Properties

Label 800.4.a.z.1.1
Level $800$
Weight $4$
Character 800.1
Self dual yes
Analytic conductor $47.202$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(1,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.37485.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + 12x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.03888\) of defining polynomial
Character \(\chi\) \(=\) 800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.57295 q^{3} +22.1403 q^{7} +46.4955 q^{9} +27.1347 q^{11} +70.3303 q^{13} +73.3212 q^{17} -110.033 q^{19} -189.808 q^{21} +107.870 q^{23} -167.134 q^{27} +68.6424 q^{29} -137.167 q^{31} -232.624 q^{33} -60.3121 q^{37} -602.938 q^{39} +95.1470 q^{41} -501.479 q^{43} +439.305 q^{47} +147.192 q^{49} -628.579 q^{51} +286.955 q^{53} +943.303 q^{57} -547.175 q^{59} +511.459 q^{61} +1029.42 q^{63} -301.547 q^{67} -924.762 q^{69} +82.8978 q^{71} +763.267 q^{73} +600.770 q^{77} +1011.45 q^{79} +177.450 q^{81} -704.554 q^{83} -588.468 q^{87} -743.212 q^{89} +1557.13 q^{91} +1175.93 q^{93} +1136.00 q^{97} +1261.64 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 76 q^{9} + 208 q^{13} - 136 q^{21} - 312 q^{29} + 96 q^{33} + 272 q^{37} - 96 q^{41} + 1212 q^{49} + 48 q^{53} + 3040 q^{57} + 1056 q^{61} - 1976 q^{69} + 1440 q^{73} + 4896 q^{77} - 500 q^{81} - 40 q^{89}+ \cdots + 4544 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.57295 −1.64986 −0.824932 0.565231i \(-0.808787\pi\)
−0.824932 + 0.565231i \(0.808787\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 22.1403 1.19546 0.597732 0.801696i \(-0.296069\pi\)
0.597732 + 0.801696i \(0.296069\pi\)
\(8\) 0 0
\(9\) 46.4955 1.72205
\(10\) 0 0
\(11\) 27.1347 0.743765 0.371882 0.928280i \(-0.378712\pi\)
0.371882 + 0.928280i \(0.378712\pi\)
\(12\) 0 0
\(13\) 70.3303 1.50047 0.750235 0.661171i \(-0.229940\pi\)
0.750235 + 0.661171i \(0.229940\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 73.3212 1.04606 0.523030 0.852315i \(-0.324802\pi\)
0.523030 + 0.852315i \(0.324802\pi\)
\(18\) 0 0
\(19\) −110.033 −1.32859 −0.664294 0.747471i \(-0.731268\pi\)
−0.664294 + 0.747471i \(0.731268\pi\)
\(20\) 0 0
\(21\) −189.808 −1.97235
\(22\) 0 0
\(23\) 107.870 0.977931 0.488965 0.872303i \(-0.337374\pi\)
0.488965 + 0.872303i \(0.337374\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −167.134 −1.19129
\(28\) 0 0
\(29\) 68.6424 0.439537 0.219769 0.975552i \(-0.429470\pi\)
0.219769 + 0.975552i \(0.429470\pi\)
\(30\) 0 0
\(31\) −137.167 −0.794708 −0.397354 0.917665i \(-0.630072\pi\)
−0.397354 + 0.917665i \(0.630072\pi\)
\(32\) 0 0
\(33\) −232.624 −1.22711
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −60.3121 −0.267980 −0.133990 0.990983i \(-0.542779\pi\)
−0.133990 + 0.990983i \(0.542779\pi\)
\(38\) 0 0
\(39\) −602.938 −2.47557
\(40\) 0 0
\(41\) 95.1470 0.362426 0.181213 0.983444i \(-0.441998\pi\)
0.181213 + 0.983444i \(0.441998\pi\)
\(42\) 0 0
\(43\) −501.479 −1.77848 −0.889241 0.457438i \(-0.848767\pi\)
−0.889241 + 0.457438i \(0.848767\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 439.305 1.36339 0.681694 0.731637i \(-0.261244\pi\)
0.681694 + 0.731637i \(0.261244\pi\)
\(48\) 0 0
\(49\) 147.192 0.429132
\(50\) 0 0
\(51\) −628.579 −1.72586
\(52\) 0 0
\(53\) 286.955 0.743703 0.371851 0.928292i \(-0.378723\pi\)
0.371851 + 0.928292i \(0.378723\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 943.303 2.19199
\(58\) 0 0
\(59\) −547.175 −1.20739 −0.603696 0.797215i \(-0.706306\pi\)
−0.603696 + 0.797215i \(0.706306\pi\)
\(60\) 0 0
\(61\) 511.459 1.07353 0.536767 0.843730i \(-0.319645\pi\)
0.536767 + 0.843730i \(0.319645\pi\)
\(62\) 0 0
\(63\) 1029.42 2.05865
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −301.547 −0.549848 −0.274924 0.961466i \(-0.588653\pi\)
−0.274924 + 0.961466i \(0.588653\pi\)
\(68\) 0 0
\(69\) −924.762 −1.61345
\(70\) 0 0
\(71\) 82.8978 0.138566 0.0692828 0.997597i \(-0.477929\pi\)
0.0692828 + 0.997597i \(0.477929\pi\)
\(72\) 0 0
\(73\) 763.267 1.22375 0.611874 0.790955i \(-0.290416\pi\)
0.611874 + 0.790955i \(0.290416\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 600.770 0.889144
\(78\) 0 0
