Properties

Label 800.4.a.n.1.2
Level $800$
Weight $4$
Character 800.1
Self dual yes
Analytic conductor $47.202$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(1,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{29}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.19258\) of defining polynomial
Character \(\chi\) \(=\) 800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{3} +4.00000 q^{7} -11.0000 q^{9} +43.0813 q^{11} +21.5407 q^{13} +43.0813 q^{17} -129.244 q^{19} -16.0000 q^{21} -52.0000 q^{23} +152.000 q^{27} -158.000 q^{29} +172.325 q^{31} -172.325 q^{33} -280.029 q^{37} -86.1626 q^{39} -170.000 q^{41} +316.000 q^{43} +244.000 q^{47} -327.000 q^{49} -172.325 q^{51} +495.435 q^{53} +516.976 q^{57} +646.220 q^{59} +82.0000 q^{61} -44.0000 q^{63} +692.000 q^{67} +208.000 q^{69} -947.789 q^{71} -430.813 q^{73} +172.325 q^{77} +344.651 q^{79} -311.000 q^{81} +940.000 q^{83} +632.000 q^{87} +6.00000 q^{89} +86.1626 q^{91} -689.301 q^{93} -1077.03 q^{97} -473.895 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{3} + 8 q^{7} - 22 q^{9} - 32 q^{21} - 104 q^{23} + 304 q^{27} - 316 q^{29} - 340 q^{41} + 632 q^{43} + 488 q^{47} - 654 q^{49} + 164 q^{61} - 88 q^{63} + 1384 q^{67} + 416 q^{69} - 622 q^{81}+ \cdots + 12 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.00000 −0.769800 −0.384900 0.922958i \(-0.625764\pi\)
−0.384900 + 0.922958i \(0.625764\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.00000 0.215980 0.107990 0.994152i \(-0.465559\pi\)
0.107990 + 0.994152i \(0.465559\pi\)
\(8\) 0 0
\(9\) −11.0000 −0.407407
\(10\) 0 0
\(11\) 43.0813 1.18086 0.590432 0.807087i \(-0.298957\pi\)
0.590432 + 0.807087i \(0.298957\pi\)
\(12\) 0 0
\(13\) 21.5407 0.459562 0.229781 0.973242i \(-0.426199\pi\)
0.229781 + 0.973242i \(0.426199\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 43.0813 0.614633 0.307316 0.951607i \(-0.400569\pi\)
0.307316 + 0.951607i \(0.400569\pi\)
\(18\) 0 0
\(19\) −129.244 −1.56056 −0.780279 0.625432i \(-0.784923\pi\)
−0.780279 + 0.625432i \(0.784923\pi\)
\(20\) 0 0
\(21\) −16.0000 −0.166261
\(22\) 0 0
\(23\) −52.0000 −0.471424 −0.235712 0.971823i \(-0.575742\pi\)
−0.235712 + 0.971823i \(0.575742\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 152.000 1.08342
\(28\) 0 0
\(29\) −158.000 −1.01172 −0.505860 0.862616i \(-0.668825\pi\)
−0.505860 + 0.862616i \(0.668825\pi\)
\(30\) 0 0
\(31\) 172.325 0.998404 0.499202 0.866486i \(-0.333627\pi\)
0.499202 + 0.866486i \(0.333627\pi\)
\(32\) 0 0
\(33\) −172.325 −0.909030
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −280.029 −1.24423 −0.622114 0.782927i \(-0.713726\pi\)
−0.622114 + 0.782927i \(0.713726\pi\)
\(38\) 0 0
\(39\) −86.1626 −0.353771
\(40\) 0 0
\(41\) −170.000 −0.647550 −0.323775 0.946134i \(-0.604952\pi\)
−0.323775 + 0.946134i \(0.604952\pi\)
\(42\) 0 0
\(43\) 316.000 1.12069 0.560344 0.828260i \(-0.310669\pi\)
0.560344 + 0.828260i \(0.310669\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 244.000 0.757257 0.378628 0.925549i \(-0.376396\pi\)
0.378628 + 0.925549i \(0.376396\pi\)
\(48\) 0 0
\(49\) −327.000 −0.953353
\(50\) 0 0
\(51\) −172.325 −0.473144
\(52\) 0 0
\(53\) 495.435 1.28402 0.642012 0.766695i \(-0.278100\pi\)
