0.0546396\pi\)
\(740\) 0 0
\(741\) 10371.3i 0.514171i
\(742\) 0 0
\(743\) 17432.0 0.860724 0.430362 0.902656i \(-0.358386\pi\)
0.430362 + 0.902656i \(0.358386\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 545.025i 0.0266953i
\(748\) 0 0
\(749\) 2158.93i 0.105321i
\(750\) 0 0
\(751\) 11632.0 0.565190 0.282595 0.959239i \(-0.408805\pi\)
0.282595 + 0.959239i \(0.408805\pi\)
\(752\) 0 0
\(753\) 28812.0 1.39438
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 16731.7i 0.803336i 0.915785 + 0.401668i \(0.131569\pi\)
−0.915785 + 0.401668i \(0.868431\pi\)
\(758\) 0 0
\(759\) 12768.0 0.610605
\(760\) 0 0
\(761\) 39466.0 1.87995 0.939975 0.341244i \(-0.110848\pi\)
0.939975 + 0.341244i \(0.110848\pi\)
\(762\) 0 0
\(763\) 15154.9i 0.719060i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −28280.0 −1.33133
\(768\) 0 0
\(769\) 35266.0 1.65374 0.826869 0.562395i \(-0.190120\pi\)
0.826869 + 0.562395i \(0.190120\pi\)
\(770\) 0 0
\(771\) − 13556.8i − 0.633252i
\(772\) 0 0
\(773\) − 16244.9i − 0.755872i −0.925832 0.377936i \(-0.876634\pi\)
0.925832 0.377936i \(-0.123366\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −10304.0 −0.475745
\(778\) 0 0
\(779\) − 2592.84i − 0.119253i
\(780\) 0 0
\(781\) 1142.96i 0.0523668i
\(782\) 0 0
\(783\) 21840.0 0.996805
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 34844.5i 1.57824i 0.614240 + 0.789119i \(0.289463\pi\)
−0.614240 + 0.789119i \(0.710537\pi\)
\(788\) 0 0
\(789\) − 31198.7i − 1.40774i
\(790\) 0 0
\(791\) −13680.0 −0.614924
\(792\) 0 0
\(793\) 5040.00 0.225694
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2550.50i − 0.113354i −0.998393 0.0566772i \(-0.981949\pi\)
0.998393 0.0566772i \(-0.0180506\pi\)
\(798\) 0 0
\(799\) 4704.00 0.208280
\(800\) 0 0
\(801\) −266.000 −0.0117336
\(802\) 0 0
\(803\) 4667.11i 0.205104i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 28392.0 1.23847
\(808\) 0 0
\(809\) −24390.0 −1.05996 −0.529979 0.848010i \(-0.677800\pi\)
−0.529979 + 0.848010i \(0.677800\pi\)
\(810\) 0 0
\(811\) 9582.91i 0.414922i 0.978243 + 0.207461i \(0.0665200\pi\)
−0.978243 + 0.207461i \(0.933480\pi\)
\(812\) 0 0
\(813\) 8889.72i 0.383489i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 16268.0 0.696628
\(818\) 0 0
\(819\) − 423.320i − 0.0180611i
\(820\) 0 0
\(821\) − 8773.31i − 0.372948i −0.982460 0.186474i \(-0.940294\pi\)
0.982460 0.186474i \(-0.0597061\pi\)
\(822\) 0 0
\(823\) −21688.0 −0.918586 −0.459293 0.888285i \(-0.651897\pi\)
−0.459293 + 0.888285i \(0.651897\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 19446.3i − 0.817670i −0.912608 0.408835i \(-0.865935\pi\)
0.912608 0.408835i \(-0.134065\pi\)
\(828\) 0 0
\(829\) − 19546.8i − 0.818925i −0.912327 0.409462i \(-0.865716\pi\)
0.912327 0.409462i \(-0.134284\pi\)
\(830\) 0 0
\(831\) −8344.00 −0.348315
\(832\) 0 0
\(833\) −3906.00 −0.162467
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 30817.7i − 1.27266i
\(838\) 0 0
\(839\) 18760.0 0.771951 0.385976 0.922509i \(-0.373865\pi\)
0.385976 + 0.922509i \(0.373865\pi\)
\(840\) 0 0
\(841\) −811.000 −0.0332527
\(842\) 0 0
\(843\) − 14509.3i − 0.592796i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −8632.00 −0.350176