\(79\) 1011.45 1.44047 0.720236 0.693729i \(-0.244034\pi\)
0.720236 + 0.693729i \(0.244034\pi\)
\(80\) 0 0
\(81\) 177.450 0.243416
\(82\) 0 0
\(83\) −704.554 −0.931745 −0.465872 0.884852i \(-0.654259\pi\)
−0.465872 + 0.884852i \(0.654259\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −588.468 −0.725177
\(88\) 0 0
\(89\) −743.212 −0.885172 −0.442586 0.896726i \(-0.645939\pi\)
−0.442586 + 0.896726i \(0.645939\pi\)
\(90\) 0 0
\(91\) 1557.13 1.79376
\(92\) 0 0
\(93\) 1175.93 1.31116
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1136.00 1.18911 0.594553 0.804056i \(-0.297329\pi\)
0.594553 + 0.804056i \(0.297329\pi\)
\(98\) 0 0
\(99\) 1261.64 1.28080
\(100\) 0 0
\(101\) 291.212 0.286898 0.143449 0.989658i \(-0.454181\pi\)
0.143449 + 0.989658i \(0.454181\pi\)
\(102\) 0 0
\(103\) −200.445 −0.191751 −0.0958757 0.995393i \(-0.530565\pi\)
−0.0958757 + 0.995393i \(0.530565\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 754.342 0.681542 0.340771 0.940146i \(-0.389312\pi\)
0.340771 + 0.940146i \(0.389312\pi\)
\(108\) 0 0
\(109\) 501.680 0.440846 0.220423 0.975404i \(-0.429256\pi\)
0.220423 + 0.975404i \(0.429256\pi\)
\(110\) 0 0
\(111\) 517.053 0.442130
\(112\) 0 0
\(113\) −497.248 −0.413958 −0.206979 0.978345i \(-0.566363\pi\)
−0.206979 + 0.978345i \(0.566363\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3270.04 2.58389
\(118\) 0 0
\(119\) 1623.35 1.25053
\(120\) 0 0
\(121\) −594.709 −0.446814
\(122\) 0 0
\(123\) −815.690 −0.597954
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 915.221 0.639470 0.319735 0.947507i \(-0.396406\pi\)
0.319735 + 0.947507i \(0.396406\pi\)
\(128\) 0 0
\(129\) 4299.15 2.93426
\(130\) 0 0
\(131\) 607.419 0.405118 0.202559 0.979270i \(-0.435074\pi\)
0.202559 + 0.979270i \(0.435074\pi\)
\(132\) 0 0
\(133\) −2436.15 −1.58828
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1418.98 −0.884900 −0.442450 0.896793i \(-0.645891\pi\)
−0.442450 + 0.896793i \(0.645891\pi\)
\(138\) 0 0
\(139\) 3035.85 1.85250 0.926250 0.376910i \(-0.123013\pi\)
0.926250 + 0.376910i \(0.123013\pi\)
\(140\) 0 0
\(141\) −3766.14 −2.24941
\(142\) 0 0
\(143\) 1908.39 1.11600
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1261.87 −0.708011
\(148\) 0 0
\(149\) −2649.26 −1.45662 −0.728308 0.685250i \(-0.759693\pi\)
−0.728308 + 0.685250i \(0.759693\pi\)
\(150\) 0 0
\(151\) 283.297 0.152678 0.0763390 0.997082i \(-0.475677\pi\)
0.0763390 + 0.997082i \(0.475677\pi\)
\(152\) 0 0
\(153\) 3409.10 1.80137
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1414.88 0.719235 0.359617 0.933100i \(-0.382907\pi\)
0.359617 + 0.933100i \(0.382907\pi\)
\(158\) 0 0
\(159\) −2460.05 −1.22701
\(160\) 0 0
\(161\) 2388.27 1.16908
\(162\) 0 0
\(163\) 1725.68 0.829239 0.414619 0.909995i \(-0.363915\pi\)
0.414619 + 0.909995i \(0.363915\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1979.92 −0.917428 −0.458714 0.888584i \(-0.651690\pi\)
−0.458714 + 0.888584i \(0.651690\pi\)
\(168\) 0 0
\(169\) 2749.35 1.25141
\(170\) 0 0
\(171\) −5116.01 −2.28790
\(172\) 0 0
\(173\) 1468.72 0.645460 0.322730 0.946491i \(-0.395399\pi\)
0.322730 + 0.946491i \(0.395399\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4690.90 1.99203
\(178\) 0 0
\(179\) −2978.59 −1.24375 −0.621873 0.783118i \(-0.713628\pi\)
−0.621873 + 0.783118i \(0.713628\pi\)
\(180\) 0 0
\(181\) −1682.07 −0.690760 −0.345380 0.938463i \(-0.612250\pi\)
−0.345380 + 0.938463i \(0.612250\pi\)
\(182\) 0 0
\(183\) −4384.71 −1.77119
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1989.55 0.778022
\(188\) 0 0
\(189\) −3700.38 −1.42414
\(190\) 0 0
\(191\) 274.334 0.103927 0.0519637 0.998649i \(-0.483452\pi\)
0.0519637 + 0.998649i \(0.483452\pi\)
\(192\) 0 0
\(193\) 2898.50 1.08103 0.540514 0.841335i \(-0.318230\pi\)
0.540514 + 0.841335i \(0.318230\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2330.37 0.842801 0.421400 0.906875i \(-0.361539\pi\)
0.421400 + 0.906875i \(0.361539\pi\)
\(198\) 0 0
\(199\) 1105.05 0.393644 0.196822 0.980439i \(-0.436938\pi\)
0.196822 + 0.980439i \(0.436938\pi\)
\(200\) 0 0
\(201\) 2585.15 0.907175
\(202\) 0 0
\(203\) 1519.76 0.525451
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 5015.45 1.68405
