Properties

Label 800.4.c.a.449.2
Level $800$
Weight $4$
Character 800.449
Analytic conductor $47.202$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(449,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.449");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 800.449
Dual form 800.4.c.a.449.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{3} -16.0000i q^{7} -37.0000 q^{9} +O(q^{10})\) \(q+8.00000i q^{3} -16.0000i q^{7} -37.0000 q^{9} -40.0000 q^{11} -50.0000i q^{13} +30.0000i q^{17} -40.0000 q^{19} +128.000 q^{21} +48.0000i q^{23} -80.0000i q^{27} +34.0000 q^{29} +320.000 q^{31} -320.000i q^{33} -310.000i q^{37} +400.000 q^{39} +410.000 q^{41} +152.000i q^{43} +416.000i q^{47} +87.0000 q^{49} -240.000 q^{51} -410.000i q^{53} -320.000i q^{57} +200.000 q^{59} +30.0000 q^{61} +592.000i q^{63} -776.000i q^{67} -384.000 q^{69} +400.000 q^{71} -630.000i q^{73} +640.000i q^{77} +1120.00 q^{79} -359.000 q^{81} +552.000i q^{83} +272.000i q^{87} +326.000 q^{89} -800.000 q^{91} +2560.00i q^{93} +110.000i q^{97} +1480.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 74 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 74 q^{9} - 80 q^{11} - 80 q^{19} + 256 q^{21} + 68 q^{29} + 640 q^{31} + 800 q^{39} + 820 q^{41} + 174 q^{49} - 480 q^{51} + 400 q^{59} + 60 q^{61} - 768 q^{69} + 800 q^{71} + 2240 q^{79} - 718 q^{81} + 652 q^{89} - 1600 q^{91} + 2960 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.00000i 1.53960i 0.638285 + 0.769800i \(0.279644\pi\)
−0.638285 + 0.769800i \(0.720356\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 16.0000i − 0.863919i −0.901893 0.431959i \(-0.857822\pi\)
0.901893 0.431959i \(-0.142178\pi\)
\(8\) 0 0
\(9\) −37.0000 −1.37037
\(10\) 0 0
\(11\) −40.0000 −1.09640 −0.548202 0.836346i \(-0.684688\pi\)
−0.548202 + 0.836346i \(0.684688\pi\)
\(12\) 0 0
\(13\) − 50.0000i − 1.06673i −0.845885 0.533366i \(-0.820927\pi\)
0.845885 0.533366i \(-0.179073\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 30.0000i 0.428004i 0.976833 + 0.214002i \(0.0686499\pi\)
−0.976833 + 0.214002i \(0.931350\pi\)
\(18\) 0 0
\(19\) −40.0000 −0.482980 −0.241490 0.970403i \(-0.577636\pi\)
−0.241490 + 0.970403i \(0.577636\pi\)
\(20\) 0 0
\(21\) 128.000 1.33009
\(22\) 0 0
\(23\) 48.0000i 0.435161i 0.976042 + 0.217580i \(0.0698164\pi\)
−0.976042 + 0.217580i \(0.930184\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 80.0000i − 0.570222i
\(28\) 0 0
\(29\) 34.0000 0.217712 0.108856 0.994058i \(-0.465281\pi\)
0.108856 + 0.994058i \(0.465281\pi\)
\(30\) 0 0
\(31\) 320.000 1.85399 0.926995 0.375073i \(-0.122383\pi\)
0.926995 + 0.375073i \(0.122383\pi\)
\(32\) 0 0
\(33\) − 320.000i − 1.68803i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 310.000i − 1.37740i −0.725048 0.688698i \(-0.758182\pi\)
0.725048 0.688698i \(-0.241818\pi\)
\(38\) 0 0
\(39\) 400.000 1.64234
\(40\) 0 0
\(41\) 410.000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 152.000i 0.539065i 0.962991 + 0.269532i \(0.0868691\pi\)
−0.962991 + 0.269532i \(0.913131\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 416.000i 1.29106i 0.763735 + 0.645530i \(0.223364\pi\)
−0.763735 + 0.645530i \(0.776636\pi\)
\(48\) 0 0
\(49\) 87.0000 0.253644
\(50\) 0 0
\(51\) −240.000 −0.658955
\(52\) 0 0
\(53\) − 410.000i − 1.06260i −0.847184 0.531300i \(-0.821704\pi\)
0.847184 0.531300i \(-0.178296\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 320.000i − 0.743597i
\(58\) 0 0
\(59\) 200.000 0.441318 0.220659 0.975351i \(-0.429179\pi\)
0.220659 + 0.975351i \(0.429179\pi\)
\(60\) 0 0
\(61\) 30.0000 0.0629690 0.0314845 0.999504i \(-0.489977\pi\)
0.0314845 + 0.999504i \(0.489977\pi\)
\(62\) 0 0
\(63\) 592.000i 1.18389i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 776.000i − 1.41498i −0.706725 0.707489i \(-0.749828\pi\)
0.706725 0.707489i \(-0.250172\pi\)
\(68\) 0 0
\(69\) −384.000 −0.669973
\(70\) 0 0
\(71\) 400.000 0.668609 0.334305 0.942465i \(-0.391499\pi\)
0.334305 + 0.942465i \(0.391499\pi\)
\(72\) 0 0
\(73\) − 630.000i − 1.01008i −0.863096 0.505041i \(-0.831478\pi\)
0.863096 0.505041i \(-0.168522\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 640.000i 0.947205i
\(78\) 0 0
\(79\) 1120.00 1.59506 0.797531 0.603278i \(-0.206139\pi\)
