Properties

Label 800.4.c.d.449.2
Level $800$
Weight $4$
Character 800.449
Analytic conductor $47.202$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(449,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.449");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 800.449
Dual form 800.4.c.d.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000i q^{3} +10.0000i q^{7} +2.00000 q^{9} +O(q^{10})\) \(q+5.00000i q^{3} +10.0000i q^{7} +2.00000 q^{9} +15.0000 q^{11} +8.00000i q^{13} +21.0000i q^{17} +105.000 q^{19} -50.0000 q^{21} -10.0000i q^{23} +145.000i q^{27} +20.0000 q^{29} +230.000 q^{31} +75.0000i q^{33} +54.0000i q^{37} -40.0000 q^{39} -195.000 q^{41} -300.000i q^{43} +480.000i q^{47} +243.000 q^{49} -105.000 q^{51} +322.000i q^{53} +525.000i q^{57} +560.000 q^{59} -730.000 q^{61} +20.0000i q^{63} -255.000i q^{67} +50.0000 q^{69} +40.0000 q^{71} +317.000i q^{73} +150.000i q^{77} -830.000 q^{79} -671.000 q^{81} +75.0000i q^{83} +100.000i q^{87} +705.000 q^{89} -80.0000 q^{91} +1150.00i q^{93} +1434.00i q^{97} +30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{9} + 30 q^{11} + 210 q^{19} - 100 q^{21} + 40 q^{29} + 460 q^{31} - 80 q^{39} - 390 q^{41} + 486 q^{49} - 210 q^{51} + 1120 q^{59} - 1460 q^{61} + 100 q^{69} + 80 q^{71} - 1660 q^{79} - 1342 q^{81} + 1410 q^{89} - 160 q^{91} + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.00000i 0.962250i 0.876652 + 0.481125i \(0.159772\pi\)
−0.876652 + 0.481125i \(0.840228\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 10.0000i 0.539949i 0.962867 + 0.269975i \(0.0870153\pi\)
−0.962867 + 0.269975i \(0.912985\pi\)
\(8\) 0 0
\(9\) 2.00000 0.0740741
\(10\) 0 0
\(11\) 15.0000 0.411152 0.205576 0.978641i \(-0.434093\pi\)
0.205576 + 0.978641i \(0.434093\pi\)
\(12\) 0 0
\(13\) 8.00000i 0.170677i 0.996352 + 0.0853385i \(0.0271972\pi\)
−0.996352 + 0.0853385i \(0.972803\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 21.0000i 0.299603i 0.988716 + 0.149801i \(0.0478634\pi\)
−0.988716 + 0.149801i \(0.952137\pi\)
\(18\) 0 0
\(19\) 105.000 1.26782 0.633912 0.773405i \(-0.281448\pi\)
0.633912 + 0.773405i \(0.281448\pi\)
\(20\) 0 0
\(21\) −50.0000 −0.519566
\(22\) 0 0
\(23\) − 10.0000i − 0.0906584i −0.998972 0.0453292i \(-0.985566\pi\)
0.998972 0.0453292i \(-0.0144337\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 145.000i 1.03353i
\(28\) 0 0
\(29\) 20.0000 0.128066 0.0640329 0.997948i \(-0.479604\pi\)
0.0640329 + 0.997948i \(0.479604\pi\)
\(30\) 0 0
\(31\) 230.000 1.33256 0.666278 0.745704i \(-0.267887\pi\)
0.666278 + 0.745704i \(0.267887\pi\)
\(32\) 0 0
\(33\) 75.0000i 0.395631i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 54.0000i 0.239934i 0.992778 + 0.119967i \(0.0382788\pi\)
−0.992778 + 0.119967i \(0.961721\pi\)
\(38\) 0 0
\(39\) −40.0000 −0.164234
\(40\) 0 0
\(41\) −195.000 −0.742778 −0.371389 0.928477i \(-0.621118\pi\)
−0.371389 + 0.928477i \(0.621118\pi\)
\(42\) 0 0
\(43\) − 300.000i − 1.06394i −0.846762 0.531972i \(-0.821451\pi\)
0.846762 0.531972i \(-0.178549\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 480.000i 1.48969i 0.667240 + 0.744843i \(0.267475\pi\)
−0.667240 + 0.744843i \(0.732525\pi\)
\(48\) 0 0
\(49\) 243.000 0.708455
\(50\) 0 0
\(51\) −105.000 −0.288293
\(52\) 0 0
\(53\) 322.000i 0.834530i 0.908785 + 0.417265i \(0.137011\pi\)
−0.908785 + 0.417265i \(0.862989\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 525.000i 1.21996i
\(58\) 0 0
\(59\) 560.000 1.23569 0.617846 0.786299i \(-0.288006\pi\)
0.617846 + 0.786299i \(0.288006\pi\)
\(60\) 0 0
\(61\) −730.000 −1.53224 −0.766122 0.642695i \(-0.777816\pi\)
−0.766122 + 0.642695i \(0.777816\pi\)
\(62\) 0 0
\(63\) 20.0000i 0.0399962i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 255.000i − 0.464973i −0.972600 0.232487i \(-0.925314\pi\)
0.972600 0.232487i \(-0.0746862\pi\)
\(68\) 0 0
\(69\) 50.0000 0.0872361
\(70\) 0 0
\(71\) 40.0000 0.0668609 0.0334305 0.999441i \(-0.489357\pi\)
0.0334305 + 0.999441i \(0.489357\pi\)
\(72\) 0 0
\(73\) 317.000i 0.508247i 0.967172 + 0.254124i \(0.0817870\pi\)
−0.967172 + 0.254124i \(0.918213\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 150.000i 0.222001i
\(78\) 0 0
