Properties

Label 800.4.a.x.1.3
Level $800$
Weight $4$
Character 800.1
Self dual yes
Analytic conductor $47.202$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(1,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.5685.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 11x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.59535\) of defining polynomial
Character \(\chi\) \(=\) 800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.19070 q^{3} -21.7061 q^{7} +40.0875 q^{9} +37.8968 q^{11} -52.7369 q^{13} +99.9636 q^{17} +116.747 q^{19} -177.788 q^{21} -37.7320 q^{23} +107.196 q^{27} +218.664 q^{29} -67.3808 q^{31} +310.401 q^{33} +362.591 q^{37} -431.952 q^{39} -291.803 q^{41} -183.160 q^{43} +443.479 q^{47} +128.155 q^{49} +818.772 q^{51} +416.349 q^{53} +956.240 q^{57} +828.632 q^{59} +442.983 q^{61} -870.143 q^{63} -570.007 q^{67} -309.051 q^{69} +341.295 q^{71} -506.312 q^{73} -822.591 q^{77} +426.757 q^{79} -204.356 q^{81} +982.438 q^{83} +1791.01 q^{87} +926.879 q^{89} +1144.71 q^{91} -551.895 q^{93} -1889.63 q^{97} +1519.19 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 5 q^{3} - 2 q^{7} + 18 q^{9} + 31 q^{11} - 8 q^{13} + 89 q^{17} + 87 q^{19} - 70 q^{21} - 122 q^{23} + 143 q^{27} + 84 q^{29} + 294 q^{31} + 209 q^{33} + 94 q^{37} - 32 q^{39} - 345 q^{41} - 412 q^{43}+ \cdots + 1954 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.19070 1.57630 0.788150 0.615483i \(-0.211039\pi\)
0.788150 + 0.615483i \(0.211039\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −21.7061 −1.17202 −0.586010 0.810304i \(-0.699302\pi\)
−0.586010 + 0.810304i \(0.699302\pi\)
\(8\) 0 0
\(9\) 40.0875 1.48472
\(10\) 0 0
\(11\) 37.8968 1.03876 0.519378 0.854545i \(-0.326164\pi\)
0.519378 + 0.854545i \(0.326164\pi\)
\(12\) 0 0
\(13\) −52.7369 −1.12512 −0.562561 0.826756i \(-0.690184\pi\)
−0.562561 + 0.826756i \(0.690184\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 99.9636 1.42616 0.713081 0.701082i \(-0.247299\pi\)
0.713081 + 0.701082i \(0.247299\pi\)
\(18\) 0 0
\(19\) 116.747 1.40966 0.704832 0.709374i \(-0.251022\pi\)
0.704832 + 0.709374i \(0.251022\pi\)
\(20\) 0 0
\(21\) −177.788 −1.84745
\(22\) 0 0
\(23\) −37.7320 −0.342072 −0.171036 0.985265i \(-0.554711\pi\)
−0.171036 + 0.985265i \(0.554711\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 107.196 0.764067
\(28\) 0 0
\(29\) 218.664 1.40017 0.700085 0.714060i \(-0.253146\pi\)
0.700085 + 0.714060i \(0.253146\pi\)
\(30\) 0 0
\(31\) −67.3808 −0.390385 −0.195193 0.980765i \(-0.562533\pi\)
−0.195193 + 0.980765i \(0.562533\pi\)
\(32\) 0 0
\(33\) 310.401 1.63739
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 362.591 1.61107 0.805536 0.592547i \(-0.201877\pi\)
0.805536 + 0.592547i \(0.201877\pi\)
\(38\) 0 0
\(39\) −431.952 −1.77353
\(40\) 0 0
\(41\) −291.803 −1.11151 −0.555757 0.831345i \(-0.687571\pi\)
−0.555757 + 0.831345i \(0.687571\pi\)
\(42\) 0 0
\(43\) −183.160 −0.649571 −0.324786 0.945788i \(-0.605292\pi\)
−0.324786 + 0.945788i \(0.605292\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 443.479 1.37634 0.688170 0.725549i \(-0.258414\pi\)
0.688170 + 0.725549i \(0.258414\pi\)
\(48\) 0 0
\(49\) 128.155 0.373629
\(50\) 0 0
\(51\) 818.772 2.24806
\(52\) 0 0
\(53\) 416.349 1.07905 0.539527 0.841968i \(-0.318603\pi\)
0.539527 + 0.841968i \(0.318603\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 956.240 2.22205
\(58\) 0 0
\(59\) 828.632 1.82845 0.914226 0.405204i \(-0.132799\pi\)
0.914226 + 0.405204i \(0.132799\pi\)
\(60\) 0 0
\(61\) 442.983 0.929807 0.464903 0.885361i \(-0.346089\pi\)
0.464903 + 0.885361i \(0.346089\pi\)
\(62\) 0 0
\(63\) −870.143 −1.74012
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −570.007 −1.03936 −0.519682 0.854360i \(-0.673950\pi\)
−0.519682 + 0.854360i \(0.673950\pi\)
\(68\) 0 0
\(69\) −309.051 −0.539208
\(70\) 0 0
\(71\) 341.295 0.570483 0.285241 0.958456i \(-0.407926\pi\)
0.285241 + 0.958456i \(0.407926\pi\)
\(72\) 0 0
\(73\) −506.312 −0.811772 −0.405886 0.913924i \(-0.633037\pi\)
−0.405886 + 0.913924i \(0.633037\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −822.591 −1.21744