0.642012 + 0.766695i \(0.278100\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 516.976 1.20132
\(58\) 0 0
\(59\) 646.220 1.42594 0.712972 0.701193i \(-0.247349\pi\)
0.712972 + 0.701193i \(0.247349\pi\)
\(60\) 0 0
\(61\) 82.0000 0.172115 0.0860576 0.996290i \(-0.472573\pi\)
0.0860576 + 0.996290i \(0.472573\pi\)
\(62\) 0 0
\(63\) −44.0000 −0.0879917
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 692.000 1.26181 0.630905 0.775860i \(-0.282684\pi\)
0.630905 + 0.775860i \(0.282684\pi\)
\(68\) 0 0
\(69\) 208.000 0.362902
\(70\) 0 0
\(71\) −947.789 −1.58425 −0.792126 0.610358i \(-0.791026\pi\)
−0.792126 + 0.610358i \(0.791026\pi\)
\(72\) 0 0
\(73\) −430.813 −0.690724 −0.345362 0.938470i \(-0.612244\pi\)
−0.345362 + 0.938470i \(0.612244\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 172.325 0.255043
\(78\) 0 0
\(79\) 344.651 0.490838 0.245419 0.969417i \(-0.421074\pi\)
0.245419 + 0.969417i \(0.421074\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) 940.000 1.24311 0.621557 0.783369i \(-0.286501\pi\)
0.621557 + 0.783369i \(0.286501\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 632.000 0.778822
\(88\) 0 0
\(89\) 6.00000 0.00714605 0.00357303 0.999994i \(-0.498863\pi\)
0.00357303 + 0.999994i \(0.498863\pi\)
\(90\) 0 0
\(91\) 86.1626 0.0992560
\(92\) 0 0
\(93\) −689.301 −0.768572
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1077.03 −1.12738 −0.563691 0.825985i \(-0.690619\pi\)
−0.563691 + 0.825985i \(0.690619\pi\)
\(98\) 0 0
\(99\) −473.895 −0.481093
\(100\) 0 0
\(101\) 1014.00 0.998978 0.499489 0.866320i \(-0.333521\pi\)
0.499489 + 0.866320i \(0.333521\pi\)
\(102\) 0 0
\(103\) 44.0000 0.0420917 0.0210459 0.999779i \(-0.493300\pi\)
0.0210459 + 0.999779i \(0.493300\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1812.00 1.63713 0.818564 0.574416i \(-0.194771\pi\)
0.818564 + 0.574416i \(0.194771\pi\)
\(108\) 0 0
\(109\) 2014.00 1.76978 0.884891 0.465798i \(-0.154233\pi\)
0.884891 + 0.465798i \(0.154233\pi\)
\(110\) 0 0
\(111\) 1120.11 0.957807
\(112\) 0 0
\(113\) 1637.09 1.36287 0.681436 0.731878i \(-0.261356\pi\)
0.681436 + 0.731878i \(0.261356\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −236.947 −0.187229
\(118\) 0 0
\(119\) 172.325 0.132748
\(120\) 0 0
\(121\) 525.000 0.394440
\(122\) 0 0
\(123\) 680.000 0.498484
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2788.00 1.94799 0.973996 0.226565i \(-0.0727496\pi\)
0.973996 + 0.226565i \(0.0727496\pi\)
\(128\) 0 0
\(129\) −1264.00 −0.862705
\(130\) 0 0
\(131\) −43.0813 −0.0287331 −0.0143665 0.999897i \(-0.504573\pi\)
−0.0143665 + 0.999897i \(0.504573\pi\)
\(132\) 0 0
\(133\) −516.976 −0.337049
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 473.895 0.295529 0.147765 0.989023i \(-0.452792\pi\)
0.147765 + 0.989023i \(0.452792\pi\)
\(138\) 0 0
\(139\) −2110.98 −1.28814 −0.644070 0.764967i \(-0.722755\pi\)
−0.644070 + 0.764967i \(0.722755\pi\)
\(140\) 0 0
\(141\) −976.000 −0.582936
\(142\) 0 0
\(143\) 928.000 0.542680
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1308.00 0.733891
\(148\) 0 0
\(149\) 2550.00 1.40204 0.701021 0.713141i \(-0.252728\pi\)
0.701021 + 0.713141i \(0.252728\pi\)
