Properties

Label 800.4.a.q.1.2
Level $800$
Weight $4$
Character 800.1
Self dual yes
Analytic conductor $47.202$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(1,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.2015280046\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.21110 q^{3} +7.21110 q^{7} +25.0000 q^{9} -43.2666 q^{11} -34.0000 q^{13} -114.000 q^{17} +52.0000 q^{21} -209.122 q^{23} -14.4222 q^{27} -26.0000 q^{29} -100.955 q^{31} -312.000 q^{33} +150.000 q^{37} -245.177 q^{39} +342.000 q^{41} -454.299 q^{43} +584.099 q^{47} -291.000 q^{49} -822.066 q^{51} +262.000 q^{53} +490.355 q^{59} -262.000 q^{61} +180.278 q^{63} -497.566 q^{67} -1508.00 q^{69} +1052.82 q^{71} -682.000 q^{73} -312.000 q^{77} +201.911 q^{79} -779.000 q^{81} +151.433 q^{83} -187.489 q^{87} -630.000 q^{89} -245.177 q^{91} -728.000 q^{93} +966.000 q^{97} -1081.67 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 50 q^{9} - 68 q^{13} - 228 q^{17} + 104 q^{21} - 52 q^{29} - 624 q^{33} + 300 q^{37} + 684 q^{41} - 582 q^{49} + 524 q^{53} - 524 q^{61} - 3016 q^{69} - 1364 q^{73} - 624 q^{77} - 1558 q^{81} - 1260 q^{89}+ \cdots + 1932 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.21110 1.38778 0.693889 0.720082i \(-0.255896\pi\)
0.693889 + 0.720082i \(0.255896\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.21110 0.389363 0.194681 0.980867i \(-0.437633\pi\)
0.194681 + 0.980867i \(0.437633\pi\)
\(8\) 0 0
\(9\) 25.0000 0.925926
\(10\) 0 0
\(11\) −43.2666 −1.18594 −0.592972 0.805223i \(-0.702045\pi\)
−0.592972 + 0.805223i \(0.702045\pi\)
\(12\) 0 0
\(13\) −34.0000 −0.725377 −0.362689 0.931910i \(-0.618141\pi\)
−0.362689 + 0.931910i \(0.618141\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −114.000 −1.62642 −0.813208 0.581974i \(-0.802281\pi\)
−0.813208 + 0.581974i \(0.802281\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 52.0000 0.540349
\(22\) 0 0
\(23\) −209.122 −1.89587 −0.947934 0.318468i \(-0.896832\pi\)
−0.947934 + 0.318468i \(0.896832\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −14.4222 −0.102798
\(28\) 0 0
\(29\) −26.0000 −0.166485 −0.0832427 0.996529i \(-0.526528\pi\)
−0.0832427 + 0.996529i \(0.526528\pi\)
\(30\) 0 0
\(31\) −100.955 −0.584907 −0.292454 0.956280i \(-0.594472\pi\)
−0.292454 + 0.956280i \(0.594472\pi\)
\(32\) 0 0
\(33\) −312.000 −1.64583
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 150.000 0.666482 0.333241 0.942842i \(-0.391858\pi\)
0.333241 + 0.942842i \(0.391858\pi\)
\(38\) 0 0
\(39\) −245.177 −1.00666
\(40\) 0 0
\(41\) 342.000 1.30272 0.651359 0.758770i \(-0.274199\pi\)
0.651359 + 0.758770i \(0.274199\pi\)
\(42\) 0 0
\(43\) −454.299 −1.61116 −0.805582 0.592485i \(-0.798147\pi\)
−0.805582 + 0.592485i \(0.798147\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 584.099 1.81276 0.906379 0.422465i \(-0.138835\pi\)
0.906379 + 0.422465i \(0.138835\pi\)
\(48\) 0 0
\(49\) −291.000 −0.848397
\(50\) 0 0
\(51\) −822.066 −2.25710
\(52\) 0 0
\(53\) 262.000 0.679028 0.339514 0.940601i \(-0.389737\pi\)
0.339514 + 0.940601i \(0.389737\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 490.355 1.08201 0.541007 0.841018i \(-0.318043\pi\)
0.541007 + 0.841018i \(0.318043\pi\)
\(60\) 0 0
\(61\) −262.000 −0.549929 −0.274964 0.961454i \(-0.588666\pi\)
−0.274964 + 0.961454i \(0.588666\pi\)
\(62\) 0 0
\(63\) 180.278 0.360521
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −497.566 −0.907274 −0.453637 0.891187i \(-0.649874\pi\)
−0.453637 + 0.891187i \(0.649874\pi\)
\(68\) 0 0
\(69\) −1508.00 −2.63104
\(70\) 0 0
\(71\) 1052.82 1.75981 0.879907 0.475145i \(-0.157604\pi\)
0.879907 + 0.475145i \(0.157604\pi\)
\(72\) 0 0
\(73\) −682.000 −1.09345 −0.546726 0.837311i \(-0.684126\pi\)
−0.546726 + 0.837311i \(0.684126\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −312.000 −0.461762
\(78\) 0 0
\(79\) 201.911 0.287554 0.143777 0.989610i \(-0.454075\pi\)
0.143777 + 0.989610i \(0.454075\pi\)
\(80\) 0 0
\(81\) −779.000 −1.06859
\(82\) 0 0
\(83\) 151.433 0.200264 0.100132 0.994974i \(-0.468073\pi\)