0.797531 + 0.603278i \(0.206139\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) 552.000i 0.729998i 0.931008 + 0.364999i \(0.118931\pi\)
−0.931008 + 0.364999i \(0.881069\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 272.000i 0.335189i
\(88\) 0 0
\(89\) 326.000 0.388269 0.194134 0.980975i \(-0.437810\pi\)
0.194134 + 0.980975i \(0.437810\pi\)
\(90\) 0 0
\(91\) −800.000 −0.921569
\(92\) 0 0
\(93\) 2560.00i 2.85440i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 110.000i 0.115142i 0.998341 + 0.0575712i \(0.0183356\pi\)
−0.998341 + 0.0575712i \(0.981664\pi\)
\(98\) 0 0
\(99\) 1480.00 1.50248
\(100\) 0 0
\(101\) −1098.00 −1.08173 −0.540867 0.841108i \(-0.681904\pi\)
−0.540867 + 0.841108i \(0.681904\pi\)
\(102\) 0 0
\(103\) − 48.0000i − 0.0459183i −0.999736 0.0229591i \(-0.992691\pi\)
0.999736 0.0229591i \(-0.00730876\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 664.000i − 0.599919i −0.953952 0.299959i \(-0.903027\pi\)
0.953952 0.299959i \(-0.0969731\pi\)
\(108\) 0 0
\(109\) 370.000 0.325134 0.162567 0.986698i \(-0.448023\pi\)
0.162567 + 0.986698i \(0.448023\pi\)
\(110\) 0 0
\(111\) 2480.00 2.12064
\(112\) 0 0
\(113\) 1490.00i 1.24042i 0.784436 + 0.620210i \(0.212953\pi\)
−0.784436 + 0.620210i \(0.787047\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1850.00i 1.46182i
\(118\) 0 0
\(119\) 480.000 0.369761
\(120\) 0 0
\(121\) 269.000 0.202104
\(122\) 0 0
\(123\) 3280.00i 2.40445i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1024.00i 0.715475i 0.933822 + 0.357737i \(0.116452\pi\)
−0.933822 + 0.357737i \(0.883548\pi\)
\(128\) 0 0
\(129\) −1216.00 −0.829944
\(130\) 0 0
\(131\) 1160.00 0.773662 0.386831 0.922151i \(-0.373570\pi\)
0.386831 + 0.922151i \(0.373570\pi\)
\(132\) 0 0
\(133\) 640.000i 0.417256i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 570.000i − 0.355463i −0.984079 0.177731i \(-0.943124\pi\)
0.984079 0.177731i \(-0.0568758\pi\)
\(138\) 0 0
\(139\) 1960.00 1.19601 0.598004 0.801493i \(-0.295961\pi\)
0.598004 + 0.801493i \(0.295961\pi\)
\(140\) 0 0
\(141\) −3328.00 −1.98772
\(142\) 0 0
\(143\) 2000.00i 1.16957i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 696.000i 0.390511i
\(148\) 0 0
\(149\) 2010.00 1.10514 0.552569 0.833467i \(-0.313648\pi\)
0.552569 + 0.833467i \(0.313648\pi\)
\(150\) 0 0
\(151\) −720.000 −0.388032 −0.194016 0.980998i \(-0.562151\pi\)
−0.194016 + 0.980998i \(0.562151\pi\)
\(152\) 0 0
\(153\) − 1110.00i − 0.586524i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1790.00i − 0.909921i −0.890512 0.454960i \(-0.849653\pi\)
0.890512 0.454960i \(-0.150347\pi\)
\(158\) 0 0
\(159\) 3280.00 1.63598
\(160\) 0 0
\(161\) 768.000 0.375943
\(162\) 0 0
\(163\) − 1208.00i − 0.580478i −0.956954 0.290239i \(-0.906265\pi\)
0.956954 0.290239i \(-0.0937348\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 2896.00i − 1.34191i −0.741497 0.670956i \(-0.765884\pi\)
0.741497 0.670956i \(-0.234116\pi\)
\(168\) 0 0
\(169\) −303.000 −0.137915
\(170\) 0 0
\(171\) 1480.00 0.661862
\(172\) 0 0
\(173\) 750.000i 0.329604i 0.986327 + 0.164802i \(0.0526985\pi\)
−0.986327 + 0.164802i \(0.947302\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1600.00i 0.679454i
\(178\) 0 0
\(179\) −2280.00 −0.952040 −0.476020 0.879434i \(-0.657921\pi\)
−0.476020 + 0.879434i \(0.657921\pi\)
\(180\) 0 0
\(181\) −442.000 −0.181512 −0.0907558 0.995873i \(-0.528928\pi\)
−0.0907558 + 0.995873i \(0.528928\pi\)
\(182\) 0 0
\(183\) 240.000i 0.0969471i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1200.00i − 0.469266i
\(188\) 0 0
\(189\) −1280.00 −0.492626
\(190\) 0 0
\(191\) −1920.00 −0.727363 −0.363681 0.931523i \(-0.618480\pi\)
−0.363681 + 0.931523i \(0.618480\pi\)
\(192\) 0 0
\(193\) − 5070.00i − 1.89091i −0.325746 0.945457i \(-0.605615\pi\)
0.325746 0.945457i \(-0.394385\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1910.00i − 0.690771i −0.938461 0.345385i \(-0.887748\pi\)
0.938461 0.345385i \(-0.112252\pi\)
\(198\) 0 0
\(199\) −2960.00 −1.05442 −0.527208 0.849736i \(-0.676761\pi\)
−0.527208 + 0.849736i \(0.676761\pi\)
\(200\) 0 0
\(201\) 6208.00 2.17850
\(202\) 0 0
\(203\) − 544.000i − 0.188085i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 1776.00i − 0.596331i
\(208\) 0 0