\(78\) 0 0
\(79\) 426.757 0.607771 0.303886 0.952708i \(-0.401716\pi\)
0.303886 + 0.952708i \(0.401716\pi\)
\(80\) 0 0
\(81\) −204.356 −0.280323
\(82\) 0 0
\(83\) 982.438 1.29924 0.649618 0.760261i \(-0.274929\pi\)
0.649618 + 0.760261i \(0.274929\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1791.01 2.20709
\(88\) 0 0
\(89\) 926.879 1.10392 0.551961 0.833870i \(-0.313880\pi\)
0.551961 + 0.833870i \(0.313880\pi\)
\(90\) 0 0
\(91\) 1144.71 1.31866
\(92\) 0 0
\(93\) −551.895 −0.615364
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1889.63 −1.97797 −0.988984 0.148024i \(-0.952709\pi\)
−0.988984 + 0.148024i \(0.952709\pi\)
\(98\) 0 0
\(99\) 1519.19 1.54226
\(100\) 0 0
\(101\) 96.2748 0.0948486 0.0474243 0.998875i \(-0.484899\pi\)
0.0474243 + 0.998875i \(0.484899\pi\)
\(102\) 0 0
\(103\) −1701.85 −1.62804 −0.814019 0.580838i \(-0.802725\pi\)
−0.814019 + 0.580838i \(0.802725\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 746.877 0.674798 0.337399 0.941362i \(-0.390453\pi\)
0.337399 + 0.941362i \(0.390453\pi\)
\(108\) 0 0
\(109\) −2150.44 −1.88968 −0.944840 0.327532i \(-0.893783\pi\)
−0.944840 + 0.327532i \(0.893783\pi\)
\(110\) 0 0
\(111\) 2969.88 2.53953
\(112\) 0 0
\(113\) −661.058 −0.550328 −0.275164 0.961397i \(-0.588732\pi\)
−0.275164 + 0.961397i \(0.588732\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2114.09 −1.67049
\(118\) 0 0
\(119\) −2169.82 −1.67149
\(120\) 0 0
\(121\) 105.167 0.0790134
\(122\) 0 0
\(123\) −2390.07 −1.75208
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 989.619 0.691452 0.345726 0.938335i \(-0.387633\pi\)
0.345726 + 0.938335i \(0.387633\pi\)
\(128\) 0 0
\(129\) −1500.20 −1.02392
\(130\) 0 0
\(131\) −6.42246 −0.00428346 −0.00214173 0.999998i \(-0.500682\pi\)
−0.00214173 + 0.999998i \(0.500682\pi\)
\(132\) 0 0
\(133\) −2534.12 −1.65215
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1033.75 0.644668 0.322334 0.946626i \(-0.395533\pi\)
0.322334 + 0.946626i \(0.395533\pi\)
\(138\) 0 0
\(139\) −56.8412 −0.0346850 −0.0173425 0.999850i \(-0.505521\pi\)
−0.0173425 + 0.999850i \(0.505521\pi\)
\(140\) 0 0
\(141\) 3632.40 2.16953
\(142\) 0 0
\(143\) −1998.56 −1.16873
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1049.68 0.588951
\(148\) 0 0
\(149\) 542.238 0.298133 0.149067 0.988827i \(-0.452373\pi\)
0.149067 + 0.988827i \(0.452373\pi\)
\(150\) 0 0
\(151\) −390.225 −0.210305 −0.105152 0.994456i \(-0.533533\pi\)
−0.105152 + 0.994456i \(0.533533\pi\)
\(152\) 0 0
\(153\) 4007.29 2.11745
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3674.37 −1.86782 −0.933908 0.357514i \(-0.883624\pi\)
−0.933908 + 0.357514i \(0.883624\pi\)
\(158\) 0 0
\(159\) 3410.19 1.70091
\(160\) 0 0
\(161\) 819.014 0.400915
\(162\) 0 0
\(163\) 1219.38 0.585944 0.292972 0.956121i \(-0.405356\pi\)
0.292972 + 0.956121i \(0.405356\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −610.547 −0.282907 −0.141454 0.989945i \(-0.545178\pi\)
−0.141454 + 0.989945i \(0.545178\pi\)
\(168\) 0 0
\(169\) 584.181 0.265899
\(170\) 0 0
\(171\) 4680.10 2.09296
\(172\) 0 0
\(173\) 50.4300 0.0221626 0.0110813 0.999939i \(-0.496473\pi\)
0.0110813 + 0.999939i \(0.496473\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6787.07 2.88219
\(178\) 0 0
\(179\) 373.064 0.155777 0.0778885 0.996962i \(-0.475182\pi\)
0.0778885 + 0.996962i \(0.475182\pi\)
\(180\) 0 0
\(181\) −232.883 −0.0956358 −0.0478179 0.998856i \(-0.515227\pi\)
−0.0478179 + 0.998856i \(0.515227\pi\)
\(182\) 0 0
\(183\) 3628.34 1.46565
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3788.30 1.48143
\(188\) 0 0
\(189\) −2326.80 −0.895501
\(190\) 0 0
\(191\) 2769.18 1.04906 0.524531 0.851391i \(-0.324241\pi\)
0.524531 + 0.851391i \(0.324241\pi\)
\(192\) 0 0
\(193\) 307.412 0.114653 0.0573264 0.998355i \(-0.481742\pi\)
0.0573264 + 0.998355i \(0.481742\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −317.010 −0.114650 −0.0573249 0.998356i \(-0.518257\pi\)
−0.0573249 + 0.998356i \(0.518257\pi\)
\(198\) 0 0
\(199\) 3917.06 1.39534 0.697671 0.716418i \(-0.254220\pi\)
0.697671 + 0.716418i \(0.254220\pi\)