\(208\) 0 0
\(209\) −2985.70 −0.988158
\(210\) 0 0
\(211\) 4749.82 1.54972 0.774860 0.632133i \(-0.217820\pi\)
0.774860 + 0.632133i \(0.217820\pi\)
\(212\) 0 0
\(213\) −710.679 −0.228615
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −3036.92 −0.950044
\(218\) 0 0
\(219\) −6543.45 −2.01902
\(220\) 0 0
\(221\) 5156.70 1.56958
\(222\) 0 0
\(223\) −1889.71 −0.567462 −0.283731 0.958904i \(-0.591572\pi\)
−0.283731 + 0.958904i \(0.591572\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4154.11 −1.21462 −0.607309 0.794466i \(-0.707751\pi\)
−0.607309 + 0.794466i \(0.707751\pi\)
\(228\) 0 0
\(229\) −888.642 −0.256433 −0.128216 0.991746i \(-0.540925\pi\)
−0.128216 + 0.991746i \(0.540925\pi\)
\(230\) 0 0
\(231\) −5150.37 −1.46697
\(232\) 0 0
\(233\) −4919.38 −1.38317 −0.691586 0.722294i \(-0.743088\pi\)
−0.691586 + 0.722294i \(0.743088\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8671.13 −2.37658
\(238\) 0 0
\(239\) −2178.00 −0.589468 −0.294734 0.955579i \(-0.595231\pi\)
−0.294734 + 0.955579i \(0.595231\pi\)
\(240\) 0 0
\(241\) −3156.12 −0.843583 −0.421792 0.906693i \(-0.638599\pi\)
−0.421792 + 0.906693i \(0.638599\pi\)
\(242\) 0 0
\(243\) 2991.34 0.789688
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7738.62 −1.99351
\(248\) 0 0
\(249\) 6040.10 1.53725
\(250\) 0 0
\(251\) 2719.20 0.683801 0.341901 0.939736i \(-0.388929\pi\)
0.341901 + 0.939736i \(0.388929\pi\)
\(252\) 0 0
\(253\) 2927.01 0.727350
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 749.067 0.181811 0.0909056 0.995860i \(-0.471024\pi\)
0.0909056 + 0.995860i \(0.471024\pi\)
\(258\) 0 0
\(259\) −1335.33 −0.320360
\(260\) 0 0
\(261\) 3191.56 0.756907
\(262\) 0 0
\(263\) −2546.04 −0.596942 −0.298471 0.954419i \(-0.596477\pi\)
−0.298471 + 0.954419i \(0.596477\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6371.52 1.46041
\(268\) 0 0
\(269\) −7982.07 −1.80920 −0.904601 0.426260i \(-0.859831\pi\)
−0.904601 + 0.426260i \(0.859831\pi\)
\(270\) 0 0
\(271\) 1686.58 0.378054 0.189027 0.981972i \(-0.439467\pi\)
0.189027 + 0.981972i \(0.439467\pi\)
\(272\) 0 0
\(273\) −13349.2 −2.95946
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1423.07 0.308679 0.154339 0.988018i \(-0.450675\pi\)
0.154339 + 0.988018i \(0.450675\pi\)
\(278\) 0 0
\(279\) −6377.65 −1.36853
\(280\) 0 0
\(281\) 5418.67 1.15036 0.575180 0.818027i \(-0.304932\pi\)
0.575180 + 0.818027i \(0.304932\pi\)
\(282\) 0 0
\(283\) 8343.38 1.75252 0.876258 0.481842i \(-0.160032\pi\)
0.876258 + 0.481842i \(0.160032\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2106.58 0.433267
\(288\) 0 0
\(289\) 463.000 0.0942398
\(290\) 0 0
\(291\) −9738.87 −1.96186
\(292\) 0 0
\(293\) 2331.73 0.464919 0.232459 0.972606i \(-0.425323\pi\)
0.232459 + 0.972606i \(0.425323\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4535.12 −0.886041
\(298\) 0 0
\(299\) 7586.51 1.46736
\(300\) 0 0
\(301\) −11102.9 −2.12611
\(302\) 0 0
\(303\) −2496.55 −0.473343
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2100.00 0.390401 0.195200 0.980763i \(-0.437464\pi\)
0.195200 + 0.980763i \(0.437464\pi\)
\(308\) 0 0
\(309\) 1718.40 0.316364
\(310\) 0 0
\(311\) 8501.38 1.55006 0.775030 0.631924i \(-0.217735\pi\)
0.775030 + 0.631924i \(0.217735\pi\)
\(312\) 0 0
\(313\) 7257.73 1.31064 0.655321 0.755350i \(-0.272533\pi\)
0.655321 + 0.755350i \(0.272533\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9639.14 −1.70785 −0.853925 0.520397i \(-0.825784\pi\)
−0.853925 + 0.520397i \(0.825784\pi\)
\(318\) 0 0
\(319\) 1862.59 0.326912
\(320\) 0 0
\(321\) −6466.93 −1.12445
\(322\) 0 0
\(323\) −8067.72 −1.38978
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4300.88 −0.727337
\(328\) 0 0
\(329\) 9726.34 1.62988
\(330\) 0 0
\(331\) −360.466 −0.0598581 −0.0299290 0.999552i \(-0.509528\pi\)
−0.0299290 + 0.999552i \(0.509528\pi\)
\(332\) 0 0
\(333\) −2804.24 −0.461476
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2820.47 −0.455908 −0.227954 0.973672i \(-0.573204\pi\)
−0.227954 + 0.973672i \(0.573204\pi\)
\(338\) 0 0
\(339\) 4262.89 0.682974
\(340\) 0 0
\(341\) −3721.99 −0.591076
\(342\) 0 0
\(343\) −4335.24 −0.682451