\(209\) 1600.00 0.529542
\(210\) 0 0
\(211\) 40.0000 0.0130508 0.00652539 0.999979i \(-0.497923\pi\)
0.00652539 + 0.999979i \(0.497923\pi\)
\(212\) 0 0
\(213\) 3200.00i 1.02939i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 5120.00i − 1.60170i
\(218\) 0 0
\(219\) 5040.00 1.55512
\(220\) 0 0
\(221\) 1500.00 0.456565
\(222\) 0 0
\(223\) 4288.00i 1.28765i 0.765173 + 0.643824i \(0.222653\pi\)
−0.765173 + 0.643824i \(0.777347\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6456.00i 1.88766i 0.330425 + 0.943832i \(0.392808\pi\)
−0.330425 + 0.943832i \(0.607192\pi\)
\(228\) 0 0
\(229\) 1066.00 0.307613 0.153806 0.988101i \(-0.450847\pi\)
0.153806 + 0.988101i \(0.450847\pi\)
\(230\) 0 0
\(231\) −5120.00 −1.45832
\(232\) 0 0
\(233\) − 5910.00i − 1.66170i −0.556494 0.830852i \(-0.687854\pi\)
0.556494 0.830852i \(-0.312146\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8960.00i 2.45576i
\(238\) 0 0
\(239\) 3360.00 0.909374 0.454687 0.890651i \(-0.349751\pi\)
0.454687 + 0.890651i \(0.349751\pi\)
\(240\) 0 0
\(241\) 3970.00 1.06112 0.530561 0.847647i \(-0.321981\pi\)
0.530561 + 0.847647i \(0.321981\pi\)
\(242\) 0 0
\(243\) − 5032.00i − 1.32841i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2000.00i 0.515210i
\(248\) 0 0
\(249\) −4416.00 −1.12391
\(250\) 0 0
\(251\) 6840.00 1.72007 0.860034 0.510237i \(-0.170442\pi\)
0.860034 + 0.510237i \(0.170442\pi\)
\(252\) 0 0
\(253\) − 1920.00i − 0.477112i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 4610.00i − 1.11893i −0.828855 0.559463i \(-0.811007\pi\)
0.828855 0.559463i \(-0.188993\pi\)
\(258\) 0 0
\(259\) −4960.00 −1.18996
\(260\) 0 0
\(261\) −1258.00 −0.298346
\(262\) 0 0
\(263\) − 4848.00i − 1.13666i −0.822802 0.568328i \(-0.807591\pi\)
0.822802 0.568328i \(-0.192409\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2608.00i 0.597779i
\(268\) 0 0
\(269\) −5550.00 −1.25795 −0.628977 0.777424i \(-0.716526\pi\)
−0.628977 + 0.777424i \(0.716526\pi\)
\(270\) 0 0
\(271\) −480.000 −0.107594 −0.0537969 0.998552i \(-0.517132\pi\)
−0.0537969 + 0.998552i \(0.517132\pi\)
\(272\) 0 0
\(273\) − 6400.00i − 1.41885i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1030.00i − 0.223418i −0.993741 0.111709i \(-0.964368\pi\)
0.993741 0.111709i \(-0.0356324\pi\)
\(278\) 0 0
\(279\) −11840.0 −2.54065
\(280\) 0 0
\(281\) −3270.00 −0.694206 −0.347103 0.937827i \(-0.612835\pi\)
−0.347103 + 0.937827i \(0.612835\pi\)
\(282\) 0 0
\(283\) 2168.00i 0.455386i 0.973733 + 0.227693i \(0.0731183\pi\)
−0.973733 + 0.227693i \(0.926882\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 6560.00i − 1.34921i
\(288\) 0 0
\(289\) 4013.00 0.816813
\(290\) 0 0
\(291\) −880.000 −0.177273
\(292\) 0 0
\(293\) 2070.00i 0.412733i 0.978475 + 0.206366i \(0.0661639\pi\)
−0.978475 + 0.206366i \(0.933836\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3200.00i 0.625195i
\(298\) 0 0
\(299\) 2400.00 0.464199
\(300\) 0 0
\(301\) 2432.00 0.465708
\(302\) 0 0
\(303\) − 8784.00i − 1.66544i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1896.00i − 0.352477i −0.984347 0.176238i \(-0.943607\pi\)
0.984347 0.176238i \(-0.0563930\pi\)
\(308\) 0 0
\(309\) 384.000 0.0706958
\(310\) 0 0
\(311\) −1680.00 −0.306315 −0.153158 0.988202i \(-0.548944\pi\)
−0.153158 + 0.988202i \(0.548944\pi\)
\(312\) 0 0
\(313\) 970.000i 0.175168i 0.996157 + 0.0875841i \(0.0279146\pi\)
−0.996157 + 0.0875841i \(0.972085\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 7230.00i − 1.28100i −0.767958 0.640500i \(-0.778727\pi\)
0.767958 0.640500i \(-0.221273\pi\)
\(318\) 0 0
\(319\) −1360.00 −0.238700
\(320\) 0 0
\(321\) 5312.00 0.923635
\(322\) 0 0
\(323\) − 1200.00i − 0.206718i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2960.00i 0.500576i
\(328\) 0 0
\(329\) 6656.00 1.11537
\(330\) 0 0
\(331\) −5800.00 −0.963132 −0.481566 0.876410i \(-0.659932\pi\)
−0.481566 + 0.876410i \(0.659932\pi\)
\(332\) 0 0
\(333\) 11470.0i 1.88754i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1870.00i 0.302271i 0.988513 + 0.151136i \(0.0482930\pi\)
−0.988513 + 0.151136i \(0.951707\pi\)
\(338\) 0 0
\(339\) −11920.0 −1.90975
\(340\) 0 0
\(341\) −12800.0 −2.03272
\(342\) 0 0
\(343\) − 6880.00i − 1.08305i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 376.000i − 0.0581693i −0.999577 0.0290846i \(-0.990741\pi\)