\(200\) 0 0
\(201\) −4668.75 −1.63835
\(202\) 0 0
\(203\) −4746.35 −1.64103
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1512.58 −0.507882
\(208\) 0 0
\(209\) 4424.34 1.46430
\(210\) 0 0
\(211\) −2054.34 −0.670267 −0.335133 0.942171i \(-0.608781\pi\)
−0.335133 + 0.942171i \(0.608781\pi\)
\(212\) 0 0
\(213\) 2795.44 0.899252
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1462.57 0.457539
\(218\) 0 0
\(219\) −4147.05 −1.27960
\(220\) 0 0
\(221\) −5271.77 −1.60461
\(222\) 0 0
\(223\) 3087.92 0.927275 0.463638 0.886025i \(-0.346544\pi\)
0.463638 + 0.886025i \(0.346544\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3572.18 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(228\) 0 0
\(229\) 1799.26 0.519207 0.259603 0.965715i \(-0.416408\pi\)
0.259603 + 0.965715i \(0.416408\pi\)
\(230\) 0 0
\(231\) −6737.60 −1.91905
\(232\) 0 0
\(233\) −3900.64 −1.09674 −0.548368 0.836237i \(-0.684751\pi\)
−0.548368 + 0.836237i \(0.684751\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3495.44 0.958030
\(238\) 0 0
\(239\) 60.6726 0.0164209 0.00821043 0.999966i \(-0.497387\pi\)
0.00821043 + 0.999966i \(0.497387\pi\)
\(240\) 0 0
\(241\) −6160.51 −1.64661 −0.823305 0.567599i \(-0.807872\pi\)
−0.823305 + 0.567599i \(0.807872\pi\)
\(242\) 0 0
\(243\) −4568.10 −1.20594
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6156.88 −1.58604
\(248\) 0 0
\(249\) 8046.85 2.04798
\(250\) 0 0
\(251\) −880.907 −0.221523 −0.110762 0.993847i \(-0.535329\pi\)
−0.110762 + 0.993847i \(0.535329\pi\)
\(252\) 0 0
\(253\) −1429.92 −0.355329
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5845.84 1.41889 0.709443 0.704763i \(-0.248947\pi\)
0.709443 + 0.704763i \(0.248947\pi\)
\(258\) 0 0
\(259\) −7870.44 −1.88821
\(260\) 0 0
\(261\) 8765.70 2.07886
\(262\) 0 0
\(263\) 1994.10 0.467535 0.233767 0.972293i \(-0.424895\pi\)
0.233767 + 0.972293i \(0.424895\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7591.78 1.74011
\(268\) 0 0
\(269\) −426.120 −0.0965836 −0.0482918 0.998833i \(-0.515378\pi\)
−0.0482918 + 0.998833i \(0.515378\pi\)
\(270\) 0 0
\(271\) 7527.32 1.68728 0.843638 0.536912i \(-0.180409\pi\)
0.843638 + 0.536912i \(0.180409\pi\)
\(272\) 0 0
\(273\) 9375.99 2.07861
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2409.09 −0.522557 −0.261279 0.965263i \(-0.584144\pi\)
−0.261279 + 0.965263i \(0.584144\pi\)
\(278\) 0 0
\(279\) −2701.13 −0.579613
\(280\) 0 0
\(281\) −5487.57 −1.16499 −0.582493 0.812836i \(-0.697923\pi\)
−0.582493 + 0.812836i \(0.697923\pi\)
\(282\) 0 0
\(283\) 4999.15 1.05006 0.525032 0.851082i \(-0.324053\pi\)
0.525032 + 0.851082i \(0.324053\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6333.91 1.30271
\(288\) 0 0
\(289\) 5079.73 1.03394
\(290\) 0 0
\(291\) −15477.4 −3.11787
\(292\) 0 0
\(293\) −8992.96 −1.79309 −0.896543 0.442956i \(-0.853930\pi\)
−0.896543 + 0.442956i \(0.853930\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4062.37 0.793679
\(298\) 0 0
\(299\) 1989.87 0.384873
\(300\) 0 0
\(301\) 3975.68 0.761310
\(302\) 0 0
\(303\) 788.558 0.149510
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −5584.49 −1.03819 −0.519094 0.854717i \(-0.673730\pi\)
−0.519094 + 0.854717i \(0.673730\pi\)
\(308\) 0 0
\(309\) −13939.3 −2.56628
\(310\) 0 0
\(311\) −6218.04 −1.13374 −0.566869 0.823808i \(-0.691845\pi\)
−0.566869 + 0.823808i \(0.691845\pi\)
\(312\) 0 0
\(313\) −5046.00 −0.911236 −0.455618 0.890175i \(-0.650582\pi\)
−0.455618 + 0.890175i \(0.650582\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5370.16 −0.951476 −0.475738 0.879587i \(-0.657819\pi\)
−0.475738 + 0.879587i \(0.657819\pi\)
\(318\) 0 0
\(319\) 8286.67 1.45443
\(320\) 0 0
\(321\) 6117.44 1.06368
\(322\) 0 0
\(323\) 11670.5 2.01041
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −17613.6 −2.97870
\(328\) 0 0
\(329\) −9626.19 −1.61310
\(330\) 0 0
\(331\) 9.92458 0.00164805 0.000824024 1.00000i \(-0.499738\pi\)
0.000824024 1.00000i \(0.499738\pi\)
\(332\) 0 0
\(333\) 14535.4 2.39199
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1684.61 0.272304 0.136152 0.990688i \(-0.456526\pi\)