\(79\) −830.000 −1.18205 −0.591027 0.806652i \(-0.701277\pi\)
−0.591027 + 0.806652i \(0.701277\pi\)
\(80\) 0 0
\(81\) −671.000 −0.920439
\(82\) 0 0
\(83\) 75.0000i 0.0991846i 0.998770 + 0.0495923i \(0.0157922\pi\)
−0.998770 + 0.0495923i \(0.984208\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 100.000i 0.123231i
\(88\) 0 0
\(89\) 705.000 0.839661 0.419831 0.907602i \(-0.362089\pi\)
0.419831 + 0.907602i \(0.362089\pi\)
\(90\) 0 0
\(91\) −80.0000 −0.0921569
\(92\) 0 0
\(93\) 1150.00i 1.28225i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1434.00i 1.50104i 0.660849 + 0.750519i \(0.270196\pi\)
−0.660849 + 0.750519i \(0.729804\pi\)
\(98\) 0 0
\(99\) 30.0000 0.0304557
\(100\) 0 0
\(101\) −1902.00 −1.87382 −0.936911 0.349567i \(-0.886329\pi\)
−0.936911 + 0.349567i \(0.886329\pi\)
\(102\) 0 0
\(103\) 1480.00i 1.41581i 0.706306 + 0.707906i \(0.250360\pi\)
−0.706306 + 0.707906i \(0.749640\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1945.00i − 1.75729i −0.477474 0.878646i \(-0.658447\pi\)
0.477474 0.878646i \(-0.341553\pi\)
\(108\) 0 0
\(109\) 246.000 0.216170 0.108085 0.994142i \(-0.465528\pi\)
0.108085 + 0.994142i \(0.465528\pi\)
\(110\) 0 0
\(111\) −270.000 −0.230876
\(112\) 0 0
\(113\) 753.000i 0.626870i 0.949610 + 0.313435i \(0.101480\pi\)
−0.949610 + 0.313435i \(0.898520\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 16.0000i 0.0126427i
\(118\) 0 0
\(119\) −210.000 −0.161770
\(120\) 0 0
\(121\) −1106.00 −0.830954
\(122\) 0 0
\(123\) − 975.000i − 0.714738i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1490.00i − 1.04107i −0.853840 0.520536i \(-0.825732\pi\)
0.853840 0.520536i \(-0.174268\pi\)
\(128\) 0 0
\(129\) 1500.00 1.02378
\(130\) 0 0
\(131\) −780.000 −0.520221 −0.260110 0.965579i \(-0.583759\pi\)
−0.260110 + 0.965579i \(0.583759\pi\)
\(132\) 0 0
\(133\) 1050.00i 0.684561i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2749.00i 1.71433i 0.515044 + 0.857164i \(0.327776\pi\)
−0.515044 + 0.857164i \(0.672224\pi\)
\(138\) 0 0
\(139\) −735.000 −0.448503 −0.224251 0.974531i \(-0.571994\pi\)
−0.224251 + 0.974531i \(0.571994\pi\)
\(140\) 0 0
\(141\) −2400.00 −1.43345
\(142\) 0 0
\(143\) 120.000i 0.0701742i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1215.00i 0.681711i
\(148\) 0 0
\(149\) −836.000 −0.459650 −0.229825 0.973232i \(-0.573815\pi\)
−0.229825 + 0.973232i \(0.573815\pi\)
\(150\) 0 0
\(151\) −1790.00 −0.964690 −0.482345 0.875981i \(-0.660215\pi\)
−0.482345 + 0.875981i \(0.660215\pi\)
\(152\) 0 0
\(153\) 42.0000i 0.0221928i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1374.00i − 0.698453i −0.937038 0.349227i \(-0.886444\pi\)
0.937038 0.349227i \(-0.113556\pi\)
\(158\) 0 0
\(159\) −1610.00 −0.803027
\(160\) 0 0
\(161\) 100.000 0.0489510
\(162\) 0 0
\(163\) 1895.00i 0.910600i 0.890338 + 0.455300i \(0.150468\pi\)
−0.890338 + 0.455300i \(0.849532\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 720.000i 0.333624i 0.985989 + 0.166812i \(0.0533474\pi\)
−0.985989 + 0.166812i \(0.946653\pi\)
\(168\) 0 0
\(169\) 2133.00 0.970869
\(170\) 0 0
\(171\) 210.000 0.0939129
\(172\) 0 0
\(173\) 2512.00i 1.10395i 0.833860 + 0.551976i \(0.186126\pi\)
−0.833860 + 0.551976i \(0.813874\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2800.00i 1.18904i
\(178\) 0 0
\(179\) 165.000 0.0688976 0.0344488 0.999406i \(-0.489032\pi\)
0.0344488 + 0.999406i \(0.489032\pi\)
\(180\) 0 0
\(181\) −3158.00 −1.29686 −0.648432 0.761273i \(-0.724575\pi\)
−0.648432 + 0.761273i \(0.724575\pi\)
\(182\) 0 0
\(183\) − 3650.00i − 1.47440i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 315.000i 0.123182i
\(188\) 0 0
\(189\) −1450.00 −0.558053
\(190\) 0 0
\(191\) 3290.00 1.24637 0.623183 0.782076i \(-0.285839\pi\)
0.623183 + 0.782076i \(0.285839\pi\)
\(192\) 0 0
\(193\) − 197.000i − 0.0734734i −0.999325 0.0367367i \(-0.988304\pi\)
0.999325 0.0367367i \(-0.0116963\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1746.00i − 0.631459i −0.948849 0.315729i \(-0.897751\pi\)
0.948849 0.315729i \(-0.102249\pi\)
\(198\) 0 0
\(199\) 4660.00 1.65999 0.829997 0.557768i \(-0.188342\pi\)
0.829997 + 0.557768i \(0.188342\pi\)
\(200\) 0 0
\(201\) 1275.00 0.447421