\(150\) 0 0
\(151\) 2154.07 1.16090 0.580448 0.814297i \(-0.302877\pi\)
0.580448 + 0.814297i \(0.302877\pi\)
\(152\) 0 0
\(153\) −473.895 −0.250406
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3554.21 1.80673 0.903365 0.428872i \(-0.141089\pi\)
0.903365 + 0.428872i \(0.141089\pi\)
\(158\) 0 0
\(159\) −1981.74 −0.988442
\(160\) 0 0
\(161\) −208.000 −0.101818
\(162\) 0 0
\(163\) −228.000 −0.109560 −0.0547802 0.998498i \(-0.517446\pi\)
−0.0547802 + 0.998498i \(0.517446\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 372.000 0.172373 0.0861863 0.996279i \(-0.472532\pi\)
0.0861863 + 0.996279i \(0.472532\pi\)
\(168\) 0 0
\(169\) −1733.00 −0.788803
\(170\) 0 0
\(171\) 1421.68 0.635783
\(172\) 0 0
\(173\) −1917.12 −0.842519 −0.421260 0.906940i \(-0.638412\pi\)
−0.421260 + 0.906940i \(0.638412\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2584.88 −1.09769
\(178\) 0 0
\(179\) 2800.29 1.16929 0.584646 0.811289i \(-0.301234\pi\)
0.584646 + 0.811289i \(0.301234\pi\)
\(180\) 0 0
\(181\) 1542.00 0.633237 0.316619 0.948553i \(-0.397452\pi\)
0.316619 + 0.948553i \(0.397452\pi\)
\(182\) 0 0
\(183\) −328.000 −0.132494
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1856.00 0.725798
\(188\) 0 0
\(189\) 608.000 0.233997
\(190\) 0 0
\(191\) −4480.46 −1.69735 −0.848677 0.528912i \(-0.822600\pi\)
−0.848677 + 0.528912i \(0.822600\pi\)
\(192\) 0 0
\(193\) 2541.80 0.947993 0.473996 0.880527i \(-0.342811\pi\)
0.473996 + 0.880527i \(0.342811\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2735.66 −0.989381 −0.494690 0.869069i \(-0.664718\pi\)
−0.494690 + 0.869069i \(0.664718\pi\)
\(198\) 0 0
\(199\) 258.488 0.0920790 0.0460395 0.998940i \(-0.485340\pi\)
0.0460395 + 0.998940i \(0.485340\pi\)
\(200\) 0 0
\(201\) −2768.00 −0.971342
\(202\) 0 0
\(203\) −632.000 −0.218511
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 572.000 0.192062
\(208\) 0 0
\(209\) −5568.00 −1.84281
\(210\) 0 0
\(211\) −904.708 −0.295178 −0.147589 0.989049i \(-0.547151\pi\)
−0.147589 + 0.989049i \(0.547151\pi\)
\(212\) 0 0
\(213\) 3791.16 1.21956
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 689.301 0.215635
\(218\) 0 0
\(219\) 1723.25 0.531720
\(220\) 0 0
\(221\) 928.000 0.282462
\(222\) 0 0
\(223\) 4284.00 1.28645 0.643224 0.765678i \(-0.277596\pi\)
0.643224 + 0.765678i \(0.277596\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4956.00 −1.44908 −0.724540 0.689232i \(-0.757948\pi\)
−0.724540 + 0.689232i \(0.757948\pi\)
\(228\) 0 0
\(229\) 1770.00 0.510764 0.255382 0.966840i \(-0.417799\pi\)
0.255382 + 0.966840i \(0.417799\pi\)
\(230\) 0 0
\(231\) −689.301 −0.196332
\(232\) 0 0
\(233\) −5428.25 −1.52625 −0.763125 0.646251i \(-0.776336\pi\)
−0.763125 + 0.646251i \(0.776336\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1378.60 −0.377847
\(238\) 0 0
\(239\) 5514.41 1.49246 0.746229 0.665689i \(-0.231862\pi\)
0.746229 + 0.665689i \(0.231862\pi\)
\(240\) 0 0
\(241\) −1618.00 −0.432467 −0.216233 0.976342i \(-0.569377\pi\)
−0.216233 + 0.976342i \(0.569377\pi\)
\(242\) 0 0
\(243\) −2860.00 −0.755017
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2784.00 −0.717173
\(248\) 0 0
\(249\) −3760.00 −0.956949
\(250\) 0 0