0.136152 + 0.990688i \(0.456526\pi\)
\(338\) 0 0
\(339\) −5414.52 −0.867482
\(340\) 0 0
\(341\) −2553.51 −0.405515
\(342\) 0 0
\(343\) 4663.45 0.734119
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8690.93 −1.34453 −0.672267 0.740308i \(-0.734680\pi\)
−0.672267 + 0.740308i \(0.734680\pi\)
\(348\) 0 0
\(349\) 6861.60 1.05242 0.526208 0.850356i \(-0.323613\pi\)
0.526208 + 0.850356i \(0.323613\pi\)
\(350\) 0 0
\(351\) −5653.16 −0.859668
\(352\) 0 0
\(353\) 5010.05 0.755405 0.377703 0.925927i \(-0.376714\pi\)
0.377703 + 0.925927i \(0.376714\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −17772.3 −2.63477
\(358\) 0 0
\(359\) −2871.64 −0.422171 −0.211085 0.977468i \(-0.567700\pi\)
−0.211085 + 0.977468i \(0.567700\pi\)
\(360\) 0 0
\(361\) 6770.88 0.987152
\(362\) 0 0
\(363\) 861.390 0.124549
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2096.96 0.298257 0.149129 0.988818i \(-0.452353\pi\)
0.149129 + 0.988818i \(0.452353\pi\)
\(368\) 0 0
\(369\) −11697.7 −1.65029
\(370\) 0 0
\(371\) −9037.30 −1.26467
\(372\) 0 0
\(373\) −9530.96 −1.32304 −0.661521 0.749927i \(-0.730089\pi\)
−0.661521 + 0.749927i \(0.730089\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11531.7 −1.57536
\(378\) 0 0
\(379\) 9603.41 1.30157 0.650784 0.759263i \(-0.274440\pi\)
0.650784 + 0.759263i \(0.274440\pi\)
\(380\) 0 0
\(381\) 8105.66 1.08994
\(382\) 0 0
\(383\) −7688.07 −1.02570 −0.512849 0.858479i \(-0.671410\pi\)
−0.512849 + 0.858479i \(0.671410\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −7342.41 −0.964433
\(388\) 0 0
\(389\) 3579.00 0.466485 0.233242 0.972419i \(-0.425066\pi\)
0.233242 + 0.972419i \(0.425066\pi\)
\(390\) 0 0
\(391\) −3771.83 −0.487850
\(392\) 0 0
\(393\) −52.6044 −0.00675202
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1262.66 −0.159624 −0.0798122 0.996810i \(-0.525432\pi\)
−0.0798122 + 0.996810i \(0.525432\pi\)
\(398\) 0 0
\(399\) −20756.2 −2.60429
\(400\) 0 0
\(401\) 1738.14 0.216455 0.108228 0.994126i \(-0.465482\pi\)
0.108228 + 0.994126i \(0.465482\pi\)
\(402\) 0 0
\(403\) 3553.45 0.439231
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13741.1 1.67351
\(408\) 0 0
\(409\) 2168.41 0.262154 0.131077 0.991372i \(-0.458156\pi\)
0.131077 + 0.991372i \(0.458156\pi\)
\(410\) 0 0
\(411\) 8467.16 1.01619
\(412\) 0 0
\(413\) −17986.4 −2.14298
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −465.569 −0.0546739
\(418\) 0 0
\(419\) −7505.84 −0.875141 −0.437571 0.899184i \(-0.644161\pi\)
−0.437571 + 0.899184i \(0.644161\pi\)
\(420\) 0 0
\(421\) −11097.3 −1.28468 −0.642341 0.766419i \(-0.722037\pi\)
−0.642341 + 0.766419i \(0.722037\pi\)
\(422\) 0 0
\(423\) 17777.9 2.04348
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −9615.44 −1.08975
\(428\) 0 0
\(429\) −16369.6 −1.84226
\(430\) 0 0
\(431\) −8935.68 −0.998646 −0.499323 0.866416i \(-0.666418\pi\)
−0.499323 + 0.866416i \(0.666418\pi\)
\(432\) 0 0
\(433\) −6453.45 −0.716243 −0.358122 0.933675i \(-0.616583\pi\)
−0.358122 + 0.933675i \(0.616583\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4405.10 −0.482207
\(438\) 0 0
\(439\) −5254.88 −0.571303 −0.285651 0.958334i \(-0.592210\pi\)
−0.285651 + 0.958334i \(0.592210\pi\)
\(440\) 0 0
\(441\) 5137.40 0.554735
\(442\) 0 0
\(443\) 242.163 0.0259718 0.0129859 0.999916i \(-0.495866\pi\)
0.0129859 + 0.999916i \(0.495866\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4441.30 0.469947
\(448\) 0 0
\(449\) 10154.7 1.06733 0.533666 0.845696i \(-0.320814\pi\)
0.533666 + 0.845696i \(0.320814\pi\)
\(450\) 0 0
\(451\) −11058.4 −1.15459
\(452\) 0 0
\(453\) −3196.21 −0.331504
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 967.379 0.0990198 0.0495099 0.998774i \(-0.484234\pi\)
0.0495099 + 0.998774i \(0.484234\pi\)
\(458\) 0 0
\(459\) 10715.7 1.08968
\(460\) 0 0
\(461\) 17022.8 1.71980 0.859902 0.510460i \(-0.170525\pi\)
0.859902 + 0.510460i \(0.170525\pi\)
\(462\) 0 0
\(463\) −13976.3 −1.40288 −0.701440 0.712728i \(-0.747459\pi\)
−0.701440 + 0.712728i \(0.747459\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4454.27 0.441369 0.220684 0.975345i \(-0.429171\pi\)