\(202\) 0 0
\(203\) 200.000i 0.0691490i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 20.0000i − 0.00671544i
\(208\) 0 0
\(209\) 1575.00 0.521268
\(210\) 0 0
\(211\) 265.000 0.0864614 0.0432307 0.999065i \(-0.486235\pi\)
0.0432307 + 0.999065i \(0.486235\pi\)
\(212\) 0 0
\(213\) 200.000i 0.0643370i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2300.00i 0.719512i
\(218\) 0 0
\(219\) −1585.00 −0.489061
\(220\) 0 0
\(221\) −168.000 −0.0511353
\(222\) 0 0
\(223\) − 1060.00i − 0.318309i −0.987254 0.159154i \(-0.949123\pi\)
0.987254 0.159154i \(-0.0508768\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4660.00i 1.36253i 0.732035 + 0.681267i \(0.238571\pi\)
−0.732035 + 0.681267i \(0.761429\pi\)
\(228\) 0 0
\(229\) −1660.00 −0.479021 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(230\) 0 0
\(231\) −750.000 −0.213621
\(232\) 0 0
\(233\) − 3462.00i − 0.973404i −0.873568 0.486702i \(-0.838200\pi\)
0.873568 0.486702i \(-0.161800\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 4150.00i − 1.13743i
\(238\) 0 0
\(239\) 4020.00 1.08800 0.544000 0.839085i \(-0.316909\pi\)
0.544000 + 0.839085i \(0.316909\pi\)
\(240\) 0 0
\(241\) 3985.00 1.06513 0.532565 0.846389i \(-0.321228\pi\)
0.532565 + 0.846389i \(0.321228\pi\)
\(242\) 0 0
\(243\) 560.000i 0.147835i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 840.000i 0.216388i
\(248\) 0 0
\(249\) −375.000 −0.0954404
\(250\) 0 0
\(251\) 6625.00 1.66600 0.833001 0.553272i \(-0.186621\pi\)
0.833001 + 0.553272i \(0.186621\pi\)
\(252\) 0 0
\(253\) − 150.000i − 0.0372744i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2246.00i 0.545143i 0.962136 + 0.272571i \(0.0878741\pi\)
−0.962136 + 0.272571i \(0.912126\pi\)
\(258\) 0 0
\(259\) −540.000 −0.129552
\(260\) 0 0
\(261\) 40.0000 0.00948635
\(262\) 0 0
\(263\) 3950.00i 0.926112i 0.886329 + 0.463056i \(0.153247\pi\)
−0.886329 + 0.463056i \(0.846753\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3525.00i 0.807964i
\(268\) 0 0
\(269\) −2656.00 −0.602004 −0.301002 0.953623i \(-0.597321\pi\)
−0.301002 + 0.953623i \(0.597321\pi\)
\(270\) 0 0
\(271\) 3110.00 0.697118 0.348559 0.937287i \(-0.386671\pi\)
0.348559 + 0.937287i \(0.386671\pi\)
\(272\) 0 0
\(273\) − 400.000i − 0.0886780i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 6884.00i − 1.49321i −0.665267 0.746606i \(-0.731682\pi\)
0.665267 0.746606i \(-0.268318\pi\)
\(278\) 0 0
\(279\) 460.000 0.0987078
\(280\) 0 0
\(281\) 4630.00 0.982928 0.491464 0.870898i \(-0.336462\pi\)
0.491464 + 0.870898i \(0.336462\pi\)
\(282\) 0 0
\(283\) 215.000i 0.0451605i 0.999745 + 0.0225803i \(0.00718813\pi\)
−0.999745 + 0.0225803i \(0.992812\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 1950.00i − 0.401062i
\(288\) 0 0
\(289\) 4472.00 0.910238
\(290\) 0 0
\(291\) −7170.00 −1.44437
\(292\) 0 0
\(293\) − 1602.00i − 0.319419i −0.987164 0.159710i \(-0.948944\pi\)
0.987164 0.159710i \(-0.0510558\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2175.00i 0.424937i
\(298\) 0 0
\(299\) 80.0000 0.0154733
\(300\) 0 0
\(301\) 3000.00 0.574475
\(302\) 0 0
\(303\) − 9510.00i − 1.80309i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1885.00i − 0.350432i −0.984530 0.175216i \(-0.943938\pi\)
0.984530 0.175216i \(-0.0560624\pi\)
\(308\) 0 0
\(309\) −7400.00 −1.36237
\(310\) 0 0
\(311\) −9250.00 −1.68656 −0.843279 0.537476i \(-0.819378\pi\)
−0.843279 + 0.537476i \(0.819378\pi\)
\(312\) 0 0
\(313\) − 8162.00i − 1.47394i −0.675925 0.736970i \(-0.736256\pi\)
0.675925 0.736970i \(-0.263744\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 6924.00i − 1.22678i −0.789779 0.613392i \(-0.789805\pi\)
0.789779 0.613392i \(-0.210195\pi\)
\(318\) 0 0
\(319\) 300.000 0.0526545
\(320\) 0 0
\(321\) 9725.00 1.69096
\(322\) 0 0
\(323\) 2205.00i 0.379844i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1230.00i 0.208010i
\(328\) 0 0
\(329\) −4800.00 −0.804354
\(330\) 0 0
\(331\) 8075.00 1.34091 0.670456 0.741949i \(-0.266098\pi\)
0.670456 + 0.741949i \(0.266098\pi\)
\(332\) 0 0
\(333\) 108.000i 0.0177729i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 4741.00i − 0.766346i −0.923677 0.383173i \(-0.874831\pi\)