\(848\) 0 0
\(849\) −15820.0 −0.639506
\(850\) 0 0
\(851\) 36998.2i 1.49034i
\(852\) 0 0
\(853\) − 28732.9i − 1.15333i −0.816979 0.576667i \(-0.804353\pi\)
0.816979 0.576667i \(-0.195647\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8778.00 −0.349884 −0.174942 0.984579i \(-0.555974\pi\)
−0.174942 + 0.984579i \(0.555974\pi\)
\(858\) 0 0
\(859\) 5646.03i 0.224261i 0.993693 + 0.112130i \(0.0357675\pi\)
−0.993693 + 0.112130i \(0.964233\pi\)
\(860\) 0 0
\(861\) 2963.24i 0.117290i
\(862\) 0 0
\(863\) −9312.00 −0.367305 −0.183652 0.982991i \(-0.558792\pi\)
−0.183652 + 0.982991i \(0.558792\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 24960.0i − 0.977724i
\(868\) 0 0
\(869\) 7365.77i 0.287534i
\(870\) 0 0
\(871\) 9240.00 0.359455
\(872\) 0 0
\(873\) 994.000 0.0385359
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 137.579i − 0.00529728i −0.999996 0.00264864i \(-0.999157\pi\)
0.999996 0.00264864i \(-0.000843089\pi\)
\(878\) 0 0
\(879\) −48888.0 −1.87594
\(880\) 0 0
\(881\) −31150.0 −1.19123 −0.595613 0.803272i \(-0.703091\pi\)
−0.595613 + 0.803272i \(0.703091\pi\)
\(882\) 0 0
\(883\) 12577.9i 0.479366i 0.970851 + 0.239683i \(0.0770435\pi\)
−0.970851 + 0.239683i \(0.922957\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37128.0 1.40545 0.702726 0.711460i \(-0.251966\pi\)
0.702726 + 0.711460i \(0.251966\pi\)
\(888\) 0 0
\(889\) 13312.0 0.502216
\(890\) 0 0
\(891\) − 11985.3i − 0.450641i
\(892\) 0 0
\(893\) 12445.6i 0.466379i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −42560.0 −1.58421
\(898\) 0 0
\(899\) 35558.9i 1.31919i
\(900\) 0 0
\(901\) − 444.486i − 0.0164351i
\(902\) 0 0
\(903\) −18592.0 −0.685164
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 35204.4i 1.28880i 0.764688 + 0.644400i \(0.222893\pi\)
−0.764688 + 0.644400i \(0.777107\pi\)
\(908\) 0 0
\(909\) − 751.393i − 0.0274171i
\(910\) 0 0
\(911\) 10512.0 0.382303 0.191152 0.981561i \(-0.438778\pi\)
0.191152 + 0.981561i \(0.438778\pi\)
\(912\) 0 0
\(913\) 8652.00 0.313625
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 5376.17i − 0.193606i
\(918\) 0 0
\(919\) 46104.0 1.65488 0.827438 0.561557i \(-0.189798\pi\)
0.827438 + 0.561557i \(0.189798\pi\)
\(920\) 0 0
\(921\) −13692.0 −0.489866
\(922\) 0 0
\(923\) − 3809.88i − 0.135865i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1176.00 −0.0416666
\(928\) 0 0
\(929\) −5726.00 −0.202222 −0.101111 0.994875i \(-0.532240\pi\)
−0.101111 + 0.994875i \(0.532240\pi\)
\(930\) 0 0
\(931\) − 10334.3i − 0.363795i
\(932\) 0 0
\(933\) 14519.9i 0.509496i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1274.00 −0.0444181 −0.0222091 0.999753i \(-0.507070\pi\)
−0.0222091 + 0.999753i \(0.507070\pi\)
\(938\) 0 0
\(939\) − 12075.2i − 0.419659i
\(940\) 0 0
\(941\) − 26446.9i − 0.916201i −0.888900 0.458101i \(-0.848530\pi\)
0.888900 0.458101i \(-0.151470\pi\)
\(942\) 0 0
\(943\) 10640.0 0.367430
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23922.9i 0.820897i 0.911884 + 0.410448i \(0.134628\pi\)
−0.911884 + 0.410448i \(0.865372\pi\)
\(948\) 0 0
\(949\) − 15557.0i − 0.532141i
\(950\) 0 0
\(951\) 50680.0 1.72809
\(952\) 0 0