\(251\) −4954.35 −1.24588 −0.622940 0.782270i \(-0.714062\pi\)
−0.622940 + 0.782270i \(0.714062\pi\)
\(252\) 0 0
\(253\) −2240.23 −0.556688
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4652.78 1.12931 0.564655 0.825327i \(-0.309009\pi\)
0.564655 + 0.825327i \(0.309009\pi\)
\(258\) 0 0
\(259\) −1120.11 −0.268728
\(260\) 0 0
\(261\) 1738.00 0.412182
\(262\) 0 0
\(263\) 604.000 0.141613 0.0708065 0.997490i \(-0.477443\pi\)
0.0708065 + 0.997490i \(0.477443\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −24.0000 −0.00550103
\(268\) 0 0
\(269\) 3262.00 0.739359 0.369680 0.929159i \(-0.379467\pi\)
0.369680 + 0.929159i \(0.379467\pi\)
\(270\) 0 0
\(271\) 2067.90 0.463528 0.231764 0.972772i \(-0.425550\pi\)
0.231764 + 0.972772i \(0.425550\pi\)
\(272\) 0 0
\(273\) −344.651 −0.0764073
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1227.82 −0.266326 −0.133163 0.991094i \(-0.542513\pi\)
−0.133163 + 0.991094i \(0.542513\pi\)
\(278\) 0 0
\(279\) −1895.58 −0.406757
\(280\) 0 0
\(281\) −1290.00 −0.273861 −0.136931 0.990581i \(-0.543724\pi\)
−0.136931 + 0.990581i \(0.543724\pi\)
\(282\) 0 0
\(283\) −692.000 −0.145354 −0.0726769 0.997356i \(-0.523154\pi\)
−0.0726769 + 0.997356i \(0.523154\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −680.000 −0.139858
\(288\) 0 0
\(289\) −3057.00 −0.622227
\(290\) 0 0
\(291\) 4308.13 0.867860
\(292\) 0 0
\(293\) 5535.95 1.10380 0.551900 0.833910i \(-0.313903\pi\)
0.551900 + 0.833910i \(0.313903\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6548.36 1.27938
\(298\) 0 0
\(299\) −1120.11 −0.216648
\(300\) 0 0
\(301\) 1264.00 0.242046
\(302\) 0 0
\(303\) −4056.00 −0.769014
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −7436.00 −1.38239 −0.691197 0.722666i \(-0.742916\pi\)
−0.691197 + 0.722666i \(0.742916\pi\)
\(308\) 0 0
\(309\) −176.000 −0.0324022
\(310\) 0 0
\(311\) 2498.72 0.455592 0.227796 0.973709i \(-0.426848\pi\)
0.227796 + 0.973709i \(0.426848\pi\)
\(312\) 0 0
\(313\) 2714.12 0.490132 0.245066 0.969506i \(-0.421190\pi\)
0.245066 + 0.969506i \(0.421190\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3295.72 −0.583931 −0.291965 0.956429i \(-0.594309\pi\)
−0.291965 + 0.956429i \(0.594309\pi\)
\(318\) 0 0
\(319\) −6806.85 −1.19470
\(320\) 0 0
\(321\) −7248.00 −1.26026
\(322\) 0 0
\(323\) −5568.00 −0.959170
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −8056.00 −1.36238
\(328\) 0 0
\(329\) 976.000 0.163552
\(330\) 0 0
\(331\) 2972.61 0.493624 0.246812 0.969063i \(-0.420617\pi\)
0.246812 + 0.969063i \(0.420617\pi\)
\(332\) 0 0
\(333\) 3080.31 0.506907
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9133.24 −1.47632 −0.738159 0.674627i \(-0.764305\pi\)
−0.738159 + 0.674627i \(0.764305\pi\)
\(338\) 0 0
\(339\) −6548.36 −1.04914
\(340\) 0 0
\(341\) 7424.00 1.17898
\(342\) 0 0
\(343\) −2680.00 −0.421885
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5916.00 −0.915238 −0.457619 0.889148i \(-0.651298\pi\)
−0.457619 + 0.889148i \(0.651298\pi\)
\(348\) 0 0
\(349\) 7522.00 1.15371 0.576853 0.816848i \(-0.304281\pi\)
0.576853 + 0.816848i \(0.304281\pi\)
\(350\) 0 0
\(351\) 3274.18 0.497900
\(352\) 0 0
\(353\) −8185.45 −1.23419 −0.617093 0.786890i \(-0.711690\pi\)