0.923677 0.383173i \(-0.125169\pi\)
\(338\) 0 0
\(339\) −3765.00 −0.603206
\(340\) 0 0
\(341\) 3450.00 0.547883
\(342\) 0 0
\(343\) 5860.00i 0.922479i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 8705.00i − 1.34671i −0.739319 0.673356i \(-0.764852\pi\)
0.739319 0.673356i \(-0.235148\pi\)
\(348\) 0 0
\(349\) 1470.00 0.225465 0.112733 0.993625i \(-0.464040\pi\)
0.112733 + 0.993625i \(0.464040\pi\)
\(350\) 0 0
\(351\) −1160.00 −0.176399
\(352\) 0 0
\(353\) − 1998.00i − 0.301254i −0.988591 0.150627i \(-0.951871\pi\)
0.988591 0.150627i \(-0.0481293\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 1050.00i − 0.155664i
\(358\) 0 0
\(359\) −8190.00 −1.20404 −0.602022 0.798480i \(-0.705638\pi\)
−0.602022 + 0.798480i \(0.705638\pi\)
\(360\) 0 0
\(361\) 4166.00 0.607377
\(362\) 0 0
\(363\) − 5530.00i − 0.799586i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 5340.00i − 0.759525i −0.925084 0.379763i \(-0.876006\pi\)
0.925084 0.379763i \(-0.123994\pi\)
\(368\) 0 0
\(369\) −390.000 −0.0550206
\(370\) 0 0
\(371\) −3220.00 −0.450604
\(372\) 0 0
\(373\) − 9378.00i − 1.30181i −0.759160 0.650904i \(-0.774390\pi\)
0.759160 0.650904i \(-0.225610\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 160.000i 0.0218579i
\(378\) 0 0
\(379\) −4045.00 −0.548226 −0.274113 0.961697i \(-0.588384\pi\)
−0.274113 + 0.961697i \(0.588384\pi\)
\(380\) 0 0
\(381\) 7450.00 1.00177
\(382\) 0 0
\(383\) 8090.00i 1.07932i 0.841883 + 0.539660i \(0.181447\pi\)
−0.841883 + 0.539660i \(0.818553\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 600.000i − 0.0788106i
\(388\) 0 0
\(389\) −6574.00 −0.856851 −0.428425 0.903577i \(-0.640932\pi\)
−0.428425 + 0.903577i \(0.640932\pi\)
\(390\) 0 0
\(391\) 210.000 0.0271615
\(392\) 0 0
\(393\) − 3900.00i − 0.500583i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 7036.00i − 0.889488i −0.895658 0.444744i \(-0.853295\pi\)
0.895658 0.444744i \(-0.146705\pi\)
\(398\) 0 0
\(399\) −5250.00 −0.658719
\(400\) 0 0
\(401\) 8277.00 1.03076 0.515379 0.856963i \(-0.327651\pi\)
0.515379 + 0.856963i \(0.327651\pi\)
\(402\) 0 0
\(403\) 1840.00i 0.227437i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 810.000i 0.0986492i
\(408\) 0 0
\(409\) 2179.00 0.263434 0.131717 0.991287i \(-0.457951\pi\)
0.131717 + 0.991287i \(0.457951\pi\)
\(410\) 0 0
\(411\) −13745.0 −1.64961
\(412\) 0 0
\(413\) 5600.00i 0.667211i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 3675.00i − 0.431572i
\(418\) 0 0
\(419\) 12245.0 1.42770 0.713851 0.700297i \(-0.246949\pi\)
0.713851 + 0.700297i \(0.246949\pi\)
\(420\) 0 0
\(421\) −660.000 −0.0764048 −0.0382024 0.999270i \(-0.512163\pi\)
−0.0382024 + 0.999270i \(0.512163\pi\)
\(422\) 0 0
\(423\) 960.000i 0.110347i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 7300.00i − 0.827334i
\(428\) 0 0
\(429\) −600.000 −0.0675251
\(430\) 0 0
\(431\) 7470.00 0.834843 0.417421 0.908713i \(-0.362934\pi\)
0.417421 + 0.908713i \(0.362934\pi\)
\(432\) 0 0
\(433\) − 1173.00i − 0.130187i −0.997879 0.0650933i \(-0.979266\pi\)
0.997879 0.0650933i \(-0.0207345\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1050.00i − 0.114939i
\(438\) 0 0
\(439\) 5660.00 0.615346 0.307673 0.951492i \(-0.400450\pi\)
0.307673 + 0.951492i \(0.400450\pi\)
\(440\) 0 0
\(441\) 486.000 0.0524781
\(442\) 0 0
\(443\) 1115.00i 0.119583i 0.998211 + 0.0597915i \(0.0190436\pi\)
−0.998211 + 0.0597915i \(0.980956\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 4180.00i − 0.442298i
\(448\) 0 0
\(449\) −4089.00 −0.429781 −0.214891 0.976638i \(-0.568940\pi\)
−0.214891 + 0.976638i \(0.568940\pi\)
\(450\) 0 0
\(451\) −2925.00 −0.305394
\(452\) 0 0
\(453\) − 8950.00i − 0.928273i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 4519.00i − 0.462560i −0.972887 0.231280i \(-0.925709\pi\)
0.972887 0.231280i \(-0.0742913\pi\)
\(458\) 0 0
\(459\) −3045.00 −0.309648
\(460\) 0 0
\(461\) 10068.0 1.01717 0.508583 0.861013i \(-0.330170\pi\)
0.508583 + 0.861013i \(0.330170\pi\)
\(462\) 0 0
\(463\) 1460.00i 0.146548i 0.997312 + 0.0732742i \(0.0233448\pi\)
−0.997312 + 0.0732742i \(0.976655\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 4740.00i − 0.469681i −0.972034 0.234841i \(-0.924543\pi\)