0.999577 0.0290846i \(-0.00925923\pi\)
\(348\) 0 0
\(349\) 7586.00 1.16352 0.581761 0.813360i \(-0.302364\pi\)
0.581761 + 0.813360i \(0.302364\pi\)
\(350\) 0 0
\(351\) −4000.00 −0.608274
\(352\) 0 0
\(353\) 2530.00i 0.381468i 0.981642 + 0.190734i \(0.0610868\pi\)
−0.981642 + 0.190734i \(0.938913\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3840.00i 0.569284i
\(358\) 0 0
\(359\) −9680.00 −1.42309 −0.711547 0.702638i \(-0.752005\pi\)
−0.711547 + 0.702638i \(0.752005\pi\)
\(360\) 0 0
\(361\) −5259.00 −0.766730
\(362\) 0 0
\(363\) 2152.00i 0.311159i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 2784.00i − 0.395977i −0.980204 0.197989i \(-0.936559\pi\)
0.980204 0.197989i \(-0.0634409\pi\)
\(368\) 0 0
\(369\) −15170.0 −2.14016
\(370\) 0 0
\(371\) −6560.00 −0.918001
\(372\) 0 0
\(373\) 7910.00i 1.09803i 0.835813 + 0.549014i \(0.184997\pi\)
−0.835813 + 0.549014i \(0.815003\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1700.00i − 0.232240i
\(378\) 0 0
\(379\) −1720.00 −0.233115 −0.116557 0.993184i \(-0.537186\pi\)
−0.116557 + 0.993184i \(0.537186\pi\)
\(380\) 0 0
\(381\) −8192.00 −1.10155
\(382\) 0 0
\(383\) 11008.0i 1.46862i 0.678813 + 0.734311i \(0.262495\pi\)
−0.678813 + 0.734311i \(0.737505\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 5624.00i − 0.738718i
\(388\) 0 0
\(389\) 12330.0 1.60708 0.803542 0.595248i \(-0.202946\pi\)
0.803542 + 0.595248i \(0.202946\pi\)
\(390\) 0 0
\(391\) −1440.00 −0.186250
\(392\) 0 0
\(393\) 9280.00i 1.19113i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4370.00i 0.552453i 0.961093 + 0.276227i \(0.0890841\pi\)
−0.961093 + 0.276227i \(0.910916\pi\)
\(398\) 0 0
\(399\) −5120.00 −0.642408
\(400\) 0 0
\(401\) 3298.00 0.410709 0.205354 0.978688i \(-0.434165\pi\)
0.205354 + 0.978688i \(0.434165\pi\)
\(402\) 0 0
\(403\) − 16000.0i − 1.97771i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12400.0i 1.51018i
\(408\) 0 0
\(409\) 9110.00 1.10137 0.550685 0.834713i \(-0.314366\pi\)
0.550685 + 0.834713i \(0.314366\pi\)
\(410\) 0 0
\(411\) 4560.00 0.547271
\(412\) 0 0
\(413\) − 3200.00i − 0.381263i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 15680.0i 1.84137i
\(418\) 0 0
\(419\) −7880.00 −0.918767 −0.459383 0.888238i \(-0.651930\pi\)
−0.459383 + 0.888238i \(0.651930\pi\)
\(420\) 0 0
\(421\) −5290.00 −0.612396 −0.306198 0.951968i \(-0.599057\pi\)
−0.306198 + 0.951968i \(0.599057\pi\)
\(422\) 0 0
\(423\) − 15392.0i − 1.76923i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 480.000i − 0.0544001i
\(428\) 0 0
\(429\) −16000.0 −1.80067
\(430\) 0 0
\(431\) 13920.0 1.55569 0.777845 0.628456i \(-0.216313\pi\)
0.777845 + 0.628456i \(0.216313\pi\)
\(432\) 0 0
\(433\) 4930.00i 0.547161i 0.961849 + 0.273580i \(0.0882080\pi\)
−0.961849 + 0.273580i \(0.911792\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1920.00i − 0.210174i
\(438\) 0 0
\(439\) 10640.0 1.15676 0.578382 0.815766i \(-0.303684\pi\)
0.578382 + 0.815766i \(0.303684\pi\)
\(440\) 0 0
\(441\) −3219.00 −0.347587
\(442\) 0 0
\(443\) − 9288.00i − 0.996131i −0.867139 0.498066i \(-0.834044\pi\)
0.867139 0.498066i \(-0.165956\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 16080.0i 1.70147i
\(448\) 0 0
\(449\) −12850.0 −1.35062 −0.675311 0.737533i \(-0.735990\pi\)
−0.675311 + 0.737533i \(0.735990\pi\)
\(450\) 0 0
\(451\) −16400.0 −1.71230
\(452\) 0 0
\(453\) − 5760.00i − 0.597414i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 10490.0i − 1.07375i −0.843663 0.536873i \(-0.819606\pi\)
0.843663 0.536873i \(-0.180394\pi\)
\(458\) 0 0
\(459\) 2400.00 0.244058
\(460\) 0 0
\(461\) 11118.0 1.12325 0.561624 0.827393i \(-0.310177\pi\)
0.561624 + 0.827393i \(0.310177\pi\)
\(462\) 0 0
\(463\) 5792.00i 0.581376i 0.956818 + 0.290688i \(0.0938842\pi\)
−0.956818 + 0.290688i \(0.906116\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 2216.00i − 0.219581i −0.993955 0.109790i \(-0.964982\pi\)
0.993955 0.109790i \(-0.0350180\pi\)
\(468\) 0 0
\(469\) −12416.0 −1.22243
\(470\) 0 0
\(471\) 14320.0 1.40091
\(472\) 0 0
\(473\) − 6080.00i − 0.591033i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15170.0i 1.45616i
\(478\) 0 0
\(479\) 10560.0 1.00730 0.503652 0.863907i \(-0.331989\pi\)