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8617.62 1.33319 0.666597 0.745419i \(-0.267750\pi\)
0.666597 + 0.745419i \(0.267750\pi\)
\(348\) 0 0
\(349\) 735.067 0.112743 0.0563714 0.998410i \(-0.482047\pi\)
0.0563714 + 0.998410i \(0.482047\pi\)
\(350\) 0 0
\(351\) −11754.6 −1.78750
\(352\) 0 0
\(353\) 4535.35 0.683830 0.341915 0.939731i \(-0.388924\pi\)
0.341915 + 0.939731i \(0.388924\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −13916.9 −2.06320
\(358\) 0 0
\(359\) 5426.44 0.797762 0.398881 0.917003i \(-0.369399\pi\)
0.398881 + 0.917003i \(0.369399\pi\)
\(360\) 0 0
\(361\) 5248.15 0.765148
\(362\) 0 0
\(363\) 5098.41 0.737182
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −609.673 −0.0867157 −0.0433579 0.999060i \(-0.513806\pi\)
−0.0433579 + 0.999060i \(0.513806\pi\)
\(368\) 0 0
\(369\) 4423.90 0.624117
\(370\) 0 0
\(371\) 6353.26 0.889069
\(372\) 0 0
\(373\) −5089.42 −0.706489 −0.353244 0.935531i \(-0.614922\pi\)
−0.353244 + 0.935531i \(0.614922\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4827.64 0.659513
\(378\) 0 0
\(379\) −910.876 −0.123453 −0.0617263 0.998093i \(-0.519661\pi\)
−0.0617263 + 0.998093i \(0.519661\pi\)
\(380\) 0 0
\(381\) −7846.14 −1.05504
\(382\) 0 0
\(383\) 7686.98 1.02555 0.512776 0.858522i \(-0.328617\pi\)
0.512776 + 0.858522i \(0.328617\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −23316.5 −3.06264
\(388\) 0 0
\(389\) 4372.77 0.569943 0.284972 0.958536i \(-0.408016\pi\)
0.284972 + 0.958536i \(0.408016\pi\)
\(390\) 0 0
\(391\) 7909.14 1.02297
\(392\) 0 0
\(393\) −5207.38 −0.668390
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 12591.9 1.59186 0.795928 0.605391i \(-0.206983\pi\)
0.795928 + 0.605391i \(0.206983\pi\)
\(398\) 0 0
\(399\) 20885.0 2.62045
\(400\) 0 0
\(401\) 3614.48 0.450122 0.225061 0.974345i \(-0.427742\pi\)
0.225061 + 0.974345i \(0.427742\pi\)
\(402\) 0 0
\(403\) −9647.01 −1.19244
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1636.55 −0.199314
\(408\) 0 0
\(409\) 639.314 0.0772910 0.0386455 0.999253i \(-0.487696\pi\)
0.0386455 + 0.999253i \(0.487696\pi\)
\(410\) 0 0
\(411\) 12164.8 1.45997
\(412\) 0 0
\(413\) −12114.6 −1.44339
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −26026.2 −3.05637
\(418\) 0 0
\(419\) 11018.4 1.28469 0.642346 0.766415i \(-0.277961\pi\)
0.642346 + 0.766415i \(0.277961\pi\)
\(420\) 0 0
\(421\) 16513.1 1.91164 0.955820 0.293952i \(-0.0949707\pi\)
0.955820 + 0.293952i \(0.0949707\pi\)
\(422\) 0 0
\(423\) 20425.7 2.34783
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 11323.9 1.28337
\(428\) 0 0
\(429\) −16360.5 −1.84124
\(430\) 0 0
\(431\) 6106.80 0.682492 0.341246 0.939974i \(-0.389151\pi\)
0.341246 + 0.939974i \(0.389151\pi\)
\(432\) 0 0
\(433\) 1757.88 0.195100 0.0975500 0.995231i \(-0.468899\pi\)
0.0975500 + 0.995231i \(0.468899\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11869.2 −1.29927
\(438\) 0 0
\(439\) 1055.02 0.114700 0.0573500 0.998354i \(-0.481735\pi\)
0.0573500 + 0.998354i \(0.481735\pi\)
\(440\) 0 0
\(441\) 6843.78 0.738989
\(442\) 0 0
\(443\) −7775.51 −0.833918 −0.416959 0.908925i \(-0.636904\pi\)
−0.416959 + 0.908925i \(0.636904\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 22712.0 2.40322
\(448\) 0 0
\(449\) −11245.1 −1.18194 −0.590969 0.806694i \(-0.701255\pi\)
−0.590969 + 0.806694i \(0.701255\pi\)
\(450\) 0 0
\(451\) 2581.78 0.269560
\(452\) 0 0
\(453\) −2428.69 −0.251898
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13576.9 −1.38972 −0.694860 0.719145i \(-0.744534\pi\)
−0.694860 + 0.719145i \(0.744534\pi\)
\(458\) 0 0
\(459\) −12254.4 −1.24616
\(460\) 0 0
\(461\) −9605.08 −0.970397 −0.485199 0.874404i \(-0.661253\pi\)
−0.485199 + 0.874404i \(0.661253\pi\)
\(462\) 0 0
\(463\) −3226.71 −0.323883 −0.161942 0.986800i \(-0.551776\pi\)
−0.161942 + 0.986800i \(0.551776\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.6790 −0.00204906 −0.00102453 0.999999i \(-0.500326\pi\)
−0.00102453 + 0.999999i \(0.500326\pi\)
\(468\) 0 0
\(469\) −6676.34 −0.657323
\(470\) 0 0
\(471\) −12129.7 −1.18664
\(472\) 0 0
\(473\) −13607.5 −1.32277
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 13342.1 1.28070