0.972034 0.234841i \(-0.0754568\pi\)
\(468\) 0 0
\(469\) 2550.00 0.251062
\(470\) 0 0
\(471\) 6870.00 0.672087
\(472\) 0 0
\(473\) − 4500.00i − 0.437442i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 644.000i 0.0618171i
\(478\) 0 0
\(479\) −8610.00 −0.821296 −0.410648 0.911794i \(-0.634698\pi\)
−0.410648 + 0.911794i \(0.634698\pi\)
\(480\) 0 0
\(481\) −432.000 −0.0409512
\(482\) 0 0
\(483\) 500.000i 0.0471031i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 17710.0i 1.64788i 0.566678 + 0.823939i \(0.308228\pi\)
−0.566678 + 0.823939i \(0.691772\pi\)
\(488\) 0 0
\(489\) −9475.00 −0.876226
\(490\) 0 0
\(491\) 8660.00 0.795968 0.397984 0.917392i \(-0.369710\pi\)
0.397984 + 0.917392i \(0.369710\pi\)
\(492\) 0 0
\(493\) 420.000i 0.0383689i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 400.000i 0.0361015i
\(498\) 0 0
\(499\) 17300.0 1.55201 0.776006 0.630725i \(-0.217242\pi\)
0.776006 + 0.630725i \(0.217242\pi\)
\(500\) 0 0
\(501\) −3600.00 −0.321030
\(502\) 0 0
\(503\) 1860.00i 0.164877i 0.996596 + 0.0824387i \(0.0262709\pi\)
−0.996596 + 0.0824387i \(0.973729\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 10665.0i 0.934219i
\(508\) 0 0
\(509\) 5870.00 0.511165 0.255583 0.966787i \(-0.417733\pi\)
0.255583 + 0.966787i \(0.417733\pi\)
\(510\) 0 0
\(511\) −3170.00 −0.274428
\(512\) 0 0
\(513\) 15225.0i 1.31033i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 7200.00i 0.612487i
\(518\) 0 0
\(519\) −12560.0 −1.06228
\(520\) 0 0
\(521\) −12187.0 −1.02480 −0.512401 0.858746i \(-0.671244\pi\)
−0.512401 + 0.858746i \(0.671244\pi\)
\(522\) 0 0
\(523\) − 5315.00i − 0.444376i −0.975004 0.222188i \(-0.928680\pi\)
0.975004 0.222188i \(-0.0713199\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4830.00i 0.399237i
\(528\) 0 0
\(529\) 12067.0 0.991781
\(530\) 0 0
\(531\) 1120.00 0.0915327
\(532\) 0 0
\(533\) − 1560.00i − 0.126775i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 825.000i 0.0662968i
\(538\) 0 0
\(539\) 3645.00 0.291282
\(540\) 0 0
\(541\) −1672.00 −0.132874 −0.0664371 0.997791i \(-0.521163\pi\)
−0.0664371 + 0.997791i \(0.521163\pi\)
\(542\) 0 0
\(543\) − 15790.0i − 1.24791i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10595.0i 0.828171i 0.910238 + 0.414085i \(0.135899\pi\)
−0.910238 + 0.414085i \(0.864101\pi\)
\(548\) 0 0
\(549\) −1460.00 −0.113500
\(550\) 0 0
\(551\) 2100.00 0.162365
\(552\) 0 0
\(553\) − 8300.00i − 0.638249i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15264.0i 1.16114i 0.814209 + 0.580571i \(0.197171\pi\)
−0.814209 + 0.580571i \(0.802829\pi\)
\(558\) 0 0
\(559\) 2400.00 0.181591
\(560\) 0 0
\(561\) −1575.00 −0.118532
\(562\) 0 0
\(563\) − 15400.0i − 1.15281i −0.817164 0.576406i \(-0.804455\pi\)
0.817164 0.576406i \(-0.195545\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 6710.00i − 0.496990i
\(568\) 0 0
\(569\) −14569.0 −1.07340 −0.536700 0.843773i \(-0.680329\pi\)
−0.536700 + 0.843773i \(0.680329\pi\)
\(570\) 0 0
\(571\) 7780.00 0.570198 0.285099 0.958498i \(-0.407974\pi\)
0.285099 + 0.958498i \(0.407974\pi\)
\(572\) 0 0
\(573\) 16450.0i 1.19932i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 19829.0i − 1.43066i −0.698786 0.715331i \(-0.746276\pi\)
0.698786 0.715331i \(-0.253724\pi\)
\(578\) 0 0
\(579\) 985.000 0.0706998
\(580\) 0 0
\(581\) −750.000 −0.0535546
\(582\) 0 0
\(583\) 4830.00i 0.343119i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 795.000i − 0.0558998i −0.999609 0.0279499i \(-0.991102\pi\)
0.999609 0.0279499i \(-0.00889788\pi\)
\(588\) 0 0
\(589\) 24150.0 1.68945
\(590\) 0 0
\(591\) 8730.00 0.607621
\(592\) 0 0
\(593\) 21457.0i 1.48589i 0.669352 + 0.742946i \(0.266572\pi\)
−0.669352 + 0.742946i \(0.733428\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 23300.0i 1.59733i
\(598\) 0 0
\(599\) 26570.0 1.81239 0.906194 0.422862i \(-0.138974\pi\)
0.906194 + 0.422862i \(0.138974\pi\)
\(600\) 0 0
\(601\) −25245.0 −1.71342 −0.856710 0.515799i \(-0.827495\pi\)
−0.856710 + 0.515799i \(0.827495\pi\)
\(602\) 0 0
\(603\) − 510.000i − 0.0344425i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14040.0i 0.938824i 0.882979 + 0.469412i \(0.155534\pi\)
−0.882979 + 0.469412i \(0.844466\pi\)