0.503652 + 0.863907i \(0.331989\pi\)
\(480\) 0 0
\(481\) −15500.0 −1.46931
\(482\) 0 0
\(483\) 6144.00i 0.578803i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 13264.0i − 1.23419i −0.786890 0.617094i \(-0.788310\pi\)
0.786890 0.617094i \(-0.211690\pi\)
\(488\) 0 0
\(489\) 9664.00 0.893704
\(490\) 0 0
\(491\) −4840.00 −0.444860 −0.222430 0.974949i \(-0.571399\pi\)
−0.222430 + 0.974949i \(0.571399\pi\)
\(492\) 0 0
\(493\) 1020.00i 0.0931815i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6400.00i − 0.577624i
\(498\) 0 0
\(499\) −19560.0 −1.75476 −0.877381 0.479795i \(-0.840711\pi\)
−0.877381 + 0.479795i \(0.840711\pi\)
\(500\) 0 0
\(501\) 23168.0 2.06601
\(502\) 0 0
\(503\) − 528.000i − 0.0468039i −0.999726 0.0234019i \(-0.992550\pi\)
0.999726 0.0234019i \(-0.00744975\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2424.00i − 0.212335i
\(508\) 0 0
\(509\) 19554.0 1.70278 0.851391 0.524532i \(-0.175760\pi\)
0.851391 + 0.524532i \(0.175760\pi\)
\(510\) 0 0
\(511\) −10080.0 −0.872628
\(512\) 0 0
\(513\) 3200.00i 0.275406i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 16640.0i − 1.41552i
\(518\) 0 0
\(519\) −6000.00 −0.507458
\(520\) 0 0
\(521\) 15162.0 1.27497 0.637485 0.770463i \(-0.279975\pi\)
0.637485 + 0.770463i \(0.279975\pi\)
\(522\) 0 0
\(523\) 10968.0i 0.917012i 0.888691 + 0.458506i \(0.151615\pi\)
−0.888691 + 0.458506i \(0.848385\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9600.00i 0.793515i
\(528\) 0 0
\(529\) 9863.00 0.810635
\(530\) 0 0
\(531\) −7400.00 −0.604770
\(532\) 0 0
\(533\) − 20500.0i − 1.66595i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 18240.0i − 1.46576i
\(538\) 0 0
\(539\) −3480.00 −0.278097
\(540\) 0 0
\(541\) −6722.00 −0.534198 −0.267099 0.963669i \(-0.586065\pi\)
−0.267099 + 0.963669i \(0.586065\pi\)
\(542\) 0 0
\(543\) − 3536.00i − 0.279455i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 20424.0i − 1.59647i −0.602348 0.798233i \(-0.705768\pi\)
0.602348 0.798233i \(-0.294232\pi\)
\(548\) 0 0
\(549\) −1110.00 −0.0862908
\(550\) 0 0
\(551\) −1360.00 −0.105151
\(552\) 0 0
\(553\) − 17920.0i − 1.37800i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6610.00i 0.502827i 0.967880 + 0.251414i \(0.0808954\pi\)
−0.967880 + 0.251414i \(0.919105\pi\)
\(558\) 0 0
\(559\) 7600.00 0.575037
\(560\) 0 0
\(561\) 9600.00 0.722482
\(562\) 0 0
\(563\) − 2712.00i − 0.203015i −0.994835 0.101507i \(-0.967633\pi\)
0.994835 0.101507i \(-0.0323665\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5744.00i 0.425441i
\(568\) 0 0
\(569\) −3530.00 −0.260080 −0.130040 0.991509i \(-0.541511\pi\)
−0.130040 + 0.991509i \(0.541511\pi\)
\(570\) 0 0
\(571\) −13640.0 −0.999678 −0.499839 0.866118i \(-0.666608\pi\)
−0.499839 + 0.866118i \(0.666608\pi\)
\(572\) 0 0
\(573\) − 15360.0i − 1.11985i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 6270.00i 0.452380i 0.974083 + 0.226190i \(0.0726271\pi\)
−0.974083 + 0.226190i \(0.927373\pi\)
\(578\) 0 0
\(579\) 40560.0 2.91125
\(580\) 0 0
\(581\) 8832.00 0.630659
\(582\) 0 0
\(583\) 16400.0i 1.16504i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8616.00i 0.605827i 0.953018 + 0.302913i \(0.0979593\pi\)
−0.953018 + 0.302913i \(0.902041\pi\)
\(588\) 0 0
\(589\) −12800.0 −0.895441
\(590\) 0 0
\(591\) 15280.0 1.06351
\(592\) 0 0
\(593\) 5490.00i 0.380181i 0.981767 + 0.190090i \(0.0608781\pi\)
−0.981767 + 0.190090i \(0.939122\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 23680.0i − 1.62338i
\(598\) 0 0
\(599\) 15440.0 1.05319 0.526595 0.850116i \(-0.323468\pi\)
0.526595 + 0.850116i \(0.323468\pi\)
\(600\) 0 0
\(601\) 8890.00 0.603379 0.301689 0.953406i \(-0.402449\pi\)
0.301689 + 0.953406i \(0.402449\pi\)
\(602\) 0 0
\(603\) 28712.0i 1.93904i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 23744.0i − 1.58771i −0.608108 0.793854i \(-0.708071\pi\)
0.608108 0.793854i \(-0.291929\pi\)
\(608\) 0 0
\(609\) 4352.00 0.289576
\(610\) 0 0
\(611\) 20800.0 1.37721
\(612\) 0 0
\(613\) − 15210.0i − 1.00216i −0.865400 0.501082i \(-0.832936\pi\)
0.865400 0.501082i \(-0.167064\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12630.0i 0.824092i 0.911163 + 0.412046i \(0.135186\pi\)
−0.911163 + 0.412046i \(0.864814\pi\)