\(478\) 0 0
\(479\) −12492.9 −1.19168 −0.595841 0.803102i \(-0.703181\pi\)
−0.595841 + 0.803102i \(0.703181\pi\)
\(480\) 0 0
\(481\) −4241.77 −0.402096
\(482\) 0 0
\(483\) −20474.5 −1.92882
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4944.60 0.460084 0.230042 0.973181i \(-0.426114\pi\)
0.230042 + 0.973181i \(0.426114\pi\)
\(488\) 0 0
\(489\) −14794.2 −1.36813
\(490\) 0 0
\(491\) −7712.73 −0.708902 −0.354451 0.935075i \(-0.615332\pi\)
−0.354451 + 0.935075i \(0.615332\pi\)
\(492\) 0 0
\(493\) 5032.95 0.459782
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1835.38 0.165650
\(498\) 0 0
\(499\) −1492.41 −0.133886 −0.0669432 0.997757i \(-0.521325\pi\)
−0.0669432 + 0.997757i \(0.521325\pi\)
\(500\) 0 0
\(501\) 16973.7 1.51363
\(502\) 0 0
\(503\) 3105.13 0.275250 0.137625 0.990484i \(-0.456053\pi\)
0.137625 + 0.990484i \(0.456053\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −23570.1 −2.06466
\(508\) 0 0
\(509\) 15363.5 1.33787 0.668933 0.743322i \(-0.266751\pi\)
0.668933 + 0.743322i \(0.266751\pi\)
\(510\) 0 0
\(511\) 16898.9 1.46295
\(512\) 0 0
\(513\) 18390.1 1.58274
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 11920.4 1.01404
\(518\) 0 0
\(519\) −12591.2 −1.06492
\(520\) 0 0
\(521\) −9924.25 −0.834529 −0.417264 0.908785i \(-0.637011\pi\)
−0.417264 + 0.908785i \(0.637011\pi\)
\(522\) 0 0
\(523\) 455.146 0.0380538 0.0190269 0.999819i \(-0.493943\pi\)
0.0190269 + 0.999819i \(0.493943\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10057.3 −0.831312
\(528\) 0 0
\(529\) −531.111 −0.0436517
\(530\) 0 0
\(531\) −25441.1 −2.07919
\(532\) 0 0
\(533\) 6691.72 0.543809
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 25535.3 2.05201
\(538\) 0 0
\(539\) 3994.02 0.319174
\(540\) 0 0
\(541\) 23383.9 1.85832 0.929160 0.369678i \(-0.120532\pi\)
0.929160 + 0.369678i \(0.120532\pi\)
\(542\) 0 0
\(543\) 14420.3 1.13966
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −6908.03 −0.539974 −0.269987 0.962864i \(-0.587019\pi\)
−0.269987 + 0.962864i \(0.587019\pi\)
\(548\) 0 0
\(549\) 23780.5 1.84868
\(550\) 0 0
\(551\) −7552.90 −0.583964
\(552\) 0 0
\(553\) 22393.8 1.72203
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3221.81 −0.245085 −0.122543 0.992463i \(-0.539105\pi\)
−0.122543 + 0.992463i \(0.539105\pi\)
\(558\) 0 0
\(559\) −35269.1 −2.66856
\(560\) 0 0
\(561\) −17056.3 −1.28363
\(562\) 0 0
\(563\) 14822.7 1.10959 0.554796 0.831986i \(-0.312796\pi\)
0.554796 + 0.831986i \(0.312796\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3928.79 0.290994
\(568\) 0 0
\(569\) 6434.10 0.474045 0.237022 0.971504i \(-0.423828\pi\)
0.237022 + 0.971504i \(0.423828\pi\)
\(570\) 0 0
\(571\) −17760.3 −1.30165 −0.650827 0.759226i \(-0.725578\pi\)
−0.650827 + 0.759226i \(0.725578\pi\)
\(572\) 0 0
\(573\) −2351.85 −0.171466
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1341.96 −0.0968227 −0.0484113 0.998827i \(-0.515416\pi\)
−0.0484113 + 0.998827i \(0.515416\pi\)
\(578\) 0 0
\(579\) −24848.7 −1.78355
\(580\) 0 0
\(581\) −15599.0 −1.11387
\(582\) 0 0
\(583\) 7786.42 0.553140
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12957.3 0.911082 0.455541 0.890215i \(-0.349446\pi\)
0.455541 + 0.890215i \(0.349446\pi\)
\(588\) 0 0
\(589\) 15092.8 1.05584
\(590\) 0 0
\(591\) −19978.1 −1.39051
\(592\) 0 0
\(593\) −5966.63 −0.413187 −0.206594 0.978427i \(-0.566238\pi\)
−0.206594 + 0.978427i \(0.566238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9473.56 −0.649459
\(598\) 0 0
\(599\) 10311.9 0.703396 0.351698 0.936114i \(-0.385604\pi\)
0.351698 + 0.936114i \(0.385604\pi\)
\(600\) 0 0
\(601\) 2594.60 0.176100 0.0880499 0.996116i \(-0.471936\pi\)
0.0880499 + 0.996116i \(0.471936\pi\)
\(602\) 0 0
\(603\) −14020.6 −0.946868
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −7796.08 −0.521306 −0.260653 0.965432i \(-0.583938\pi\)
−0.260653 + 0.965432i \(0.583938\pi\)
\(608\) 0 0
\(609\) −13028.9 −0.866922
\(610\) 0 0
\(611\) 30896.5 2.04572
\(612\) 0 0
\(613\) 10443.5 0.688106 0.344053 0.938950i \(-0.388200\pi\)
0.344053 + 0.938950i \(0.388200\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18306.1 1.19445 0.597226 0.802073i \(-0.296270\pi\)