\(608\) 0 0
\(609\) −1000.00 −0.0665387
\(610\) 0 0
\(611\) −3840.00 −0.254255
\(612\) 0 0
\(613\) − 19502.0i − 1.28496i −0.766304 0.642478i \(-0.777906\pi\)
0.766304 0.642478i \(-0.222094\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6286.00i 0.410154i 0.978746 + 0.205077i \(0.0657444\pi\)
−0.978746 + 0.205077i \(0.934256\pi\)
\(618\) 0 0
\(619\) 2420.00 0.157137 0.0785687 0.996909i \(-0.474965\pi\)
0.0785687 + 0.996909i \(0.474965\pi\)
\(620\) 0 0
\(621\) 1450.00 0.0936981
\(622\) 0 0
\(623\) 7050.00i 0.453374i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 7875.00i 0.501590i
\(628\) 0 0
\(629\) −1134.00 −0.0718848
\(630\) 0 0
\(631\) −2290.00 −0.144475 −0.0722373 0.997387i \(-0.523014\pi\)
−0.0722373 + 0.997387i \(0.523014\pi\)
\(632\) 0 0
\(633\) 1325.00i 0.0831975i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1944.00i 0.120917i
\(638\) 0 0
\(639\) 80.0000 0.00495266
\(640\) 0 0
\(641\) −15150.0 −0.933524 −0.466762 0.884383i \(-0.654580\pi\)
−0.466762 + 0.884383i \(0.654580\pi\)
\(642\) 0 0
\(643\) 7860.00i 0.482066i 0.970517 + 0.241033i \(0.0774861\pi\)
−0.970517 + 0.241033i \(0.922514\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2420.00i 0.147048i 0.997293 + 0.0735240i \(0.0234245\pi\)
−0.997293 + 0.0735240i \(0.976575\pi\)
\(648\) 0 0
\(649\) 8400.00 0.508057
\(650\) 0 0
\(651\) −11500.0 −0.692351
\(652\) 0 0
\(653\) 20462.0i 1.22625i 0.789987 + 0.613124i \(0.210087\pi\)
−0.789987 + 0.613124i \(0.789913\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 634.000i 0.0376479i
\(658\) 0 0
\(659\) −32205.0 −1.90369 −0.951843 0.306587i \(-0.900813\pi\)
−0.951843 + 0.306587i \(0.900813\pi\)
\(660\) 0 0
\(661\) −27100.0 −1.59466 −0.797328 0.603546i \(-0.793754\pi\)
−0.797328 + 0.603546i \(0.793754\pi\)
\(662\) 0 0
\(663\) − 840.000i − 0.0492050i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 200.000i − 0.0116102i
\(668\) 0 0
\(669\) 5300.00 0.306293
\(670\) 0 0
\(671\) −10950.0 −0.629985
\(672\) 0 0
\(673\) 24182.0i 1.38506i 0.721387 + 0.692532i \(0.243505\pi\)
−0.721387 + 0.692532i \(0.756495\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 25704.0i 1.45921i 0.683869 + 0.729605i \(0.260296\pi\)
−0.683869 + 0.729605i \(0.739704\pi\)
\(678\) 0 0
\(679\) −14340.0 −0.810484
\(680\) 0 0
\(681\) −23300.0 −1.31110
\(682\) 0 0
\(683\) 6525.00i 0.365552i 0.983155 + 0.182776i \(0.0585084\pi\)
−0.983155 + 0.182776i \(0.941492\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 8300.00i − 0.460939i
\(688\) 0 0
\(689\) −2576.00 −0.142435
\(690\) 0 0
\(691\) 28955.0 1.59407 0.797033 0.603935i \(-0.206401\pi\)
0.797033 + 0.603935i \(0.206401\pi\)
\(692\) 0 0
\(693\) 300.000i 0.0164445i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 4095.00i − 0.222538i
\(698\) 0 0
\(699\) 17310.0 0.936659
\(700\) 0 0
\(701\) 9720.00 0.523708 0.261854 0.965107i \(-0.415666\pi\)
0.261854 + 0.965107i \(0.415666\pi\)
\(702\) 0 0
\(703\) 5670.00i 0.304194i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 19020.0i − 1.01177i
\(708\) 0 0
\(709\) 25140.0 1.33167 0.665834 0.746100i \(-0.268076\pi\)
0.665834 + 0.746100i \(0.268076\pi\)
\(710\) 0 0
\(711\) −1660.00 −0.0875596
\(712\) 0 0
\(713\) − 2300.00i − 0.120807i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20100.0i 1.04693i
\(718\) 0 0
\(719\) 30030.0 1.55762 0.778811 0.627259i \(-0.215823\pi\)
0.778811 + 0.627259i \(0.215823\pi\)
\(720\) 0 0
\(721\) −14800.0 −0.764467
\(722\) 0 0
\(723\) 19925.0i 1.02492i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 36100.0i − 1.84164i −0.389984 0.920822i \(-0.627519\pi\)
0.389984 0.920822i \(-0.372481\pi\)
\(728\) 0 0
\(729\) −20917.0 −1.06269
\(730\) 0 0
\(731\) 6300.00 0.318760
\(732\) 0 0
\(733\) − 5368.00i − 0.270493i −0.990812 0.135247i \(-0.956817\pi\)
0.990812 0.135247i \(-0.0431827\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 3825.00i − 0.191175i
\(738\) 0 0
\(739\) −25540.0 −1.27132 −0.635659 0.771970i \(-0.719272\pi\)
−0.635659 + 0.771970i \(0.719272\pi\)
\(740\) 0 0
\(741\) −4200.00 −0.208220
\(742\) 0 0
\(743\) − 18730.0i − 0.924814i −0.886668 0.462407i \(-0.846986\pi\)