\(618\) 0 0
\(619\) −11160.0 −0.724650 −0.362325 0.932052i \(-0.618017\pi\)
−0.362325 + 0.932052i \(0.618017\pi\)
\(620\) 0 0
\(621\) 3840.00 0.248138
\(622\) 0 0
\(623\) − 5216.00i − 0.335433i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 12800.0i 0.815284i
\(628\) 0 0
\(629\) 9300.00 0.589531
\(630\) 0 0
\(631\) 13040.0 0.822685 0.411342 0.911481i \(-0.365060\pi\)
0.411342 + 0.911481i \(0.365060\pi\)
\(632\) 0 0
\(633\) 320.000i 0.0200930i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 4350.00i − 0.270570i
\(638\) 0 0
\(639\) −14800.0 −0.916242
\(640\) 0 0
\(641\) −16910.0 −1.04197 −0.520987 0.853565i \(-0.674436\pi\)
−0.520987 + 0.853565i \(0.674436\pi\)
\(642\) 0 0
\(643\) 4488.00i 0.275256i 0.990484 + 0.137628i \(0.0439478\pi\)
−0.990484 + 0.137628i \(0.956052\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 2064.00i − 0.125416i −0.998032 0.0627080i \(-0.980026\pi\)
0.998032 0.0627080i \(-0.0199737\pi\)
\(648\) 0 0
\(649\) −8000.00 −0.483864
\(650\) 0 0
\(651\) 40960.0 2.46597
\(652\) 0 0
\(653\) 4270.00i 0.255893i 0.991781 + 0.127946i \(0.0408386\pi\)
−0.991781 + 0.127946i \(0.959161\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 23310.0i 1.38419i
\(658\) 0 0
\(659\) 19800.0 1.17041 0.585204 0.810886i \(-0.301015\pi\)
0.585204 + 0.810886i \(0.301015\pi\)
\(660\) 0 0
\(661\) 27110.0 1.59524 0.797622 0.603157i \(-0.206091\pi\)
0.797622 + 0.603157i \(0.206091\pi\)
\(662\) 0 0
\(663\) 12000.0i 0.702928i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1632.00i 0.0947396i
\(668\) 0 0
\(669\) −34304.0 −1.98247
\(670\) 0 0
\(671\) −1200.00 −0.0690395
\(672\) 0 0
\(673\) 32210.0i 1.84488i 0.386140 + 0.922440i \(0.373808\pi\)
−0.386140 + 0.922440i \(0.626192\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 27190.0i − 1.54357i −0.635884 0.771785i \(-0.719364\pi\)
0.635884 0.771785i \(-0.280636\pi\)
\(678\) 0 0
\(679\) 1760.00 0.0994736
\(680\) 0 0
\(681\) −51648.0 −2.90625
\(682\) 0 0
\(683\) − 20328.0i − 1.13884i −0.822046 0.569421i \(-0.807167\pi\)
0.822046 0.569421i \(-0.192833\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 8528.00i 0.473600i
\(688\) 0 0
\(689\) −20500.0 −1.13351
\(690\) 0 0
\(691\) 12520.0 0.689267 0.344633 0.938737i \(-0.388003\pi\)
0.344633 + 0.938737i \(0.388003\pi\)
\(692\) 0 0
\(693\) − 23680.0i − 1.29802i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 12300.0i 0.668430i
\(698\) 0 0
\(699\) 47280.0 2.55836
\(700\) 0 0
\(701\) 11550.0 0.622307 0.311154 0.950360i \(-0.399285\pi\)
0.311154 + 0.950360i \(0.399285\pi\)
\(702\) 0 0
\(703\) 12400.0i 0.665256i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17568.0i 0.934530i
\(708\) 0 0
\(709\) 34154.0 1.80914 0.904570 0.426325i \(-0.140192\pi\)
0.904570 + 0.426325i \(0.140192\pi\)
\(710\) 0 0
\(711\) −41440.0 −2.18582
\(712\) 0 0
\(713\) 15360.0i 0.806783i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 26880.0i 1.40007i
\(718\) 0 0
\(719\) 22880.0 1.18676 0.593380 0.804923i \(-0.297793\pi\)
0.593380 + 0.804923i \(0.297793\pi\)
\(720\) 0 0
\(721\) −768.000 −0.0396696
\(722\) 0 0
\(723\) 31760.0i 1.63370i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 10416.0i − 0.531373i −0.964060 0.265686i \(-0.914401\pi\)
0.964060 0.265686i \(-0.0855986\pi\)
\(728\) 0 0
\(729\) 30563.0 1.55276
\(730\) 0 0
\(731\) −4560.00 −0.230722
\(732\) 0 0
\(733\) 14750.0i 0.743252i 0.928383 + 0.371626i \(0.121200\pi\)
−0.928383 + 0.371626i \(0.878800\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31040.0i 1.55139i
\(738\) 0 0
\(739\) 2360.00 0.117475 0.0587375 0.998273i \(-0.481293\pi\)
0.0587375 + 0.998273i \(0.481293\pi\)
\(740\) 0 0
\(741\) −16000.0 −0.793218
\(742\) 0 0
\(743\) 32208.0i 1.59031i 0.606409 + 0.795153i \(0.292609\pi\)
−0.606409 + 0.795153i \(0.707391\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 20424.0i − 1.00037i
\(748\) 0 0
\(749\) −10624.0 −0.518281
\(750\) 0 0
\(751\) −36640.0 −1.78031 −0.890155 0.455658i \(-0.849404\pi\)
−0.890155 + 0.455658i \(0.849404\pi\)
\(752\) 0 0
\(753\) 54720.0i 2.64822i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 12090.0i 0.580474i 0.956955 + 0.290237i \(0.0937341\pi\)
−0.956955 + 0.290237i \(0.906266\pi\)
\(758\) 0 0
\(759\) 15360.0 0.734562
\(760\) 0 0