0.220684 + 0.975345i \(0.429171\pi\)
\(468\) 0 0
\(469\) 12372.6 1.21816
\(470\) 0 0
\(471\) −30095.7 −2.94424
\(472\) 0 0
\(473\) −6941.16 −0.674746
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 16690.4 1.60210
\(478\) 0 0
\(479\) −9617.44 −0.917394 −0.458697 0.888593i \(-0.651684\pi\)
−0.458697 + 0.888593i \(0.651684\pi\)
\(480\) 0 0
\(481\) −19121.9 −1.81265
\(482\) 0 0
\(483\) 6708.29 0.631963
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8346.22 −0.776599 −0.388299 0.921533i \(-0.626937\pi\)
−0.388299 + 0.921533i \(0.626937\pi\)
\(488\) 0 0
\(489\) 9987.53 0.923623
\(490\) 0 0
\(491\) 11867.9 1.09081 0.545406 0.838172i \(-0.316375\pi\)
0.545406 + 0.838172i \(0.316375\pi\)
\(492\) 0 0
\(493\) 21858.5 1.99687
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7408.19 −0.668617
\(498\) 0 0
\(499\) 17696.1 1.58755 0.793773 0.608214i \(-0.208114\pi\)
0.793773 + 0.608214i \(0.208114\pi\)
\(500\) 0 0
\(501\) −5000.80 −0.445947
\(502\) 0 0
\(503\) −9911.58 −0.878599 −0.439300 0.898341i \(-0.644773\pi\)
−0.439300 + 0.898341i \(0.644773\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4784.85 0.419137
\(508\) 0 0
\(509\) −3999.53 −0.348283 −0.174141 0.984721i \(-0.555715\pi\)
−0.174141 + 0.984721i \(0.555715\pi\)
\(510\) 0 0
\(511\) 10990.1 0.951413
\(512\) 0 0
\(513\) 12514.8 1.07708
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16806.4 1.42968
\(518\) 0 0
\(519\) 413.057 0.0349348
\(520\) 0 0
\(521\) −11301.1 −0.950306 −0.475153 0.879903i \(-0.657607\pi\)
−0.475153 + 0.879903i \(0.657607\pi\)
\(522\) 0 0
\(523\) 3377.88 0.282417 0.141209 0.989980i \(-0.454901\pi\)
0.141209 + 0.989980i \(0.454901\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6735.62 −0.556752
\(528\) 0 0
\(529\) −10743.3 −0.882987
\(530\) 0 0
\(531\) 33217.8 2.71474
\(532\) 0 0
\(533\) 15388.8 1.25059
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3055.65 0.245551
\(538\) 0 0
\(539\) 4856.65 0.388109
\(540\) 0 0
\(541\) −19694.0 −1.56508 −0.782542 0.622598i \(-0.786077\pi\)
−0.782542 + 0.622598i \(0.786077\pi\)
\(542\) 0 0
\(543\) −1907.48 −0.150751
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −11353.7 −0.887474 −0.443737 0.896157i \(-0.646348\pi\)
−0.443737 + 0.896157i \(0.646348\pi\)
\(548\) 0 0
\(549\) 17758.1 1.38050
\(550\) 0 0
\(551\) 25528.4 1.97377
\(552\) 0 0
\(553\) −9263.23 −0.712320
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13675.1 1.04027 0.520137 0.854083i \(-0.325881\pi\)
0.520137 + 0.854083i \(0.325881\pi\)
\(558\) 0 0
\(559\) 9659.27 0.730847
\(560\) 0 0
\(561\) 31028.8 2.33518
\(562\) 0 0
\(563\) 8690.01 0.650515 0.325258 0.945625i \(-0.394549\pi\)
0.325258 + 0.945625i \(0.394549\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4435.76 0.328544
\(568\) 0 0
\(569\) 10774.4 0.793827 0.396914 0.917856i \(-0.370081\pi\)
0.396914 + 0.917856i \(0.370081\pi\)
\(570\) 0 0
\(571\) −11320.2 −0.829657 −0.414828 0.909900i \(-0.636158\pi\)
−0.414828 + 0.909900i \(0.636158\pi\)
\(572\) 0 0
\(573\) 22681.5 1.65364
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 13525.2 0.975842 0.487921 0.872888i \(-0.337755\pi\)
0.487921 + 0.872888i \(0.337755\pi\)
\(578\) 0 0
\(579\) 2517.92 0.180727
\(580\) 0 0
\(581\) −21324.9 −1.52273
\(582\) 0 0
\(583\) 15778.3 1.12087
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3492.61 0.245580 0.122790 0.992433i \(-0.460816\pi\)
0.122790 + 0.992433i \(0.460816\pi\)
\(588\) 0 0
\(589\) −7866.50 −0.550312
\(590\) 0 0
\(591\) −2596.53 −0.180722
\(592\) 0 0
\(593\) 8431.49 0.583878 0.291939 0.956437i \(-0.405700\pi\)
0.291939 + 0.956437i \(0.405700\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 32083.5 2.19948
\(598\) 0 0
\(599\) −16783.6 −1.14484 −0.572420 0.819960i \(-0.693995\pi\)
−0.572420 + 0.819960i \(0.693995\pi\)
\(600\) 0 0
\(601\) −10152.2 −0.689044 −0.344522 0.938778i \(-0.611959\pi\)
−0.344522 + 0.938778i \(0.611959\pi\)
\(602\) 0 0
\(603\) −22850.1 −1.54317
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14130.3 0.944859 0.472430 0.881368i \(-0.343377\pi\)