0.100132 + 0.994974i \(0.468073\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −187.489 −0.231045
\(88\) 0 0
\(89\) −630.000 −0.750336 −0.375168 0.926957i \(-0.622415\pi\)
−0.375168 + 0.926957i \(0.622415\pi\)
\(90\) 0 0
\(91\) −245.177 −0.282435
\(92\) 0 0
\(93\) −728.000 −0.811721
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 966.000 1.01116 0.505580 0.862780i \(-0.331279\pi\)
0.505580 + 0.862780i \(0.331279\pi\)
\(98\) 0 0
\(99\) −1081.67 −1.09810
\(100\) 0 0
\(101\) 1638.00 1.61373 0.806867 0.590733i \(-0.201162\pi\)
0.806867 + 0.590733i \(0.201162\pi\)
\(102\) 0 0
\(103\) 685.055 0.655344 0.327672 0.944792i \(-0.393736\pi\)
0.327672 + 0.944792i \(0.393736\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −612.944 −0.553790 −0.276895 0.960900i \(-0.589305\pi\)
−0.276895 + 0.960900i \(0.589305\pi\)
\(108\) 0 0
\(109\) −342.000 −0.300529 −0.150264 0.988646i \(-0.548013\pi\)
−0.150264 + 0.988646i \(0.548013\pi\)
\(110\) 0 0
\(111\) 1081.67 0.924929
\(112\) 0 0
\(113\) −2106.00 −1.75324 −0.876619 0.481186i \(-0.840206\pi\)
−0.876619 + 0.481186i \(0.840206\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −850.000 −0.671646
\(118\) 0 0
\(119\) −822.066 −0.633266
\(120\) 0 0
\(121\) 541.000 0.406461
\(122\) 0 0
\(123\) 2466.20 1.80788
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 439.877 0.307345 0.153672 0.988122i \(-0.450890\pi\)
0.153672 + 0.988122i \(0.450890\pi\)
\(128\) 0 0
\(129\) −3276.00 −2.23594
\(130\) 0 0
\(131\) 1773.93 1.18312 0.591561 0.806260i \(-0.298512\pi\)
0.591561 + 0.806260i \(0.298512\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1618.00 −1.00902 −0.504508 0.863407i \(-0.668326\pi\)
−0.504508 + 0.863407i \(0.668326\pi\)
\(138\) 0 0
\(139\) 2509.46 1.53129 0.765647 0.643261i \(-0.222419\pi\)
0.765647 + 0.643261i \(0.222419\pi\)
\(140\) 0 0
\(141\) 4212.00 2.51570
\(142\) 0 0
\(143\) 1471.06 0.860256
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2098.43 −1.17739
\(148\) 0 0
\(149\) 1010.00 0.555318 0.277659 0.960680i \(-0.410441\pi\)
0.277659 + 0.960680i \(0.410441\pi\)
\(150\) 0 0
\(151\) 14.4222 0.00777260 0.00388630 0.999992i \(-0.498763\pi\)
0.00388630 + 0.999992i \(0.498763\pi\)
\(152\) 0 0
\(153\) −2850.00 −1.50594
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1794.00 −0.911954 −0.455977 0.889992i \(-0.650710\pi\)
−0.455977 + 0.889992i \(0.650710\pi\)
\(158\) 0 0
\(159\) 1889.31 0.942339
\(160\) 0 0
\(161\) −1508.00 −0.738180
\(162\) 0 0
\(163\) −1983.05 −0.952912 −0.476456 0.879198i \(-0.658079\pi\)
−0.476456 + 0.879198i \(0.658079\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 757.166 0.350846 0.175423 0.984493i \(-0.443871\pi\)
0.175423 + 0.984493i \(0.443871\pi\)
\(168\) 0 0
\(169\) −1041.00 −0.473828
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2834.00 −1.24546 −0.622731 0.782436i \(-0.713977\pi\)
−0.622731 + 0.782436i \(0.713977\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3536.00 1.50159
\(178\) 0 0
\(179\) −951.866 −0.397462 −0.198731 0.980054i \(-0.563682\pi\)
−0.198731 + 0.980054i \(0.563682\pi\)
\(180\) 0 0
\(181\) −1466.00 −0.602027 −0.301014 0.953620i \(-0.597325\pi\)
−0.301014 + 0.953620i \(0.597325\pi\)
\(182\) 0 0
\(183\) −1889.31 −0.763179
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4932.39 1.92884
\(188\) 0 0
\(189\) −104.000 −0.0400259
\(190\) 0 0
\(191\) −3475.75 −1.31674 −0.658368 0.752696i \(-0.728753\pi\)
−0.658368 + 0.752696i \(0.728753\pi\)
\(192\) 0 0
\(193\) 46.0000 0.0171562 0.00857812 0.999963i \(-0.497269\pi\)
0.00857812 + 0.999963i \(0.497269\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1122.00 −0.405783 −0.202891 0.979201i \(-0.565034\pi\)
−0.202891 + 0.979201i \(0.565034\pi\)
\(198\) 0 0
\(199\) −2999.82 −1.06860 −0.534300 0.845295i \(-0.679425\pi\)
−0.534300 + 0.845295i \(0.679425\pi\)
\(200\) 0 0
\(201\) −3588.00 −1.25909
\(202\) 0 0
\(203\) −187.489 −0.0648233
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −5228.05 −1.75543
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −418.244 −0.136460 −0.0682301 0.997670i \(-0.521735\pi\)