0.597226 + 0.802073i \(0.296270\pi\)
\(618\) 0 0
\(619\) −149.857 −0.00973066 −0.00486533 0.999988i \(-0.501549\pi\)
−0.00486533 + 0.999988i \(0.501549\pi\)
\(620\) 0 0
\(621\) −18028.7 −1.16500
\(622\) 0 0
\(623\) −16454.9 −1.05819
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 25596.2 1.63033
\(628\) 0 0
\(629\) −4422.16 −0.280323
\(630\) 0 0
\(631\) −24466.5 −1.54358 −0.771789 0.635879i \(-0.780638\pi\)
−0.771789 + 0.635879i \(0.780638\pi\)
\(632\) 0 0
\(633\) −40719.9 −2.55683
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 10352.1 0.643901
\(638\) 0 0
\(639\) 3854.37 0.238618
\(640\) 0 0
\(641\) −20274.7 −1.24930 −0.624652 0.780903i \(-0.714759\pi\)
−0.624652 + 0.780903i \(0.714759\pi\)
\(642\) 0 0
\(643\) 9167.25 0.562241 0.281121 0.959672i \(-0.409294\pi\)
0.281121 + 0.959672i \(0.409294\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5459.82 −0.331758 −0.165879 0.986146i \(-0.553046\pi\)
−0.165879 + 0.986146i \(0.553046\pi\)
\(648\) 0 0
\(649\) −14847.4 −0.898016
\(650\) 0 0
\(651\) 26035.4 1.56744
\(652\) 0 0
\(653\) −16280.5 −0.975659 −0.487830 0.872939i \(-0.662211\pi\)
−0.487830 + 0.872939i \(0.662211\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 35488.4 2.10736
\(658\) 0 0
\(659\) −23975.9 −1.41725 −0.708625 0.705585i \(-0.750684\pi\)
−0.708625 + 0.705585i \(0.750684\pi\)
\(660\) 0 0
\(661\) −13876.4 −0.816532 −0.408266 0.912863i \(-0.633866\pi\)
−0.408266 + 0.912863i \(0.633866\pi\)
\(662\) 0 0
\(663\) −44208.2 −2.58960
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7404.44 0.429837
\(668\) 0 0
\(669\) 16200.3 0.936236
\(670\) 0 0
\(671\) 13878.3 0.798458
\(672\) 0 0
\(673\) 30526.1 1.74843 0.874216 0.485537i \(-0.161376\pi\)
0.874216 + 0.485537i \(0.161376\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6992.09 0.396939 0.198470 0.980107i \(-0.436403\pi\)
0.198470 + 0.980107i \(0.436403\pi\)
\(678\) 0 0
\(679\) 25151.4 1.42153
\(680\) 0 0
\(681\) 35613.0 2.00395
\(682\) 0 0
\(683\) 22479.2 1.25936 0.629681 0.776854i \(-0.283186\pi\)
0.629681 + 0.776854i \(0.283186\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7618.29 0.423080
\(688\) 0 0
\(689\) 20181.6 1.11590
\(690\) 0 0
\(691\) 5536.97 0.304828 0.152414 0.988317i \(-0.451295\pi\)
0.152414 + 0.988317i \(0.451295\pi\)
\(692\) 0 0
\(693\) 27933.1 1.53115
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6976.29 0.379119
\(698\) 0 0
\(699\) 42173.6 2.28205
\(700\) 0 0
\(701\) −16934.8 −0.912436 −0.456218 0.889868i \(-0.650796\pi\)
−0.456218 + 0.889868i \(0.650796\pi\)
\(702\) 0 0
\(703\) 6636.29 0.356035
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6447.52 0.342976
\(708\) 0 0
\(709\) −4112.16 −0.217821 −0.108911 0.994052i \(-0.534736\pi\)
−0.108911 + 0.994052i \(0.534736\pi\)
\(710\) 0 0
\(711\) 47027.9 2.48057
\(712\) 0 0
\(713\) −14796.2 −0.777169
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 18671.9 0.972543
\(718\) 0 0
\(719\) 34938.3 1.81221 0.906105 0.423053i \(-0.139042\pi\)
0.906105 + 0.423053i \(0.139042\pi\)
\(720\) 0 0
\(721\) −4437.90 −0.229232
\(722\) 0 0
\(723\) 27057.3 1.39180
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −34679.2 −1.76916 −0.884580 0.466389i \(-0.845555\pi\)
−0.884580 + 0.466389i \(0.845555\pi\)
\(728\) 0 0
\(729\) −30435.7 −1.54629
\(730\) 0 0
\(731\) −36769.0 −1.86040
\(732\) 0 0
\(733\) 30802.4 1.55213 0.776065 0.630652i \(-0.217213\pi\)
0.776065 + 0.630652i \(0.217213\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8182.38 −0.408958
\(738\) 0 0
\(739\) 16364.2 0.814570 0.407285 0.913301i \(-0.366476\pi\)
0.407285 + 0.913301i \(0.366476\pi\)
\(740\) 0 0
\(741\) 66342.8 3.28902
\(742\) 0 0
\(743\) 4464.06 0.220418 0.110209 0.993908i \(-0.464848\pi\)
0.110209 + 0.993908i \(0.464848\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −32758.5 −1.60451
\(748\) 0 0
\(749\) 16701.3 0.814758
\(750\) 0 0
\(751\) 17873.6 0.868463 0.434231 0.900801i \(-0.357020\pi\)
0.434231 + 0.900801i \(0.357020\pi\)
\(752\) 0 0
\(753\) −23311.5 −1.12818
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 14305.3 0.686834 0.343417 0.939183i \(-0.388416\pi\)
0.343417 + 0.939183i \(0.388416\pi\)