0.886668 0.462407i \(-0.153014\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 150.000i 0.00734701i
\(748\) 0 0
\(749\) 19450.0 0.948849
\(750\) 0 0
\(751\) −29940.0 −1.45476 −0.727381 0.686234i \(-0.759263\pi\)
−0.727381 + 0.686234i \(0.759263\pi\)
\(752\) 0 0
\(753\) 33125.0i 1.60311i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 16216.0i 0.778574i 0.921117 + 0.389287i \(0.127279\pi\)
−0.921117 + 0.389287i \(0.872721\pi\)
\(758\) 0 0
\(759\) 750.000 0.0358673
\(760\) 0 0
\(761\) −25843.0 −1.23102 −0.615511 0.788128i \(-0.711050\pi\)
−0.615511 + 0.788128i \(0.711050\pi\)
\(762\) 0 0
\(763\) 2460.00i 0.116721i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4480.00i 0.210904i
\(768\) 0 0
\(769\) 27475.0 1.28839 0.644196 0.764860i \(-0.277192\pi\)
0.644196 + 0.764860i \(0.277192\pi\)
\(770\) 0 0
\(771\) −11230.0 −0.524564
\(772\) 0 0
\(773\) 3948.00i 0.183699i 0.995773 + 0.0918497i \(0.0292779\pi\)
−0.995773 + 0.0918497i \(0.970722\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 2700.00i − 0.124661i
\(778\) 0 0
\(779\) −20475.0 −0.941711
\(780\) 0 0
\(781\) 600.000 0.0274900
\(782\) 0 0
\(783\) 2900.00i 0.132360i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 22100.0i − 1.00099i −0.865739 0.500496i \(-0.833151\pi\)
0.865739 0.500496i \(-0.166849\pi\)
\(788\) 0 0
\(789\) −19750.0 −0.891152
\(790\) 0 0
\(791\) −7530.00 −0.338478
\(792\) 0 0
\(793\) − 5840.00i − 0.261519i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16026.0i 0.712259i 0.934437 + 0.356129i \(0.115904\pi\)
−0.934437 + 0.356129i \(0.884096\pi\)
\(798\) 0 0
\(799\) −10080.0 −0.446314
\(800\) 0 0
\(801\) 1410.00 0.0621971
\(802\) 0 0
\(803\) 4755.00i 0.208967i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 13280.0i − 0.579279i
\(808\) 0 0
\(809\) −35770.0 −1.55452 −0.777260 0.629180i \(-0.783391\pi\)
−0.777260 + 0.629180i \(0.783391\pi\)
\(810\) 0 0
\(811\) −30620.0 −1.32579 −0.662894 0.748714i \(-0.730672\pi\)
−0.662894 + 0.748714i \(0.730672\pi\)
\(812\) 0 0
\(813\) 15550.0i 0.670802i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 31500.0i − 1.34889i
\(818\) 0 0
\(819\) −160.000 −0.00682644
\(820\) 0 0
\(821\) −9150.00 −0.388961 −0.194481 0.980906i \(-0.562302\pi\)
−0.194481 + 0.980906i \(0.562302\pi\)
\(822\) 0 0
\(823\) − 28940.0i − 1.22574i −0.790183 0.612871i \(-0.790015\pi\)
0.790183 0.612871i \(-0.209985\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25765.0i 1.08336i 0.840586 + 0.541679i \(0.182211\pi\)
−0.840586 + 0.541679i \(0.817789\pi\)
\(828\) 0 0
\(829\) 41584.0 1.74219 0.871093 0.491118i \(-0.163412\pi\)
0.871093 + 0.491118i \(0.163412\pi\)
\(830\) 0 0
\(831\) 34420.0 1.43684
\(832\) 0 0
\(833\) 5103.00i 0.212255i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 33350.0i 1.37723i
\(838\) 0 0
\(839\) −20320.0 −0.836143 −0.418072 0.908414i \(-0.637294\pi\)
−0.418072 + 0.908414i \(0.637294\pi\)
\(840\) 0 0
\(841\) −23989.0 −0.983599
\(842\) 0 0
\(843\) 23150.0i 0.945822i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 11060.0i − 0.448673i
\(848\) 0 0
\(849\) −1075.00 −0.0434557
\(850\) 0 0
\(851\) 540.000 0.0217520
\(852\) 0 0
\(853\) − 38882.0i − 1.56072i −0.625330 0.780360i \(-0.715036\pi\)
0.625330 0.780360i \(-0.284964\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15269.0i 0.608610i 0.952575 + 0.304305i \(0.0984243\pi\)
−0.952575 + 0.304305i \(0.901576\pi\)
\(858\) 0 0
\(859\) −19375.0 −0.769577 −0.384788 0.923005i \(-0.625726\pi\)
−0.384788 + 0.923005i \(0.625726\pi\)
\(860\) 0 0
\(861\) 9750.00 0.385922
\(862\) 0 0
\(863\) 22900.0i 0.903274i 0.892202 + 0.451637i \(0.149160\pi\)
−0.892202 + 0.451637i \(0.850840\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 22360.0i 0.875877i
\(868\) 0 0
\(869\) −12450.0 −0.486004
\(870\) 0 0
\(871\) 2040.00 0.0793602
\(872\) 0 0
\(873\) 2868.00i 0.111188i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 23444.0i − 0.902677i −0.892353 0.451338i \(-0.850947\pi\)
0.892353 0.451338i \(-0.149053\pi\)
\(878\) 0 0
\(879\) 8010.00 0.307361
\(880\) 0 0
\(881\) 3750.00 0.143406 0.0717030 0.997426i \(-0.477157\pi\)
0.0717030 + 0.997426i \(0.477157\pi\)
\(882\) 0 0
\(883\) − 37595.0i − 1.43281i −0.697684 0.716406i \(-0.745786\pi\)