−0.0682301 + 0.997670i \(0.521735\pi\)
\(212\) 0 0
\(213\) 7592.00 2.44223
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −728.000 −0.227741
\(218\) 0 0
\(219\) −4917.97 −1.51747
\(220\) 0 0
\(221\) 3876.00 1.17976
\(222\) 0 0
\(223\) −2545.52 −0.764397 −0.382199 0.924080i \(-0.624833\pi\)
−0.382199 + 0.924080i \(0.624833\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5069.41 1.48224 0.741119 0.671373i \(-0.234295\pi\)
0.741119 + 0.671373i \(0.234295\pi\)
\(228\) 0 0
\(229\) −6194.00 −1.78738 −0.893692 0.448681i \(-0.851894\pi\)
−0.893692 + 0.448681i \(0.851894\pi\)
\(230\) 0 0
\(231\) −2249.86 −0.640823
\(232\) 0 0
\(233\) −4290.00 −1.20621 −0.603106 0.797661i \(-0.706070\pi\)
−0.603106 + 0.797661i \(0.706070\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1456.00 0.399061
\(238\) 0 0
\(239\) 5278.53 1.42862 0.714309 0.699831i \(-0.246741\pi\)
0.714309 + 0.699831i \(0.246741\pi\)
\(240\) 0 0
\(241\) −3074.00 −0.821634 −0.410817 0.911718i \(-0.634756\pi\)
−0.410817 + 0.911718i \(0.634756\pi\)
\(242\) 0 0
\(243\) −5228.05 −1.38016
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1092.00 0.277922
\(250\) 0 0
\(251\) −2062.38 −0.518629 −0.259315 0.965793i \(-0.583497\pi\)
−0.259315 + 0.965793i \(0.583497\pi\)
\(252\) 0 0
\(253\) 9048.00 2.24839
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3718.00 0.902422 0.451211 0.892417i \(-0.350992\pi\)
0.451211 + 0.892417i \(0.350992\pi\)
\(258\) 0 0
\(259\) 1081.67 0.259504
\(260\) 0 0
\(261\) −650.000 −0.154153
\(262\) 0 0
\(263\) −7045.25 −1.65182 −0.825910 0.563802i \(-0.809338\pi\)
−0.825910 + 0.563802i \(0.809338\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4542.99 −1.04130
\(268\) 0 0
\(269\) 6058.00 1.37310 0.686548 0.727085i \(-0.259125\pi\)
0.686548 + 0.727085i \(0.259125\pi\)
\(270\) 0 0
\(271\) −5206.42 −1.16704 −0.583519 0.812100i \(-0.698325\pi\)
−0.583519 + 0.812100i \(0.698325\pi\)
\(272\) 0 0
\(273\) −1768.00 −0.391957
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2990.00 0.648562 0.324281 0.945961i \(-0.394878\pi\)
0.324281 + 0.945961i \(0.394878\pi\)
\(278\) 0 0
\(279\) −2523.89 −0.541581
\(280\) 0 0
\(281\) 2710.00 0.575320 0.287660 0.957733i \(-0.407123\pi\)
0.287660 + 0.957733i \(0.407123\pi\)
\(282\) 0 0
\(283\) 4593.47 0.964854 0.482427 0.875936i \(-0.339755\pi\)
0.482427 + 0.875936i \(0.339755\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2466.20 0.507230
\(288\) 0 0
\(289\) 8083.00 1.64523
\(290\) 0 0
\(291\) 6965.93 1.40326
\(292\) 0 0
\(293\) 3750.00 0.747704 0.373852 0.927488i \(-0.378037\pi\)
0.373852 + 0.927488i \(0.378037\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 624.000 0.121913
\(298\) 0 0
\(299\) 7110.15 1.37522
\(300\) 0 0
\(301\) −3276.00 −0.627327
\(302\) 0 0
\(303\) 11811.8 2.23950
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4405.98 0.819097 0.409548 0.912288i \(-0.365686\pi\)
0.409548 + 0.912288i \(0.365686\pi\)
\(308\) 0 0
\(309\) 4940.00 0.909472
\(310\) 0 0
\(311\) −2956.55 −0.539070 −0.269535 0.962991i \(-0.586870\pi\)
−0.269535 + 0.962991i \(0.586870\pi\)
\(312\) 0 0
\(313\) −5642.00 −1.01886 −0.509432 0.860511i \(-0.670145\pi\)
−0.509432 + 0.860511i \(0.670145\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4650.00 −0.823880 −0.411940 0.911211i \(-0.635149\pi\)
−0.411940 + 0.911211i \(0.635149\pi\)
\(318\) 0 0
\(319\) 1124.93 0.197442
\(320\) 0 0
\(321\) −4420.00 −0.768537
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −2466.20 −0.417067
\(328\) 0 0
\(329\) 4212.00 0.705821
\(330\) 0 0
\(331\) 5523.70 0.917252 0.458626 0.888630i \(-0.348342\pi\)
0.458626 + 0.888630i \(0.348342\pi\)
\(332\) 0 0
\(333\) 3750.00 0.617113
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9266.00 −1.49778 −0.748889 0.662695i \(-0.769412\pi\)
−0.748889 + 0.662695i \(0.769412\pi\)
\(338\) 0 0
\(339\) −15186.6 −2.43310
\(340\) 0 0
\(341\) 4368.00 0.693667
\(342\) 0 0
\(343\) −4571.84 −0.719697
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −814.855 −0.126062 −0.0630312 0.998012i \(-0.520077\pi\)