\(761\) −3318.00 −0.158052 −0.0790259 0.996873i \(-0.525181\pi\)
−0.0790259 + 0.996873i \(0.525181\pi\)
\(762\) 0 0
\(763\) − 5920.00i − 0.280889i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 10000.0i − 0.470768i
\(768\) 0 0
\(769\) −11506.0 −0.539554 −0.269777 0.962923i \(-0.586950\pi\)
−0.269777 + 0.962923i \(0.586950\pi\)
\(770\) 0 0
\(771\) 36880.0 1.72270
\(772\) 0 0
\(773\) 22230.0i 1.03436i 0.855878 + 0.517178i \(0.173018\pi\)
−0.855878 + 0.517178i \(0.826982\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 39680.0i − 1.83206i
\(778\) 0 0
\(779\) −16400.0 −0.754289
\(780\) 0 0
\(781\) −16000.0 −0.733067
\(782\) 0 0
\(783\) − 2720.00i − 0.124144i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 21336.0i 0.966387i 0.875514 + 0.483193i \(0.160523\pi\)
−0.875514 + 0.483193i \(0.839477\pi\)
\(788\) 0 0
\(789\) 38784.0 1.75000
\(790\) 0 0
\(791\) 23840.0 1.07162
\(792\) 0 0
\(793\) − 1500.00i − 0.0671709i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7170.00i 0.318663i 0.987225 + 0.159332i \(0.0509339\pi\)
−0.987225 + 0.159332i \(0.949066\pi\)
\(798\) 0 0
\(799\) −12480.0 −0.552579
\(800\) 0 0
\(801\) −12062.0 −0.532072
\(802\) 0 0
\(803\) 25200.0i 1.10746i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 44400.0i − 1.93675i
\(808\) 0 0
\(809\) 23654.0 1.02797 0.513987 0.857798i \(-0.328168\pi\)
0.513987 + 0.857798i \(0.328168\pi\)
\(810\) 0 0
\(811\) −30440.0 −1.31799 −0.658997 0.752146i \(-0.729019\pi\)
−0.658997 + 0.752146i \(0.729019\pi\)
\(812\) 0 0
\(813\) − 3840.00i − 0.165652i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 6080.00i − 0.260358i
\(818\) 0 0
\(819\) 29600.0 1.26289
\(820\) 0 0
\(821\) −19930.0 −0.847213 −0.423606 0.905846i \(-0.639236\pi\)
−0.423606 + 0.905846i \(0.639236\pi\)
\(822\) 0 0
\(823\) − 9872.00i − 0.418124i −0.977902 0.209062i \(-0.932959\pi\)
0.977902 0.209062i \(-0.0670411\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5704.00i 0.239840i 0.992784 + 0.119920i \(0.0382638\pi\)
−0.992784 + 0.119920i \(0.961736\pi\)
\(828\) 0 0
\(829\) −27230.0 −1.14082 −0.570408 0.821361i \(-0.693215\pi\)
−0.570408 + 0.821361i \(0.693215\pi\)
\(830\) 0 0
\(831\) 8240.00 0.343974
\(832\) 0 0
\(833\) 2610.00i 0.108561i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 25600.0i − 1.05719i
\(838\) 0 0
\(839\) 18800.0 0.773597 0.386799 0.922164i \(-0.373581\pi\)
0.386799 + 0.922164i \(0.373581\pi\)
\(840\) 0 0
\(841\) −23233.0 −0.952602
\(842\) 0 0
\(843\) − 26160.0i − 1.06880i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 4304.00i − 0.174601i
\(848\) 0 0
\(849\) −17344.0 −0.701113
\(850\) 0 0
\(851\) 14880.0 0.599389
\(852\) 0 0
\(853\) − 12090.0i − 0.485292i −0.970115 0.242646i \(-0.921985\pi\)
0.970115 0.242646i \(-0.0780153\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 470.000i 0.0187338i 0.999956 + 0.00936692i \(0.00298163\pi\)
−0.999956 + 0.00936692i \(0.997018\pi\)
\(858\) 0 0
\(859\) −24440.0 −0.970759 −0.485380 0.874304i \(-0.661319\pi\)
−0.485380 + 0.874304i \(0.661319\pi\)
\(860\) 0 0
\(861\) 52480.0 2.07725
\(862\) 0 0
\(863\) − 22592.0i − 0.891125i −0.895251 0.445562i \(-0.853004\pi\)
0.895251 0.445562i \(-0.146996\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 32104.0i 1.25757i
\(868\) 0 0
\(869\) −44800.0 −1.74883
\(870\) 0 0
\(871\) −38800.0 −1.50940
\(872\) 0 0
\(873\) − 4070.00i − 0.157788i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17330.0i 0.667266i 0.942703 + 0.333633i \(0.108275\pi\)
−0.942703 + 0.333633i \(0.891725\pi\)
\(878\) 0 0
\(879\) −16560.0 −0.635444
\(880\) 0 0
\(881\) −31470.0 −1.20346 −0.601732 0.798698i \(-0.705522\pi\)
−0.601732 + 0.798698i \(0.705522\pi\)
\(882\) 0 0
\(883\) − 3352.00i − 0.127751i −0.997958 0.0638753i \(-0.979654\pi\)
0.997958 0.0638753i \(-0.0203460\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 48144.0i 1.82245i 0.411904 + 0.911227i \(0.364864\pi\)
−0.411904 + 0.911227i \(0.635136\pi\)
\(888\) 0 0
\(889\) 16384.0 0.618112
\(890\) 0 0
\(891\) 14360.0 0.539931
\(892\) 0 0
\(893\) − 16640.0i − 0.623557i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 19200.0i 0.714682i
\(898\) 0 0
\(899\) 10880.0 0.403636
\(900\) 0 0
\(901\) 12300.0 0.454797
\(902\) 0 0