\(758\) 0 0
\(759\) −25093.1 −1.20003
\(760\) 0 0
\(761\) 21819.9 1.03938 0.519692 0.854354i \(-0.326047\pi\)
0.519692 + 0.854354i \(0.326047\pi\)
\(762\) 0 0
\(763\) 11107.3 0.527016
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −38483.0 −1.81166
\(768\) 0 0
\(769\) −29446.6 −1.38085 −0.690423 0.723406i \(-0.742575\pi\)
−0.690423 + 0.723406i \(0.742575\pi\)
\(770\) 0 0
\(771\) −6421.71 −0.299964
\(772\) 0 0
\(773\) 30232.4 1.40671 0.703354 0.710840i \(-0.251685\pi\)
0.703354 + 0.710840i \(0.251685\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 11447.7 0.528551
\(778\) 0 0
\(779\) −10469.3 −0.481515
\(780\) 0 0
\(781\) 2249.41 0.103060
\(782\) 0 0
\(783\) −11472.5 −0.523617
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 30871.6 1.39829 0.699145 0.714980i \(-0.253564\pi\)
0.699145 + 0.714980i \(0.253564\pi\)
\(788\) 0 0
\(789\) 21827.1 0.984873
\(790\) 0 0
\(791\) −11009.2 −0.494871
\(792\) 0 0
\(793\) 35971.1 1.61081
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4612.35 −0.204991 −0.102496 0.994733i \(-0.532683\pi\)
−0.102496 + 0.994733i \(0.532683\pi\)
\(798\) 0 0
\(799\) 32210.4 1.42618
\(800\) 0 0
\(801\) −34556.0 −1.52431
\(802\) 0 0
\(803\) 20711.0 0.910181
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 68429.8 2.98494
\(808\) 0 0
\(809\) −5893.44 −0.256122 −0.128061 0.991766i \(-0.540875\pi\)
−0.128061 + 0.991766i \(0.540875\pi\)
\(810\) 0 0
\(811\) 28114.3 1.21730 0.608648 0.793441i \(-0.291712\pi\)
0.608648 + 0.793441i \(0.291712\pi\)
\(812\) 0 0
\(813\) −14459.0 −0.623739
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 55178.9 2.36287
\(818\) 0 0
\(819\) 72399.6 3.08895
\(820\) 0 0
\(821\) 28087.6 1.19399 0.596994 0.802246i \(-0.296362\pi\)
0.596994 + 0.802246i \(0.296362\pi\)
\(822\) 0 0
\(823\) −43426.8 −1.83932 −0.919661 0.392712i \(-0.871537\pi\)
−0.919661 + 0.392712i \(0.871537\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9481.07 0.398657 0.199328 0.979933i \(-0.436124\pi\)
0.199328 + 0.979933i \(0.436124\pi\)
\(828\) 0 0
\(829\) −31634.3 −1.32534 −0.662668 0.748913i \(-0.730576\pi\)
−0.662668 + 0.748913i \(0.730576\pi\)
\(830\) 0 0
\(831\) −12199.9 −0.509278
\(832\) 0 0
\(833\) 10792.3 0.448898
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 22925.2 0.946729
\(838\) 0 0
\(839\) −24661.7 −1.01480 −0.507399 0.861711i \(-0.669393\pi\)
−0.507399 + 0.861711i \(0.669393\pi\)
\(840\) 0 0
\(841\) −19677.2 −0.806807
\(842\) 0 0
\(843\) −46454.0 −1.89794
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −13167.0 −0.534149
\(848\) 0 0
\(849\) −71527.3 −2.89142
\(850\) 0 0
\(851\) −6505.86 −0.262066
\(852\) 0 0
\(853\) −24125.3 −0.968386 −0.484193 0.874961i \(-0.660887\pi\)
−0.484193 + 0.874961i \(0.660887\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −23911.4 −0.953089 −0.476544 0.879150i \(-0.658111\pi\)
−0.476544 + 0.879150i \(0.658111\pi\)
\(858\) 0 0
\(859\) −22987.8 −0.913079 −0.456539 0.889703i \(-0.650911\pi\)
−0.456539 + 0.889703i \(0.650911\pi\)
\(860\) 0 0
\(861\) −18059.6 −0.714832
\(862\) 0 0
\(863\) −29565.5 −1.16619 −0.583095 0.812404i \(-0.698159\pi\)
−0.583095 + 0.812404i \(0.698159\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3969.28 −0.155483
\(868\) 0 0
\(869\) 27445.4 1.07137
\(870\) 0 0
\(871\) −21207.9 −0.825031
\(872\) 0 0
\(873\) 52818.8 2.04771
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −10218.0 −0.393427 −0.196714 0.980461i \(-0.563027\pi\)
−0.196714 + 0.980461i \(0.563027\pi\)
\(878\) 0 0
\(879\) −19989.8 −0.767053
\(880\) 0 0
\(881\) −3269.43 −0.125028 −0.0625141 0.998044i \(-0.519912\pi\)
−0.0625141 + 0.998044i \(0.519912\pi\)
\(882\) 0 0
\(883\) 13275.6 0.505956 0.252978 0.967472i \(-0.418590\pi\)
0.252978 + 0.967472i \(0.418590\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23809.7 0.901298 0.450649 0.892701i \(-0.351193\pi\)
0.450649 + 0.892701i \(0.351193\pi\)
\(888\) 0 0
\(889\) 20263.3 0.764463
\(890\) 0 0
\(891\) 4815.05 0.181044
\(892\) 0 0
\(893\) −48337.8 −1.81138
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −65038.8 −2.42094
\(898\) 0 0
\(899\) −9415.49 −0.349304
\(900\) 0 0
\(901\) 21039.9 0.777957