−0.0630312 + 0.998012i \(0.520077\pi\)
\(348\) 0 0
\(349\) 7494.00 1.14941 0.574706 0.818360i \(-0.305117\pi\)
0.574706 + 0.818360i \(0.305117\pi\)
\(350\) 0 0
\(351\) 490.355 0.0745676
\(352\) 0 0
\(353\) 6270.00 0.945378 0.472689 0.881229i \(-0.343283\pi\)
0.472689 + 0.881229i \(0.343283\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −5928.00 −0.878832
\(358\) 0 0
\(359\) 692.266 0.101773 0.0508863 0.998704i \(-0.483795\pi\)
0.0508863 + 0.998704i \(0.483795\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 3901.21 0.564078
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2141.70 0.304620 0.152310 0.988333i \(-0.451329\pi\)
0.152310 + 0.988333i \(0.451329\pi\)
\(368\) 0 0
\(369\) 8550.00 1.20622
\(370\) 0 0
\(371\) 1889.31 0.264388
\(372\) 0 0
\(373\) 2574.00 0.357310 0.178655 0.983912i \(-0.442825\pi\)
0.178655 + 0.983912i \(0.442825\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 884.000 0.120765
\(378\) 0 0
\(379\) 13729.9 1.86084 0.930422 0.366491i \(-0.119441\pi\)
0.930422 + 0.366491i \(0.119441\pi\)
\(380\) 0 0
\(381\) 3172.00 0.426526
\(382\) 0 0
\(383\) 4204.07 0.560883 0.280441 0.959871i \(-0.409519\pi\)
0.280441 + 0.959871i \(0.409519\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −11357.5 −1.49182
\(388\) 0 0
\(389\) 5314.00 0.692623 0.346312 0.938120i \(-0.387434\pi\)
0.346312 + 0.938120i \(0.387434\pi\)
\(390\) 0 0
\(391\) 23839.9 3.08347
\(392\) 0 0
\(393\) 12792.0 1.64191
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8638.00 1.09201 0.546006 0.837781i \(-0.316148\pi\)
0.546006 + 0.837781i \(0.316148\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2802.00 0.348941 0.174470 0.984662i \(-0.444179\pi\)
0.174470 + 0.984662i \(0.444179\pi\)
\(402\) 0 0
\(403\) 3432.48 0.424279
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6489.99 −0.790410
\(408\) 0 0
\(409\) −82.0000 −0.00991354 −0.00495677 0.999988i \(-0.501578\pi\)
−0.00495677 + 0.999988i \(0.501578\pi\)
\(410\) 0 0
\(411\) −11667.6 −1.40029
\(412\) 0 0
\(413\) 3536.00 0.421296
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 18096.0 2.12510
\(418\) 0 0
\(419\) −1067.24 −0.124435 −0.0622175 0.998063i \(-0.519817\pi\)
−0.0622175 + 0.998063i \(0.519817\pi\)
\(420\) 0 0
\(421\) −5742.00 −0.664722 −0.332361 0.943152i \(-0.607845\pi\)
−0.332361 + 0.943152i \(0.607845\pi\)
\(422\) 0 0
\(423\) 14602.5 1.67848
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1889.31 −0.214122
\(428\) 0 0
\(429\) 10608.0 1.19384
\(430\) 0 0
\(431\) 14234.7 1.59086 0.795432 0.606043i \(-0.207244\pi\)
0.795432 + 0.606043i \(0.207244\pi\)
\(432\) 0 0
\(433\) −7098.00 −0.787779 −0.393889 0.919158i \(-0.628871\pi\)
−0.393889 + 0.919158i \(0.628871\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −461.511 −0.0501747 −0.0250874 0.999685i \(-0.507986\pi\)
−0.0250874 + 0.999685i \(0.507986\pi\)
\(440\) 0 0
\(441\) −7275.00 −0.785552
\(442\) 0 0
\(443\) 6064.54 0.650417 0.325209 0.945642i \(-0.394565\pi\)
0.325209 + 0.945642i \(0.394565\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 7283.21 0.770658
\(448\) 0 0
\(449\) −11706.0 −1.23038 −0.615190 0.788379i \(-0.710921\pi\)
−0.615190 + 0.788379i \(0.710921\pi\)
\(450\) 0 0
\(451\) −14797.2 −1.54495
\(452\) 0 0
\(453\) 104.000 0.0107866
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5066.00 −0.518550 −0.259275 0.965803i \(-0.583484\pi\)
−0.259275 + 0.965803i \(0.583484\pi\)
\(458\) 0 0
\(459\) 1644.13 0.167193
\(460\) 0 0
\(461\) −594.000 −0.0600116 −0.0300058 0.999550i \(-0.509553\pi\)
−0.0300058 + 0.999550i \(0.509553\pi\)
\(462\) 0 0
\(463\) 483.144 0.0484959 0.0242479 0.999706i \(-0.492281\pi\)
0.0242479 + 0.999706i \(0.492281\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2271.50 0.225080 0.112540 0.993647i \(-0.464101\pi\)
0.112540 + 0.993647i \(0.464101\pi\)
\(468\) 0 0
\(469\) −3588.00 −0.353259
\(470\) 0 0
\(471\) −12936.7 −1.26559
\(472\) 0 0
\(473\) 19656.0 1.91075
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6550.00 0.628729
\(478\) 0 0
\(479\) −4067.06 −0.387952 −0.193976 0.981006i \(-0.562138\pi\)