\(953\) −38250.0 −1.30015 −0.650073 0.759872i \(-0.725262\pi\)
−0.650073 + 0.759872i \(0.725262\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 13334.6i 0.450414i
\(958\) 0 0
\(959\) −8496.00 −0.286079
\(960\) 0 0
\(961\) 20385.0 0.684267
\(962\) 0 0
\(963\) 269.867i 0.00903046i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4664.00 0.155103 0.0775513 0.996988i \(-0.475290\pi\)
0.0775513 + 0.996988i \(0.475290\pi\)
\(968\) 0 0
\(969\) −2744.00 −0.0909701
\(970\) 0 0
\(971\) − 30971.2i − 1.02360i −0.859106 0.511798i \(-0.828980\pi\)
0.859106 0.511798i \(-0.171020\pi\)
\(972\) 0 0
\(973\) 21547.0i 0.709933i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 4814.00 0.157639 0.0788196 0.996889i \(-0.474885\pi\)
0.0788196 + 0.996889i \(0.474885\pi\)
\(978\) 0 0
\(979\) 4222.62i 0.137850i
\(980\) 0 0
\(981\) 1894.36i 0.0616536i
\(982\) 0 0
\(983\) −12376.0 −0.401560 −0.200780 0.979636i \(-0.564348\pi\)
−0.200780 + 0.979636i \(0.564348\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 14223.6i − 0.458704i
\(988\) 0 0
\(989\) 66757.6i 2.14638i
\(990\) 0 0
\(991\) −45344.0 −1.45348 −0.726740 0.686912i \(-0.758966\pi\)
−0.726740 + 0.686912i \(0.758966\pi\)
\(992\) 0 0
\(993\) −22484.0 −0.718538
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 26002.4i 0.825984i 0.910735 + 0.412992i \(0.135516\pi\)
−0.910735 + 0.412992i \(0.864484\pi\)
\(998\) 0 0
\(999\) 33488.0 1.06057
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.d.a.401.2 2
4.3 odd 2 200.4.d.a.101.2 2
5.2 odd 4 800.4.f.a.49.3 4
5.3 odd 4 800.4.f.a.49.2 4
5.4 even 2 32.4.b.a.17.1 2
8.3 odd 2 200.4.d.a.101.1 2
8.5 even 2 inner 800.4.d.a.401.1 2
15.14 odd 2 288.4.d.a.145.2 2
20.3 even 4 200.4.f.a.149.3 4
20.7 even 4 200.4.f.a.149.2 4
20.19 odd 2 8.4.b.a.5.1 2
40.3 even 4 200.4.f.a.149.1 4
40.13 odd 4 800.4.f.a.49.4 4
40.19 odd 2 8.4.b.a.5.2 yes 2
40.27 even 4 200.4.f.a.149.4 4
40.29 even 2 32.4.b.a.17.2 2
40.37 odd 4 800.4.f.a.49.1 4
60.59 even 2 72.4.d.b.37.2 2
80.19 odd 4 256.4.a.l.1.1 2
80.29 even 4 256.4.a.j.1.2 2
80.59 odd 4 256.4.a.l.1.2 2
80.69 even 4 256.4.a.j.1.1 2
120.29 odd 2 288.4.d.a.145.1 2
120.59 even 2 72.4.d.b.37.1 2
240.29 odd 4 2304.4.a.v.1.2 2
240.59 even 4 2304.4.a.bn.1.1 2
240.149 odd 4 2304.4.a.v.1.1 2
240.179 even 4 2304.4.a.bn.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.4.b.a.5.1 2 20.19 odd 2
8.4.b.a.5.2 yes 2 40.19 odd 2
32.4.b.a.17.1 2 5.4 even 2
32.4.b.a.17.2 2 40.29 even 2
72.4.d.b.37.1 2 120.59 even 2
72.4.d.b.37.2 2 60.59 even 2
200.4.d.a.101.1 2 8.3 odd 2
200.4.d.a.101.2 2 4.3 odd 2
200.4.f.a.149.1 4 40.3 even 4
200.4.f.a.149.2 4 20.7 even 4
200.4.f.a.149.3 4 20.3 even 4
200.4.f.a.149.4 4 40.27 even 4
256.4.a.j.1.1 2 80.69 even 4
256.4.a.j.1.2 2 80.29 even 4
256.4.a.l.1.1 2 80.19 odd 4
256.4.a.l.1.2 2 80.59 odd 4
288.4.d.a.145.1 2 120.29 odd 2
288.4.d.a.145.2 2 15.14 odd 2
800.4.d.a.401.1 2 8.5 even 2 inner
800.4.d.a.401.2 2 1.1 even 1 trivial
800.4.f.a.49.1 4 40.37 odd 4
800.4.f.a.49.2 4 5.3 odd 4
800.4.f.a.49.3 4 5.2 odd 4
800.4.f.a.49.4 4 40.13 odd 4
2304.4.a.v.1.1 2 240.149 odd 4
2304.4.a.v.1.2 2 240.29 odd 4
2304.4.a.bn.1.1 2 240.59 even 4
2304.4.a.bn.1.2 2 240.179 even 4