Properties

Label 800.4.c.f
Level $800$
Weight $4$
Character orbit 800.c
Analytic conductor $47.202$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(449,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.449");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + 3 \beta q^{7} + 23 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{3} + 3 \beta q^{7} + 23 q^{9} + 60 q^{11} - 25 \beta q^{13} - 15 \beta q^{17} - 40 q^{19} - 12 q^{21} - 89 \beta q^{23} + 50 \beta q^{27} - 166 q^{29} + 20 q^{31} + 60 \beta q^{33} + 5 \beta q^{37} + 100 q^{39} - 250 q^{41} - 71 \beta q^{43} + 107 \beta q^{47} + 307 q^{49} + 60 q^{51} - 245 \beta q^{53} - 40 \beta q^{57} + 800 q^{59} + 250 q^{61} + 69 \beta q^{63} - 387 \beta q^{67} + 356 q^{69} + 100 q^{71} + 115 \beta q^{73} + 180 \beta q^{77} + 1320 q^{79} + 421 q^{81} - 491 \beta q^{83} - 166 \beta q^{87} - 874 q^{89} + 300 q^{91} + 20 \beta q^{93} - 155 \beta q^{97} + 1380 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 46 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 46 q^{9} + 120 q^{11} - 80 q^{19} - 24 q^{21} - 332 q^{29} + 40 q^{31} + 200 q^{39} - 500 q^{41} + 614 q^{49} + 120 q^{51} + 1600 q^{59} + 500 q^{61} + 712 q^{69} + 200 q^{71} + 2640 q^{79} + 842 q^{81} - 1748 q^{89} + 600 q^{91} + 2760 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
1.00000i
1.00000i
0 2.00000i 0 0 0 6.00000i 0 23.0000 0
449.2 0 2.00000i 0 0 0 6.00000i 0 23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.4.c.f 2
4.b odd 2 1 800.4.c.e 2
5.b even 2 1 inner 800.4.c.f 2
5.c odd 4 1 160.4.a.a 1
5.c odd 4 1 800.4.a.h 1
15.e even 4 1 1440.4.a.o 1
20.d odd 2 1 800.4.c.e 2
20.e even 4 1 160.4.a.b yes 1
20.e even 4 1 800.4.a.d 1
40.i odd 4 1 320.4.a.i 1
40.i odd 4 1 1600.4.a.r 1
40.k even 4 1 320.4.a.f 1
40.k even 4 1 1600.4.a.bj 1
60.l odd 4 1 1440.4.a.n 1
80.i odd 4 1 1280.4.d.f 2
80.j even 4 1 1280.4.d.k 2
80.s even 4 1 1280.4.d.k 2
80.t odd 4 1 1280.4.d.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.4.a.a 1 5.c odd 4 1
160.4.a.b yes 1 20.e even 4 1
320.4.a.f 1 40.k even 4 1
320.4.a.i 1 40.i odd 4 1
800.4.a.d 1 20.e even 4 1
800.4.a.h 1 5.c odd 4 1
800.4.c.e 2 4.b odd 2 1
800.4.c.e 2 20.d odd 2 1
800.4.c.f 2 1.a even 1 1 trivial
800.4.c.f 2 5.b even 2 1 inner
1280.4.d.f 2 80.i odd 4 1
1280.4.d.f 2 80.t odd 4 1
1280.4.d.k 2 80.j even 4 1
1280.4.d.k 2 80.s even 4 1
1440.4.a.n 1 60.l odd 4 1
1440.4.a.o 1 15.e even 4 1
1600.4.a.r 1 40.i odd 4 1
1600.4.a.bj 1 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(800, [\chi])\):

\( T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{11} - 60 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 36 \) Copy content Toggle raw display
$11$ \( (T - 60)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 2500 \) Copy content Toggle raw display
$17$ \( T^{2} + 900 \) Copy content Toggle raw display
$19$ \( (T + 40)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 31684 \) Copy content Toggle raw display
$29$ \( (T + 166)^{2} \) Copy content Toggle raw display
$31$ \( (T - 20)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( (T + 250)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 20164 \) Copy content Toggle raw display
$47$ \( T^{2} + 45796 \) Copy content Toggle raw display
$53$ \( T^{2} + 240100 \) Copy content Toggle raw display
$59$ \( (T - 800)^{2} \) Copy content Toggle raw display
$61$ \( (T - 250)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 599076 \) Copy content Toggle raw display
$71$ \( (T - 100)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 52900 \) Copy content Toggle raw display
$79$ \( (T - 1320)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 964324 \) Copy content Toggle raw display
$89$ \( (T + 874)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 96100 \) Copy content Toggle raw display
show more
show less