−0.193976 + 0.981006i \(0.562138\pi\)
\(480\) 0 0
\(481\) −5100.00 −0.483451
\(482\) 0 0
\(483\) −10874.3 −1.02443
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 11170.0 1.03934 0.519672 0.854366i \(-0.326054\pi\)
0.519672 + 0.854366i \(0.326054\pi\)
\(488\) 0 0
\(489\) −14300.0 −1.32243
\(490\) 0 0
\(491\) −4600.68 −0.422863 −0.211432 0.977393i \(-0.567813\pi\)
−0.211432 + 0.977393i \(0.567813\pi\)
\(492\) 0 0
\(493\) 2964.00 0.270775
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7592.00 0.685207
\(498\) 0 0
\(499\) −288.444 −0.0258768 −0.0129384 0.999916i \(-0.504119\pi\)
−0.0129384 + 0.999916i \(0.504119\pi\)
\(500\) 0 0
\(501\) 5460.00 0.486896
\(502\) 0 0
\(503\) −18409.9 −1.63193 −0.815963 0.578104i \(-0.803793\pi\)
−0.815963 + 0.578104i \(0.803793\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −7506.76 −0.657568
\(508\) 0 0
\(509\) −8714.00 −0.758824 −0.379412 0.925228i \(-0.623874\pi\)
−0.379412 + 0.925228i \(0.623874\pi\)
\(510\) 0 0
\(511\) −4917.97 −0.425750
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −25272.0 −2.14983
\(518\) 0 0
\(519\) −20436.3 −1.72842
\(520\) 0 0
\(521\) −11830.0 −0.994783 −0.497391 0.867526i \(-0.665709\pi\)
−0.497391 + 0.867526i \(0.665709\pi\)
\(522\) 0 0
\(523\) −8963.40 −0.749411 −0.374706 0.927144i \(-0.622256\pi\)
−0.374706 + 0.927144i \(0.622256\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11508.9 0.951302
\(528\) 0 0
\(529\) 31565.0 2.59431
\(530\) 0 0
\(531\) 12258.9 1.00186
\(532\) 0 0
\(533\) −11628.0 −0.944962
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6864.00 −0.551589
\(538\) 0 0
\(539\) 12590.6 1.00615
\(540\) 0 0
\(541\) −15490.0 −1.23099 −0.615496 0.788140i \(-0.711044\pi\)
−0.615496 + 0.788140i \(0.711044\pi\)
\(542\) 0 0
\(543\) −10571.5 −0.835480
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −11429.6 −0.893408 −0.446704 0.894682i \(-0.647402\pi\)
−0.446704 + 0.894682i \(0.647402\pi\)
\(548\) 0 0
\(549\) −6550.00 −0.509193
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1456.00 0.111963
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23862.0 1.81520 0.907599 0.419838i \(-0.137913\pi\)
0.907599 + 0.419838i \(0.137913\pi\)
\(558\) 0 0
\(559\) 15446.2 1.16870
\(560\) 0 0
\(561\) 35568.0 2.67680
\(562\) 0 0
\(563\) −7261.58 −0.543586 −0.271793 0.962356i \(-0.587617\pi\)
−0.271793 + 0.962356i \(0.587617\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5617.45 −0.416068
\(568\) 0 0
\(569\) −9074.00 −0.668545 −0.334272 0.942477i \(-0.608491\pi\)
−0.334272 + 0.942477i \(0.608491\pi\)
\(570\) 0 0
\(571\) −7860.10 −0.576068 −0.288034 0.957620i \(-0.593002\pi\)
−0.288034 + 0.957620i \(0.593002\pi\)
\(572\) 0 0
\(573\) −25064.0 −1.82734
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −4762.00 −0.343578 −0.171789 0.985134i \(-0.554955\pi\)
−0.171789 + 0.985134i \(0.554955\pi\)
\(578\) 0 0
\(579\) 331.711 0.0238090
\(580\) 0 0
\(581\) 1092.00 0.0779755
\(582\) 0 0
\(583\) −11335.9 −0.805288
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21481.9 1.51048 0.755240 0.655448i \(-0.227520\pi\)
0.755240 + 0.655448i \(0.227520\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −8090.86 −0.563136
\(592\) 0 0
\(593\) −11954.0 −0.827811 −0.413906 0.910320i \(-0.635836\pi\)
−0.413906 + 0.910320i \(0.635836\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −21632.0 −1.48298
\(598\) 0 0
\(599\) −10759.0 −0.733889 −0.366944 0.930243i \(-0.619596\pi\)
−0.366944 + 0.930243i \(0.619596\pi\)
\(600\) 0 0
\(601\) 17862.0 1.21232 0.606162 0.795342i \(-0.292708\pi\)
0.606162 + 0.795342i \(0.292708\pi\)
\(602\) 0 0
\(603\) −12439.2 −0.840069
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 7506.76 0.501960 0.250980 0.967992i \(-0.419247\pi\)
0.250980 + 0.967992i \(0.419247\pi\)
\(608\) 0 0
\(609\) −1352.00 −0.0899603
\(610\) 0 0
\(611\) −19859.4 −1.31493
\(612\) 0 0
\(613\) −11522.0 −0.759167 −0.379583 0.925158i \(-0.623933\pi\)
−0.379583 + 0.925158i \(0.623933\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −8290.00 −0.540912 −0.270456 0.962732i \(-0.587174\pi\)