0.472430 + 0.881368i \(0.343377\pi\)
\(608\) 0 0
\(609\) −38875.9 −2.58675
\(610\) 0 0
\(611\) −23387.7 −1.54855
\(612\) 0 0
\(613\) −5458.31 −0.359639 −0.179820 0.983700i \(-0.557551\pi\)
−0.179820 + 0.983700i \(0.557551\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4490.56 0.293004 0.146502 0.989210i \(-0.453199\pi\)
0.146502 + 0.989210i \(0.453199\pi\)
\(618\) 0 0
\(619\) 7386.94 0.479655 0.239827 0.970816i \(-0.422909\pi\)
0.239827 + 0.970816i \(0.422909\pi\)
\(620\) 0 0
\(621\) −4044.70 −0.261366
\(622\) 0 0
\(623\) −20118.9 −1.29382
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 36238.4 2.30817
\(628\) 0 0
\(629\) 36246.0 2.29765
\(630\) 0 0
\(631\) 26268.5 1.65726 0.828631 0.559796i \(-0.189120\pi\)
0.828631 + 0.559796i \(0.189120\pi\)
\(632\) 0 0
\(633\) −16826.4 −1.05654
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −6758.48 −0.420378
\(638\) 0 0
\(639\) 13681.7 0.847008
\(640\) 0 0
\(641\) 21533.8 1.32688 0.663442 0.748228i \(-0.269095\pi\)
0.663442 + 0.748228i \(0.269095\pi\)
\(642\) 0 0
\(643\) −8517.72 −0.522405 −0.261202 0.965284i \(-0.584119\pi\)
−0.261202 + 0.965284i \(0.584119\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17887.7 1.08692 0.543459 0.839435i \(-0.317114\pi\)
0.543459 + 0.839435i \(0.317114\pi\)
\(648\) 0 0
\(649\) 31402.5 1.89932
\(650\) 0 0
\(651\) 11979.5 0.721219
\(652\) 0 0
\(653\) −11322.5 −0.678537 −0.339269 0.940690i \(-0.610180\pi\)
−0.339269 + 0.940690i \(0.610180\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −20296.8 −1.20526
\(658\) 0 0
\(659\) −23067.9 −1.36358 −0.681788 0.731550i \(-0.738797\pi\)
−0.681788 + 0.731550i \(0.738797\pi\)
\(660\) 0 0
\(661\) 16492.0 0.970445 0.485222 0.874391i \(-0.338739\pi\)
0.485222 + 0.874391i \(0.338739\pi\)
\(662\) 0 0
\(663\) −43179.5 −2.52934
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8250.63 −0.478959
\(668\) 0 0
\(669\) 25292.2 1.46166
\(670\) 0 0
\(671\) 16787.6 0.965842
\(672\) 0 0
\(673\) 6314.44 0.361670 0.180835 0.983513i \(-0.442120\pi\)
0.180835 + 0.983513i \(0.442120\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −12486.8 −0.708872 −0.354436 0.935080i \(-0.615327\pi\)
−0.354436 + 0.935080i \(0.615327\pi\)
\(678\) 0 0
\(679\) 41016.5 2.31822
\(680\) 0 0
\(681\) −29258.6 −1.64639
\(682\) 0 0
\(683\) −9593.65 −0.537468 −0.268734 0.963214i \(-0.586605\pi\)
−0.268734 + 0.963214i \(0.586605\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 14737.2 0.818425
\(688\) 0 0
\(689\) −21956.9 −1.21407
\(690\) 0 0
\(691\) 31333.7 1.72502 0.862510 0.506040i \(-0.168891\pi\)
0.862510 + 0.506040i \(0.168891\pi\)
\(692\) 0 0
\(693\) −32975.6 −1.80756
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −29169.7 −1.58520
\(698\) 0 0
\(699\) −31949.0 −1.72879
\(700\) 0 0
\(701\) 4337.52 0.233703 0.116851 0.993149i \(-0.462720\pi\)
0.116851 + 0.993149i \(0.462720\pi\)
\(702\) 0 0
\(703\) 42331.5 2.27107
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2089.75 −0.111164
\(708\) 0 0
\(709\) −26437.5 −1.40040 −0.700198 0.713948i \(-0.746905\pi\)
−0.700198 + 0.713948i \(0.746905\pi\)
\(710\) 0 0
\(711\) 17107.6 0.902371
\(712\) 0 0
\(713\) 2542.41 0.133540
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 496.951 0.0258842
\(718\) 0 0
\(719\) 26143.2 1.35602 0.678009 0.735053i \(-0.262843\pi\)
0.678009 + 0.735053i \(0.262843\pi\)
\(720\) 0 0
\(721\) 36940.5 1.90809
\(722\) 0 0
\(723\) −50458.8 −2.59555
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1355.22 0.0691366 0.0345683 0.999402i \(-0.488994\pi\)
0.0345683 + 0.999402i \(0.488994\pi\)
\(728\) 0 0
\(729\) −31898.3 −1.62060
\(730\) 0 0
\(731\) −18309.3 −0.926394
\(732\) 0 0
\(733\) −632.549 −0.0318741 −0.0159371 0.999873i \(-0.505073\pi\)
−0.0159371 + 0.999873i \(0.505073\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21601.4 −1.07965
\(738\) 0 0
\(739\) 10611.4 0.528209 0.264104 0.964494i \(-0.414924\pi\)
0.264104 + 0.964494i \(0.414924\pi\)
\(740\) 0 0
\(741\) −50429.1 −2.50008
\(742\) 0 0
\(743\) −5293.51 −0.261373 −0.130686 0.991424i \(-0.541718\pi\)
−0.130686 + 0.991424i \(0.541718\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 39383.5 1.92900