0.697684 0.716406i \(-0.254214\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 11420.0i − 0.432295i −0.976361 0.216148i \(-0.930651\pi\)
0.976361 0.216148i \(-0.0693493\pi\)
\(888\) 0 0
\(889\) 14900.0 0.562126
\(890\) 0 0
\(891\) −10065.0 −0.378440
\(892\) 0 0
\(893\) 50400.0i 1.88866i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 400.000i 0.0148892i
\(898\) 0 0
\(899\) 4600.00 0.170655
\(900\) 0 0
\(901\) −6762.00 −0.250028
\(902\) 0 0
\(903\) 15000.0i 0.552789i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 2620.00i − 0.0959158i −0.998849 0.0479579i \(-0.984729\pi\)
0.998849 0.0479579i \(-0.0152713\pi\)
\(908\) 0 0
\(909\) −3804.00 −0.138802
\(910\) 0 0
\(911\) −46500.0 −1.69112 −0.845562 0.533877i \(-0.820734\pi\)
−0.845562 + 0.533877i \(0.820734\pi\)
\(912\) 0 0
\(913\) 1125.00i 0.0407799i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 7800.00i − 0.280893i
\(918\) 0 0
\(919\) 45190.0 1.62207 0.811034 0.584999i \(-0.198905\pi\)
0.811034 + 0.584999i \(0.198905\pi\)
\(920\) 0 0
\(921\) 9425.00 0.337203
\(922\) 0 0
\(923\) 320.000i 0.0114116i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2960.00i 0.104875i
\(928\) 0 0
\(929\) −15166.0 −0.535609 −0.267804 0.963473i \(-0.586298\pi\)
−0.267804 + 0.963473i \(0.586298\pi\)
\(930\) 0 0
\(931\) 25515.0 0.898196
\(932\) 0 0
\(933\) − 46250.0i − 1.62289i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 23789.0i − 0.829405i −0.909957 0.414703i \(-0.863886\pi\)
0.909957 0.414703i \(-0.136114\pi\)
\(938\) 0 0
\(939\) 40810.0 1.41830
\(940\) 0 0
\(941\) 47472.0 1.64457 0.822286 0.569074i \(-0.192698\pi\)
0.822286 + 0.569074i \(0.192698\pi\)
\(942\) 0 0
\(943\) 1950.00i 0.0673391i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19760.0i 0.678050i 0.940777 + 0.339025i \(0.110097\pi\)
−0.940777 + 0.339025i \(0.889903\pi\)
\(948\) 0 0
\(949\) −2536.00 −0.0867461
\(950\) 0 0
\(951\) 34620.0 1.18047
\(952\) 0 0
\(953\) − 36337.0i − 1.23512i −0.786523 0.617561i \(-0.788121\pi\)
0.786523 0.617561i \(-0.211879\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1500.00i 0.0506668i
\(958\) 0 0
\(959\) −27490.0 −0.925650
\(960\) 0 0
\(961\) 23109.0 0.775704
\(962\) 0 0
\(963\) − 3890.00i − 0.130170i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 33880.0i 1.12669i 0.826222 + 0.563344i \(0.190485\pi\)
−0.826222 + 0.563344i \(0.809515\pi\)
\(968\) 0 0
\(969\) −11025.0 −0.365505
\(970\) 0 0
\(971\) 17175.0 0.567633 0.283817 0.958879i \(-0.408399\pi\)
0.283817 + 0.958879i \(0.408399\pi\)
\(972\) 0 0
\(973\) − 7350.00i − 0.242169i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 13311.0i − 0.435882i −0.975962 0.217941i \(-0.930066\pi\)
0.975962 0.217941i \(-0.0699340\pi\)
\(978\) 0 0
\(979\) 10575.0 0.345228
\(980\) 0 0
\(981\) 492.000 0.0160126
\(982\) 0 0
\(983\) − 53110.0i − 1.72324i −0.507553 0.861621i \(-0.669450\pi\)
0.507553 0.861621i \(-0.330550\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 24000.0i − 0.773990i
\(988\) 0 0
\(989\) −3000.00 −0.0964555
\(990\) 0 0
\(991\) 8990.00 0.288170 0.144085 0.989565i \(-0.453976\pi\)
0.144085 + 0.989565i \(0.453976\pi\)
\(992\) 0 0
\(993\) 40375.0i 1.29029i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1236.00i 0.0392623i 0.999807 + 0.0196311i \(0.00624919\pi\)
−0.999807 + 0.0196311i \(0.993751\pi\)
\(998\) 0 0
\(999\) −7830.00 −0.247978
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.c.d.449.2 2
4.3 odd 2 800.4.c.c.449.1 2
5.2 odd 4 800.4.a.j.1.1 yes 1
5.3 odd 4 800.4.a.c.1.1 yes 1
5.4 even 2 inner 800.4.c.d.449.1 2
20.3 even 4 800.4.a.i.1.1 yes 1
20.7 even 4 800.4.a.b.1.1 1
20.19 odd 2 800.4.c.c.449.2 2
40.3 even 4 1600.4.a.l.1.1 1
40.13 odd 4 1600.4.a.bp.1.1 1
40.27 even 4 1600.4.a.bq.1.1 1
40.37 odd 4 1600.4.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.4.a.b.1.1 1 20.7 even 4
800.4.a.c.1.1 yes 1 5.3 odd 4
800.4.a.i.1.1 yes 1 20.3 even 4
800.4.a.j.1.1 yes 1 5.2 odd 4
800.4.c.c.449.1 2 4.3 odd 2
800.4.c.c.449.2 2 20.19 odd 2
800.4.c.d.449.1 2 5.4 even 2 inner
800.4.c.d.449.2 2 1.1 even 1 trivial
1600.4.a.k.1.1 1 40.37 odd 4
1600.4.a.l.1.1 1 40.3 even 4
1600.4.a.bp.1.1 1 40.13 odd 4
1600.4.a.bq.1.1 1 40.27 even 4