−0.270456 + 0.962732i \(0.587174\pi\)
\(618\) 0 0
\(619\) −24171.6 −1.56953 −0.784765 0.619793i \(-0.787216\pi\)
−0.784765 + 0.619793i \(0.787216\pi\)
\(620\) 0 0
\(621\) 3016.00 0.194892
\(622\) 0 0
\(623\) −4542.99 −0.292153
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −17100.0 −1.08398
\(630\) 0 0
\(631\) −12388.7 −0.781593 −0.390797 0.920477i \(-0.627800\pi\)
−0.390797 + 0.920477i \(0.627800\pi\)
\(632\) 0 0
\(633\) −3016.00 −0.189376
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 9894.00 0.615407
\(638\) 0 0
\(639\) 26320.5 1.62946
\(640\) 0 0
\(641\) 6750.00 0.415927 0.207963 0.978137i \(-0.433317\pi\)
0.207963 + 0.978137i \(0.433317\pi\)
\(642\) 0 0
\(643\) 23428.9 1.43693 0.718464 0.695564i \(-0.244846\pi\)
0.718464 + 0.695564i \(0.244846\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8689.38 0.527998 0.263999 0.964523i \(-0.414958\pi\)
0.263999 + 0.964523i \(0.414958\pi\)
\(648\) 0 0
\(649\) −21216.0 −1.28321
\(650\) 0 0
\(651\) −5249.68 −0.316054
\(652\) 0 0
\(653\) −22282.0 −1.33532 −0.667659 0.744468i \(-0.732703\pi\)
−0.667659 + 0.744468i \(0.732703\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −17050.0 −1.01246
\(658\) 0 0
\(659\) 15835.6 0.936065 0.468032 0.883711i \(-0.344963\pi\)
0.468032 + 0.883711i \(0.344963\pi\)
\(660\) 0 0
\(661\) −11758.0 −0.691881 −0.345940 0.938256i \(-0.612440\pi\)
−0.345940 + 0.938256i \(0.612440\pi\)
\(662\) 0 0
\(663\) 27950.2 1.63725
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5437.17 0.315634
\(668\) 0 0
\(669\) −18356.0 −1.06081
\(670\) 0 0
\(671\) 11335.9 0.652184
\(672\) 0 0
\(673\) −11866.0 −0.679644 −0.339822 0.940490i \(-0.610367\pi\)
−0.339822 + 0.940490i \(0.610367\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 26574.0 1.50860 0.754300 0.656530i \(-0.227977\pi\)
0.754300 + 0.656530i \(0.227977\pi\)
\(678\) 0 0
\(679\) 6965.93 0.393708
\(680\) 0 0
\(681\) 36556.0 2.05702
\(682\) 0 0
\(683\) 13737.2 0.769601 0.384800 0.923000i \(-0.374270\pi\)
0.384800 + 0.923000i \(0.374270\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −44665.6 −2.48049
\(688\) 0 0
\(689\) −8908.00 −0.492551
\(690\) 0 0
\(691\) 22570.8 1.24259 0.621297 0.783576i \(-0.286606\pi\)
0.621297 + 0.783576i \(0.286606\pi\)
\(692\) 0 0
\(693\) −7800.00 −0.427558
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −38988.0 −2.11876
\(698\) 0 0
\(699\) −30935.6 −1.67395
\(700\) 0 0
\(701\) −7062.00 −0.380497 −0.190248 0.981736i \(-0.560929\pi\)
−0.190248 + 0.981736i \(0.560929\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11811.8 0.628328
\(708\) 0 0
\(709\) −1554.00 −0.0823155 −0.0411578 0.999153i \(-0.513105\pi\)
−0.0411578 + 0.999153i \(0.513105\pi\)
\(710\) 0 0
\(711\) 5047.77 0.266253
\(712\) 0 0
\(713\) 21112.0 1.10891
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 38064.0 1.98260
\(718\) 0 0
\(719\) −31065.4 −1.61133 −0.805664 0.592373i \(-0.798191\pi\)
−0.805664 + 0.592373i \(0.798191\pi\)
\(720\) 0 0
\(721\) 4940.00 0.255167
\(722\) 0 0
\(723\) −22166.9 −1.14024
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −24452.8 −1.24746 −0.623732 0.781638i \(-0.714384\pi\)
−0.623732 + 0.781638i \(0.714384\pi\)
\(728\) 0 0
\(729\) −16667.0 −0.846771
\(730\) 0 0
\(731\) 51790.1 2.62042
\(732\) 0 0
\(733\) −15058.0 −0.758772 −0.379386 0.925238i \(-0.623865\pi\)
−0.379386 + 0.925238i \(0.623865\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21528.0 1.07598
\(738\) 0 0
\(739\) 11912.7 0.592987 0.296493 0.955035i \(-0.404183\pi\)
0.296493 + 0.955035i \(0.404183\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17270.6 0.852754 0.426377 0.904545i \(-0.359790\pi\)
0.426377 + 0.904545i \(0.359790\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3785.83 0.185430
\(748\) 0 0
\(749\) −4420.00 −0.215625
\(750\) 0 0
\(751\) −17869.1 −0.868247 −0.434123 0.900853i \(-0.642942\pi\)
−0.434123 + 0.900853i \(0.642942\pi\)
\(752\) 0 0
\(753\) −14872.0 −0.719742
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −35410.0 −1.70013 −0.850065 0.526678i \(-0.823437\pi\)