\(748\) 0 0
\(749\) −16211.8 −0.790876
\(750\) 0 0
\(751\) 19063.6 0.926287 0.463143 0.886283i \(-0.346721\pi\)
0.463143 + 0.886283i \(0.346721\pi\)
\(752\) 0 0
\(753\) −7215.24 −0.349187
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 12698.5 0.609687 0.304844 0.952402i \(-0.401396\pi\)
0.304844 + 0.952402i \(0.401396\pi\)
\(758\) 0 0
\(759\) −11712.0 −0.560106
\(760\) 0 0
\(761\) 19828.4 0.944517 0.472259 0.881460i \(-0.343439\pi\)
0.472259 + 0.881460i \(0.343439\pi\)
\(762\) 0 0
\(763\) 46677.7 2.21474
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −43699.5 −2.05723
\(768\) 0 0
\(769\) −2141.74 −0.100433 −0.0502166 0.998738i \(-0.515991\pi\)
−0.0502166 + 0.998738i \(0.515991\pi\)
\(770\) 0 0
\(771\) 47881.5 2.23659
\(772\) 0 0
\(773\) −9705.16 −0.451579 −0.225789 0.974176i \(-0.572496\pi\)
−0.225789 + 0.974176i \(0.572496\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −64464.4 −2.97638
\(778\) 0 0
\(779\) −34067.2 −1.56686
\(780\) 0 0
\(781\) 12934.0 0.592592
\(782\) 0 0
\(783\) 23439.8 1.06982
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −24334.7 −1.10221 −0.551104 0.834437i \(-0.685793\pi\)
−0.551104 + 0.834437i \(0.685793\pi\)
\(788\) 0 0
\(789\) 16333.1 0.736975
\(790\) 0 0
\(791\) 14349.0 0.644995
\(792\) 0 0
\(793\) −23361.6 −1.04615
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5913.01 0.262797 0.131399 0.991330i \(-0.458053\pi\)
0.131399 + 0.991330i \(0.458053\pi\)
\(798\) 0 0
\(799\) 44331.7 1.96288
\(800\) 0 0
\(801\) 37156.3 1.63902
\(802\) 0 0
\(803\) −19187.6 −0.843233
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3490.22 −0.152245
\(808\) 0 0
\(809\) −38547.6 −1.67523 −0.837614 0.546262i \(-0.816050\pi\)
−0.837614 + 0.546262i \(0.816050\pi\)
\(810\) 0 0
\(811\) −11741.9 −0.508400 −0.254200 0.967152i \(-0.581812\pi\)
−0.254200 + 0.967152i \(0.581812\pi\)
\(812\) 0 0
\(813\) 61654.0 2.65965
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −21383.3 −0.915677
\(818\) 0 0
\(819\) 45888.6 1.95785
\(820\) 0 0
\(821\) −8066.49 −0.342902 −0.171451 0.985193i \(-0.554845\pi\)
−0.171451 + 0.985193i \(0.554845\pi\)
\(822\) 0 0
\(823\) −34620.2 −1.46633 −0.733163 0.680053i \(-0.761957\pi\)
−0.733163 + 0.680053i \(0.761957\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37537.2 1.57835 0.789176 0.614167i \(-0.210508\pi\)
0.789176 + 0.614167i \(0.210508\pi\)
\(828\) 0 0
\(829\) −32392.5 −1.35710 −0.678551 0.734554i \(-0.737392\pi\)
−0.678551 + 0.734554i \(0.737392\pi\)
\(830\) 0 0
\(831\) −19732.1 −0.823707
\(832\) 0 0
\(833\) 12810.8 0.532855
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −7222.92 −0.298280
\(838\) 0 0
\(839\) 46962.7 1.93246 0.966229 0.257684i \(-0.0829594\pi\)
0.966229 + 0.257684i \(0.0829594\pi\)
\(840\) 0 0
\(841\) 23425.0 0.960475
\(842\) 0 0
\(843\) −44947.0 −1.83637
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2282.76 −0.0926052
\(848\) 0 0
\(849\) 40946.5 1.65522
\(850\) 0 0
\(851\) −13681.3 −0.551103
\(852\) 0 0
\(853\) 3879.81 0.155735 0.0778676 0.996964i \(-0.475189\pi\)
0.0778676 + 0.996964i \(0.475189\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 37194.7 1.48255 0.741276 0.671201i \(-0.234221\pi\)
0.741276 + 0.671201i \(0.234221\pi\)
\(858\) 0 0
\(859\) 7966.82 0.316443 0.158221 0.987404i \(-0.449424\pi\)
0.158221 + 0.987404i \(0.449424\pi\)
\(860\) 0 0
\(861\) 51879.2 2.05347
\(862\) 0 0
\(863\) 21821.7 0.860742 0.430371 0.902652i \(-0.358383\pi\)
0.430371 + 0.902652i \(0.358383\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 41606.5 1.62979
\(868\) 0 0
\(869\) 16172.7 0.631326
\(870\) 0 0
\(871\) 30060.4 1.16941
\(872\) 0 0
\(873\) −75750.5 −2.93673
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 9394.86 0.361735 0.180868 0.983507i \(-0.442109\pi\)
0.180868 + 0.983507i \(0.442109\pi\)
\(878\) 0 0
\(879\) −73658.6 −2.82644
\(880\) 0 0
\(881\) −27007.4 −1.03280 −0.516402 0.856346i \(-0.672729\pi\)
−0.516402 + 0.856346i \(0.672729\pi\)
\(882\) 0 0
\(883\) −1376.56 −0.0524633 −0.0262317 0.999656i \(-0.508351\pi\)