\(902\) 0 0
\(903\) 95184.4 3.50780
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −39404.3 −1.44255 −0.721277 0.692646i \(-0.756445\pi\)
−0.721277 + 0.692646i \(0.756445\pi\)
\(908\) 0 0
\(909\) 13540.0 0.494054
\(910\) 0 0
\(911\) −48325.4 −1.75751 −0.878755 0.477273i \(-0.841625\pi\)
−0.878755 + 0.477273i \(0.841625\pi\)
\(912\) 0 0
\(913\) −19117.8 −0.692999
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13448.4 0.484304
\(918\) 0 0
\(919\) 35431.2 1.27178 0.635891 0.771779i \(-0.280633\pi\)
0.635891 + 0.771779i \(0.280633\pi\)
\(920\) 0 0
\(921\) −18003.2 −0.644109
\(922\) 0 0
\(923\) 5830.23 0.207914
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −9319.76 −0.330206
\(928\) 0 0
\(929\) 40430.1 1.42785 0.713923 0.700225i \(-0.246917\pi\)
0.713923 + 0.700225i \(0.246917\pi\)
\(930\) 0 0
\(931\) −16196.0 −0.570141
\(932\) 0 0
\(933\) −72881.9 −2.55739
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3421.64 −0.119296 −0.0596479 0.998219i \(-0.518998\pi\)
−0.0596479 + 0.998219i \(0.518998\pi\)
\(938\) 0 0
\(939\) −62220.1 −2.16238
\(940\) 0 0
\(941\) −33075.2 −1.14582 −0.572912 0.819617i \(-0.694186\pi\)
−0.572912 + 0.819617i \(0.694186\pi\)
\(942\) 0 0
\(943\) 10263.5 0.354427
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21896.5 0.751364 0.375682 0.926749i \(-0.377409\pi\)
0.375682 + 0.926749i \(0.377409\pi\)
\(948\) 0 0
\(949\) 53680.8 1.83620
\(950\) 0 0
\(951\) 82635.9 2.81772
\(952\) 0 0
\(953\) −48287.2 −1.64132 −0.820660 0.571417i \(-0.806394\pi\)
−0.820660 + 0.571417i \(0.806394\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −15967.9 −0.539361
\(958\) 0 0
\(959\) −31416.5 −1.05787
\(960\) 0 0
\(961\) −10976.2 −0.368439
\(962\) 0 0
\(963\) 35073.5 1.17365
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 13708.7 0.455886 0.227943 0.973674i \(-0.426800\pi\)
0.227943 + 0.973674i \(0.426800\pi\)
\(968\) 0 0
\(969\) 69164.1 2.29295
\(970\) 0 0
\(971\) 24503.4 0.809836 0.404918 0.914353i \(-0.367300\pi\)
0.404918 + 0.914353i \(0.367300\pi\)
\(972\) 0 0
\(973\) 67214.6 2.21460
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −27660.1 −0.905758 −0.452879 0.891572i \(-0.649603\pi\)
−0.452879 + 0.891572i \(0.649603\pi\)
\(978\) 0 0
\(979\) −20166.8 −0.658360
\(980\) 0 0
\(981\) 23325.9 0.759161
\(982\) 0 0
\(983\) −56556.7 −1.83507 −0.917537 0.397651i \(-0.869825\pi\)
−0.917537 + 0.397651i \(0.869825\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −83383.4 −2.68908
\(988\) 0 0
\(989\) −54094.4 −1.73923
\(990\) 0 0
\(991\) −47154.6 −1.51152 −0.755760 0.654848i \(-0.772732\pi\)
−0.755760 + 0.654848i \(0.772732\pi\)
\(992\) 0 0
\(993\) 3090.26 0.0987578
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −13606.6 −0.432223 −0.216111 0.976369i \(-0.569337\pi\)
−0.216111 + 0.976369i \(0.569337\pi\)
\(998\) 0 0
\(999\) 10080.2 0.319242
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.a.z.1.1 4
4.3 odd 2 inner 800.4.a.z.1.4 4
5.2 odd 4 160.4.c.d.129.8 yes 8
5.3 odd 4 160.4.c.d.129.1 8
5.4 even 2 800.4.a.y.1.4 4
8.3 odd 2 1600.4.a.cu.1.1 4
8.5 even 2 1600.4.a.cu.1.4 4
15.2 even 4 1440.4.f.k.289.6 8
15.8 even 4 1440.4.f.k.289.7 8
20.3 even 4 160.4.c.d.129.7 yes 8
20.7 even 4 160.4.c.d.129.2 yes 8
20.19 odd 2 800.4.a.y.1.1 4
40.3 even 4 320.4.c.j.129.2 8
40.13 odd 4 320.4.c.j.129.8 8
40.19 odd 2 1600.4.a.cv.1.4 4
40.27 even 4 320.4.c.j.129.7 8
40.29 even 2 1600.4.a.cv.1.1 4
40.37 odd 4 320.4.c.j.129.1 8
60.23 odd 4 1440.4.f.k.289.8 8
60.47 odd 4 1440.4.f.k.289.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.c.d.129.1 8 5.3 odd 4
160.4.c.d.129.2 yes 8 20.7 even 4
160.4.c.d.129.7 yes 8 20.3 even 4
160.4.c.d.129.8 yes 8 5.2 odd 4
320.4.c.j.129.1 8 40.37 odd 4
320.4.c.j.129.2 8 40.3 even 4
320.4.c.j.129.7 8 40.27 even 4
320.4.c.j.129.8 8 40.13 odd 4
800.4.a.y.1.1 4 20.19 odd 2
800.4.a.y.1.4 4 5.4 even 2
800.4.a.z.1.1 4 1.1 even 1 trivial
800.4.a.z.1.4 4 4.3 odd 2 inner
1440.4.f.k.289.5 8 60.47 odd 4
1440.4.f.k.289.6 8 15.2 even 4
1440.4.f.k.289.7 8 15.8 even 4
1440.4.f.k.289.8 8 60.23 odd 4
1600.4.a.cu.1.1 4 8.3 odd 2
1600.4.a.cu.1.4 4 8.5 even 2
1600.4.a.cv.1.1 4 40.29 even 2
1600.4.a.cv.1.4 4 40.19 odd 2