−0.850065 + 0.526678i \(0.823437\pi\)
\(758\) 0 0
\(759\) 65246.1 3.12027
\(760\) 0 0
\(761\) 3386.00 0.161291 0.0806455 0.996743i \(-0.474302\pi\)
0.0806455 + 0.996743i \(0.474302\pi\)
\(762\) 0 0
\(763\) −2466.20 −0.117015
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16672.1 −0.784868
\(768\) 0 0
\(769\) 11522.0 0.540304 0.270152 0.962818i \(-0.412926\pi\)
0.270152 + 0.962818i \(0.412926\pi\)
\(770\) 0 0
\(771\) 26810.9 1.25236
\(772\) 0 0
\(773\) 14382.0 0.669191 0.334595 0.942362i \(-0.391400\pi\)
0.334595 + 0.942362i \(0.391400\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 7800.00 0.360133
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −45552.0 −2.08704
\(782\) 0 0
\(783\) 374.977 0.0171144
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −814.855 −0.0369078 −0.0184539 0.999830i \(-0.505874\pi\)
−0.0184539 + 0.999830i \(0.505874\pi\)
\(788\) 0 0
\(789\) −50804.0 −2.29236
\(790\) 0 0
\(791\) −15186.6 −0.682646
\(792\) 0 0
\(793\) 8908.00 0.398906
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14550.0 0.646659 0.323330 0.946286i \(-0.395198\pi\)
0.323330 + 0.946286i \(0.395198\pi\)
\(798\) 0 0
\(799\) −66587.3 −2.94830
\(800\) 0 0
\(801\) −15750.0 −0.694755
\(802\) 0 0
\(803\) 29507.8 1.29677
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 43684.9 1.90555
\(808\) 0 0
\(809\) −37622.0 −1.63501 −0.817503 0.575925i \(-0.804642\pi\)
−0.817503 + 0.575925i \(0.804642\pi\)
\(810\) 0 0
\(811\) −331.711 −0.0143624 −0.00718122 0.999974i \(-0.502286\pi\)
−0.00718122 + 0.999974i \(0.502286\pi\)
\(812\) 0 0
\(813\) −37544.0 −1.61959
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −6129.44 −0.261514
\(820\) 0 0
\(821\) 18690.0 0.794501 0.397251 0.917710i \(-0.369964\pi\)
0.397251 + 0.917710i \(0.369964\pi\)
\(822\) 0 0
\(823\) 16866.8 0.714385 0.357192 0.934031i \(-0.383734\pi\)
0.357192 + 0.934031i \(0.383734\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −39235.6 −1.64977 −0.824883 0.565304i \(-0.808759\pi\)
−0.824883 + 0.565304i \(0.808759\pi\)
\(828\) 0 0
\(829\) −3718.00 −0.155768 −0.0778839 0.996962i \(-0.524816\pi\)
−0.0778839 + 0.996962i \(0.524816\pi\)
\(830\) 0 0
\(831\) 21561.2 0.900060
\(832\) 0 0
\(833\) 33174.0 1.37985
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1456.00 0.0601275
\(838\) 0 0
\(839\) 14335.7 0.589896 0.294948 0.955513i \(-0.404698\pi\)
0.294948 + 0.955513i \(0.404698\pi\)
\(840\) 0 0
\(841\) −23713.0 −0.972283
\(842\) 0 0
\(843\) 19542.1 0.798417
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3901.21 0.158261
\(848\) 0 0
\(849\) 33124.0 1.33900
\(850\) 0 0
\(851\) −31368.3 −1.26356
\(852\) 0 0
\(853\) −26786.0 −1.07519 −0.537594 0.843204i \(-0.680667\pi\)
−0.537594 + 0.843204i \(0.680667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19682.0 −0.784509 −0.392255 0.919857i \(-0.628305\pi\)
−0.392255 + 0.919857i \(0.628305\pi\)
\(858\) 0 0
\(859\) 33199.9 1.31870 0.659352 0.751834i \(-0.270831\pi\)
0.659352 + 0.751834i \(0.270831\pi\)
\(860\) 0 0
\(861\) 17784.0 0.703922
\(862\) 0 0
\(863\) 10203.7 0.402478 0.201239 0.979542i \(-0.435503\pi\)
0.201239 + 0.979542i \(0.435503\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 58287.3 2.28321
\(868\) 0 0
\(869\) −8736.00 −0.341022
\(870\) 0 0
\(871\) 16917.2 0.658116
\(872\) 0 0
\(873\) 24150.0 0.936258
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −41986.0 −1.61661 −0.808305 0.588764i \(-0.799615\pi\)
−0.808305 + 0.588764i \(0.799615\pi\)
\(878\) 0 0
\(879\) 27041.6 1.03765
\(880\) 0 0
\(881\) 38142.0 1.45861 0.729306 0.684188i \(-0.239843\pi\)
0.729306 + 0.684188i \(0.239843\pi\)
\(882\) 0 0
\(883\) 39235.6 1.49534 0.747669 0.664072i \(-0.231173\pi\)
0.747669 + 0.664072i \(0.231173\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −41528.7 −1.57204 −0.786020 0.618202i \(-0.787861\pi\)
−0.786020 + 0.618202i \(0.787861\pi\)
\(888\) 0 0
\(889\) 3172.00 0.119669
\(890\) 0 0
\(891\) 33704.7 1.26728
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 51272.0 1.90850
\(898\) 0 0
\(899\) 2624.84 0.0973786