−0.0262317 + 0.999656i \(0.508351\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 49523.6 1.87468 0.937339 0.348420i \(-0.113282\pi\)
0.937339 + 0.348420i \(0.113282\pi\)
\(888\) 0 0
\(889\) −21480.8 −0.810395
\(890\) 0 0
\(891\) −7744.42 −0.291187
\(892\) 0 0
\(893\) 51774.8 1.94018
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 16298.4 0.606675
\(898\) 0 0
\(899\) −14733.8 −0.546605
\(900\) 0 0
\(901\) 41619.7 1.53891
\(902\) 0 0
\(903\) 32563.6 1.20005
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −27592.7 −1.01015 −0.505073 0.863077i \(-0.668534\pi\)
−0.505073 + 0.863077i \(0.668534\pi\)
\(908\) 0 0
\(909\) 3859.42 0.140824
\(910\) 0 0
\(911\) −34374.2 −1.25013 −0.625065 0.780572i \(-0.714928\pi\)
−0.625065 + 0.780572i \(0.714928\pi\)
\(912\) 0 0
\(913\) 37231.2 1.34959
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 139.407 0.00502030
\(918\) 0 0
\(919\) −49860.3 −1.78970 −0.894852 0.446362i \(-0.852719\pi\)
−0.894852 + 0.446362i \(0.852719\pi\)
\(920\) 0 0
\(921\) −45740.8 −1.63649
\(922\) 0 0
\(923\) −17998.9 −0.641863
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −68222.8 −2.41718
\(928\) 0 0
\(929\) −33348.6 −1.17775 −0.588876 0.808223i \(-0.700429\pi\)
−0.588876 + 0.808223i \(0.700429\pi\)
\(930\) 0 0
\(931\) 14961.7 0.526691
\(932\) 0 0
\(933\) −50930.0 −1.78711
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −20404.8 −0.711415 −0.355707 0.934597i \(-0.615760\pi\)
−0.355707 + 0.934597i \(0.615760\pi\)
\(938\) 0 0
\(939\) −41330.3 −1.43638
\(940\) 0 0
\(941\) −47495.4 −1.64538 −0.822692 0.568488i \(-0.807529\pi\)
−0.822692 + 0.568488i \(0.807529\pi\)
\(942\) 0 0
\(943\) 11010.3 0.380218
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38728.7 1.32895 0.664473 0.747312i \(-0.268656\pi\)
0.664473 + 0.747312i \(0.268656\pi\)
\(948\) 0 0
\(949\) 26701.3 0.913343
\(950\) 0 0
\(951\) −43985.3 −1.49981
\(952\) 0 0
\(953\) 14200.9 0.482699 0.241349 0.970438i \(-0.422410\pi\)
0.241349 + 0.970438i \(0.422410\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 67873.6 2.29262
\(958\) 0 0
\(959\) −22438.7 −0.755563
\(960\) 0 0
\(961\) −25250.8 −0.847599
\(962\) 0 0
\(963\) 29940.4 1.00189
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −38637.2 −1.28489 −0.642445 0.766332i \(-0.722080\pi\)
−0.642445 + 0.766332i \(0.722080\pi\)
\(968\) 0 0
\(969\) 95589.2 3.16901
\(970\) 0 0
\(971\) −18828.7 −0.622288 −0.311144 0.950363i \(-0.600712\pi\)
−0.311144 + 0.950363i \(0.600712\pi\)
\(972\) 0 0
\(973\) 1233.80 0.0406514
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 59016.1 1.93254 0.966271 0.257527i \(-0.0829075\pi\)
0.966271 + 0.257527i \(0.0829075\pi\)
\(978\) 0 0
\(979\) 35125.7 1.14670
\(980\) 0 0
\(981\) −86205.9 −2.80565
\(982\) 0 0
\(983\) −42329.5 −1.37345 −0.686724 0.726918i \(-0.740952\pi\)
−0.686724 + 0.726918i \(0.740952\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −78845.2 −2.54273
\(988\) 0 0
\(989\) 6910.97 0.222200
\(990\) 0 0
\(991\) −6895.28 −0.221025 −0.110513 0.993875i \(-0.535249\pi\)
−0.110513 + 0.993875i \(0.535249\pi\)
\(992\) 0 0
\(993\) 81.2892 0.00259782
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −34160.9 −1.08514 −0.542570 0.840010i \(-0.682549\pi\)
−0.542570 + 0.840010i \(0.682549\pi\)
\(998\) 0 0
\(999\) 38868.2 1.23097
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.a.x.1.3 yes 3
4.3 odd 2 800.4.a.u.1.1 3
5.2 odd 4 800.4.c.n.449.1 6
5.3 odd 4 800.4.c.n.449.6 6
5.4 even 2 800.4.a.v.1.1 yes 3
8.3 odd 2 1600.4.a.ct.1.3 3
8.5 even 2 1600.4.a.cq.1.1 3
20.3 even 4 800.4.c.m.449.1 6
20.7 even 4 800.4.c.m.449.6 6
20.19 odd 2 800.4.a.w.1.3 yes 3
40.19 odd 2 1600.4.a.cr.1.1 3
40.29 even 2 1600.4.a.cs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
800.4.a.u.1.1 3 4.3 odd 2
800.4.a.v.1.1 yes 3 5.4 even 2
800.4.a.w.1.3 yes 3 20.19 odd 2
800.4.a.x.1.3 yes 3 1.1 even 1 trivial
800.4.c.m.449.1 6 20.3 even 4
800.4.c.m.449.6 6 20.7 even 4
800.4.c.n.449.1 6 5.2 odd 4
800.4.c.n.449.6 6 5.3 odd 4
1600.4.a.cq.1.1 3 8.5 even 2
1600.4.a.cr.1.1 3 40.19 odd 2
1600.4.a.cs.1.3 3 40.29 even 2
1600.4.a.ct.1.3 3 8.3 odd 2