\(903\) 19456.0i 0.717005i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 16216.0i − 0.593653i −0.954931 0.296827i \(-0.904072\pi\)
0.954931 0.296827i \(-0.0959283\pi\)
\(908\) 0 0
\(909\) 40626.0 1.48238
\(910\) 0 0
\(911\) 49440.0 1.79805 0.899023 0.437901i \(-0.144278\pi\)
0.899023 + 0.437901i \(0.144278\pi\)
\(912\) 0 0
\(913\) − 22080.0i − 0.800374i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 18560.0i − 0.668381i
\(918\) 0 0
\(919\) 16080.0 0.577182 0.288591 0.957452i \(-0.406813\pi\)
0.288591 + 0.957452i \(0.406813\pi\)
\(920\) 0 0
\(921\) 15168.0 0.542674
\(922\) 0 0
\(923\) − 20000.0i − 0.713226i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1776.00i 0.0629250i
\(928\) 0 0
\(929\) 11310.0 0.399428 0.199714 0.979854i \(-0.435999\pi\)
0.199714 + 0.979854i \(0.435999\pi\)
\(930\) 0 0
\(931\) −3480.00 −0.122505
\(932\) 0 0
\(933\) − 13440.0i − 0.471603i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 25130.0i − 0.876159i −0.898936 0.438080i \(-0.855659\pi\)
0.898936 0.438080i \(-0.144341\pi\)
\(938\) 0 0
\(939\) −7760.00 −0.269689
\(940\) 0 0
\(941\) −22322.0 −0.773301 −0.386651 0.922226i \(-0.626368\pi\)
−0.386651 + 0.922226i \(0.626368\pi\)
\(942\) 0 0
\(943\) 19680.0i 0.679607i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 36456.0i − 1.25096i −0.780239 0.625481i \(-0.784903\pi\)
0.780239 0.625481i \(-0.215097\pi\)
\(948\) 0 0
\(949\) −31500.0 −1.07749
\(950\) 0 0
\(951\) 57840.0 1.97223
\(952\) 0 0
\(953\) 40650.0i 1.38172i 0.722987 + 0.690862i \(0.242769\pi\)
−0.722987 + 0.690862i \(0.757231\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 10880.0i − 0.367503i
\(958\) 0 0
\(959\) −9120.00 −0.307091
\(960\) 0 0
\(961\) 72609.0 2.43728
\(962\) 0 0
\(963\) 24568.0i 0.822111i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 34704.0i − 1.15409i −0.816712 0.577045i \(-0.804206\pi\)
0.816712 0.577045i \(-0.195794\pi\)
\(968\) 0 0
\(969\) 9600.00 0.318263
\(970\) 0 0
\(971\) −30760.0 −1.01662 −0.508309 0.861175i \(-0.669729\pi\)
−0.508309 + 0.861175i \(0.669729\pi\)
\(972\) 0 0
\(973\) − 31360.0i − 1.03325i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 38110.0i 1.24795i 0.781444 + 0.623975i \(0.214483\pi\)
−0.781444 + 0.623975i \(0.785517\pi\)
\(978\) 0 0
\(979\) −13040.0 −0.425700
\(980\) 0 0
\(981\) −13690.0 −0.445554
\(982\) 0 0
\(983\) 19632.0i 0.636992i 0.947924 + 0.318496i \(0.103178\pi\)
−0.947924 + 0.318496i \(0.896822\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 53248.0i 1.71723i
\(988\) 0 0
\(989\) −7296.00 −0.234580
\(990\) 0 0
\(991\) −47680.0 −1.52836 −0.764180 0.645003i \(-0.776856\pi\)
−0.764180 + 0.645003i \(0.776856\pi\)
\(992\) 0 0
\(993\) − 46400.0i − 1.48284i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 39690.0i 1.26078i 0.776280 + 0.630389i \(0.217104\pi\)
−0.776280 + 0.630389i \(0.782896\pi\)
\(998\) 0 0
\(999\) −24800.0 −0.785423
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.c.a.449.2 2
4.3 odd 2 800.4.c.b.449.1 2
5.2 odd 4 32.4.a.c.1.1 yes 1
5.3 odd 4 800.4.a.a.1.1 1
5.4 even 2 inner 800.4.c.a.449.1 2
15.2 even 4 288.4.a.i.1.1 1
20.3 even 4 800.4.a.k.1.1 1
20.7 even 4 32.4.a.a.1.1 1
20.19 odd 2 800.4.c.b.449.2 2
35.27 even 4 1568.4.a.c.1.1 1
40.3 even 4 1600.4.a.e.1.1 1
40.13 odd 4 1600.4.a.bw.1.1 1
40.27 even 4 64.4.a.e.1.1 1
40.37 odd 4 64.4.a.a.1.1 1
60.47 odd 4 288.4.a.h.1.1 1
80.27 even 4 256.4.b.e.129.2 2
80.37 odd 4 256.4.b.c.129.1 2
80.67 even 4 256.4.b.e.129.1 2
80.77 odd 4 256.4.b.c.129.2 2
120.77 even 4 576.4.a.h.1.1 1
120.107 odd 4 576.4.a.g.1.1 1
140.27 odd 4 1568.4.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.4.a.a.1.1 1 20.7 even 4
32.4.a.c.1.1 yes 1 5.2 odd 4
64.4.a.a.1.1 1 40.37 odd 4
64.4.a.e.1.1 1 40.27 even 4
256.4.b.c.129.1 2 80.37 odd 4
256.4.b.c.129.2 2 80.77 odd 4
256.4.b.e.129.1 2 80.67 even 4
256.4.b.e.129.2 2 80.27 even 4
288.4.a.h.1.1 1 60.47 odd 4
288.4.a.i.1.1 1 15.2 even 4
576.4.a.g.1.1 1 120.107 odd 4
576.4.a.h.1.1 1 120.77 even 4
800.4.a.a.1.1 1 5.3 odd 4
800.4.a.k.1.1 1 20.3 even 4
800.4.c.a.449.1 2 5.4 even 2 inner
800.4.c.a.449.2 2 1.1 even 1 trivial
800.4.c.b.449.1 2 4.3 odd 2
800.4.c.b.449.2 2 20.19 odd 2
1568.4.a.c.1.1 1 35.27 even 4
1568.4.a.o.1.1 1 140.27 odd 4
1600.4.a.e.1.1 1 40.3 even 4
1600.4.a.bw.1.1 1 40.13 odd 4