\(900\) 0 0
\(901\) −29868.0 −1.10438
\(902\) 0 0
\(903\) −23623.6 −0.870591
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4319.45 0.158131 0.0790656 0.996869i \(-0.474806\pi\)
0.0790656 + 0.996869i \(0.474806\pi\)
\(908\) 0 0
\(909\) 40950.0 1.49420
\(910\) 0 0
\(911\) −49713.3 −1.80799 −0.903994 0.427546i \(-0.859378\pi\)
−0.903994 + 0.427546i \(0.859378\pi\)
\(912\) 0 0
\(913\) −6552.00 −0.237502
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12792.0 0.460664
\(918\) 0 0
\(919\) 5220.84 0.187399 0.0936994 0.995601i \(-0.470131\pi\)
0.0936994 + 0.995601i \(0.470131\pi\)
\(920\) 0 0
\(921\) 31772.0 1.13672
\(922\) 0 0
\(923\) −35795.9 −1.27653
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 17126.4 0.606800
\(928\) 0 0
\(929\) −17546.0 −0.619662 −0.309831 0.950792i \(-0.600272\pi\)
−0.309831 + 0.950792i \(0.600272\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −21320.0 −0.748109
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 11390.0 0.397113 0.198557 0.980089i \(-0.436375\pi\)
0.198557 + 0.980089i \(0.436375\pi\)
\(938\) 0 0
\(939\) −40685.0 −1.41396
\(940\) 0 0
\(941\) 41838.0 1.44939 0.724697 0.689068i \(-0.241980\pi\)
0.724697 + 0.689068i \(0.241980\pi\)
\(942\) 0 0
\(943\) −71519.7 −2.46978
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −35226.2 −1.20876 −0.604382 0.796695i \(-0.706580\pi\)
−0.604382 + 0.796695i \(0.706580\pi\)
\(948\) 0 0
\(949\) 23188.0 0.793166
\(950\) 0 0
\(951\) −33531.6 −1.14336
\(952\) 0 0
\(953\) −28522.0 −0.969484 −0.484742 0.874657i \(-0.661086\pi\)
−0.484742 + 0.874657i \(0.661086\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 8112.00 0.274006
\(958\) 0 0
\(959\) −11667.6 −0.392873
\(960\) 0 0
\(961\) −19599.0 −0.657883
\(962\) 0 0
\(963\) −15323.6 −0.512768
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4579.05 −0.152277 −0.0761387 0.997097i \(-0.524259\pi\)
−0.0761387 + 0.997097i \(0.524259\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −22282.3 −0.736430 −0.368215 0.929741i \(-0.620031\pi\)
−0.368215 + 0.929741i \(0.620031\pi\)
\(972\) 0 0
\(973\) 18096.0 0.596229
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2214.00 0.0724996 0.0362498 0.999343i \(-0.488459\pi\)
0.0362498 + 0.999343i \(0.488459\pi\)
\(978\) 0 0
\(979\) 27258.0 0.889855
\(980\) 0 0
\(981\) −8550.00 −0.278268
\(982\) 0 0
\(983\) −24871.1 −0.806983 −0.403492 0.914983i \(-0.632204\pi\)
−0.403492 + 0.914983i \(0.632204\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 30373.2 0.979522
\(988\) 0 0
\(989\) 95004.0 3.05455
\(990\) 0 0
\(991\) 46453.9 1.48906 0.744530 0.667590i \(-0.232674\pi\)
0.744530 + 0.667590i \(0.232674\pi\)
\(992\) 0 0
\(993\) 39832.0 1.27294
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −57930.0 −1.84018 −0.920091 0.391705i \(-0.871886\pi\)
−0.920091 + 0.391705i \(0.871886\pi\)
\(998\) 0 0
\(999\) −2163.33 −0.0685133
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.a.q.1.2 2
4.3 odd 2 inner 800.4.a.q.1.1 2
5.2 odd 4 800.4.c.h.449.1 4
5.3 odd 4 800.4.c.h.449.3 4
5.4 even 2 160.4.a.e.1.1 2
8.3 odd 2 1600.4.a.ci.1.2 2
8.5 even 2 1600.4.a.ci.1.1 2
15.14 odd 2 1440.4.a.bd.1.1 2
20.3 even 4 800.4.c.h.449.2 4
20.7 even 4 800.4.c.h.449.4 4
20.19 odd 2 160.4.a.e.1.2 yes 2
40.19 odd 2 320.4.a.r.1.1 2
40.29 even 2 320.4.a.r.1.2 2
60.59 even 2 1440.4.a.bd.1.2 2
80.19 odd 4 1280.4.d.t.641.4 4
80.29 even 4 1280.4.d.t.641.2 4
80.59 odd 4 1280.4.d.t.641.1 4
80.69 even 4 1280.4.d.t.641.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.e.1.1 2 5.4 even 2
160.4.a.e.1.2 yes 2 20.19 odd 2
320.4.a.r.1.1 2 40.19 odd 2
320.4.a.r.1.2 2 40.29 even 2
800.4.a.q.1.1 2 4.3 odd 2 inner
800.4.a.q.1.2 2 1.1 even 1 trivial
800.4.c.h.449.1 4 5.2 odd 4
800.4.c.h.449.2 4 20.3 even 4
800.4.c.h.449.3 4 5.3 odd 4
800.4.c.h.449.4 4 20.7 even 4
1280.4.d.t.641.1 4 80.59 odd 4
1280.4.d.t.641.2 4 80.29 even 4
1280.4.d.t.641.3 4 80.69 even 4
1280.4.d.t.641.4 4 80.19 odd 4
1440.4.a.bd.1.1 2 15.14 odd 2
1440.4.a.bd.1.2 2 60.59 even 2
1600.4.a.ci.1.1 2 8.5 even 2
1600.4.a.ci.1.2 2 8.3 odd 2