−0.617093 + 0.786890i \(0.711690\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −689.301 −0.102190
\(358\) 0 0
\(359\) 1464.76 0.215341 0.107670 0.994187i \(-0.465661\pi\)
0.107670 + 0.994187i \(0.465661\pi\)
\(360\) 0 0
\(361\) 9845.00 1.43534
\(362\) 0 0
\(363\) −2100.00 −0.303640
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 516.000 0.0733923 0.0366962 0.999326i \(-0.488317\pi\)
0.0366962 + 0.999326i \(0.488317\pi\)
\(368\) 0 0
\(369\) 1870.00 0.263817
\(370\) 0 0
\(371\) 1981.74 0.277323
\(372\) 0 0
\(373\) −8077.75 −1.12131 −0.560657 0.828048i \(-0.689451\pi\)
−0.560657 + 0.828048i \(0.689451\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3403.42 −0.464948
\(378\) 0 0
\(379\) 2197.15 0.297783 0.148892 0.988854i \(-0.452429\pi\)
0.148892 + 0.988854i \(0.452429\pi\)
\(380\) 0 0
\(381\) −11152.0 −1.49957
\(382\) 0 0
\(383\) −5988.00 −0.798884 −0.399442 0.916759i \(-0.630796\pi\)
−0.399442 + 0.916759i \(0.630796\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3476.00 −0.456576
\(388\) 0 0
\(389\) 7974.00 1.03933 0.519663 0.854371i \(-0.326057\pi\)
0.519663 + 0.854371i \(0.326057\pi\)
\(390\) 0 0
\(391\) −2240.23 −0.289753
\(392\) 0 0
\(393\) 172.325 0.0221187
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7991.58 1.01029 0.505146 0.863034i \(-0.331439\pi\)
0.505146 + 0.863034i \(0.331439\pi\)
\(398\) 0 0
\(399\) 2067.90 0.259460
\(400\) 0 0
\(401\) 418.000 0.0520547 0.0260273 0.999661i \(-0.491714\pi\)
0.0260273 + 0.999661i \(0.491714\pi\)
\(402\) 0 0
\(403\) 3712.00 0.458829
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12064.0 −1.46926
\(408\) 0 0
\(409\) −1414.00 −0.170948 −0.0854741 0.996340i \(-0.527240\pi\)
−0.0854741 + 0.996340i \(0.527240\pi\)
\(410\) 0 0
\(411\) −1895.58 −0.227499
\(412\) 0 0
\(413\) 2584.88 0.307975
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8443.94 0.991610
\(418\) 0 0
\(419\) 3661.91 0.426960 0.213480 0.976947i \(-0.431520\pi\)
0.213480 + 0.976947i \(0.431520\pi\)
\(420\) 0 0
\(421\) 3290.00 0.380866 0.190433 0.981700i \(-0.439011\pi\)
0.190433 + 0.981700i \(0.439011\pi\)
\(422\) 0 0
\(423\) −2684.00 −0.308512
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 328.000 0.0371734
\(428\) 0 0
\(429\) −3712.00 −0.417755
\(430\) 0 0
\(431\) −1723.25 −0.192590 −0.0962949 0.995353i \(-0.530699\pi\)
−0.0962949 + 0.995353i \(0.530699\pi\)
\(432\) 0 0
\(433\) 16414.0 1.82172 0.910861 0.412713i \(-0.135419\pi\)
0.910861 + 0.412713i \(0.135419\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6720.69 0.735684
\(438\) 0 0
\(439\) 3704.99 0.402801 0.201401 0.979509i \(-0.435451\pi\)
0.201401 + 0.979509i \(0.435451\pi\)
\(440\) 0 0
\(441\) 3597.00 0.388403
\(442\) 0 0
\(443\) 5484.00 0.588155 0.294078 0.955782i \(-0.404988\pi\)
0.294078 + 0.955782i \(0.404988\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −10200.0 −1.07929
\(448\) 0 0
\(449\) 3458.00 0.363459 0.181730 0.983349i \(-0.441830\pi\)
0.181730 + 0.983349i \(0.441830\pi\)
\(450\) 0 0
\(451\) −7323.82 −0.764668
\(452\) 0 0
\(453\) −8616.26 −0.893659
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10468.8 −1.07157 −0.535786 0.844354i \(-0.679984\pi\)
−0.535786 + 0.844354i \(0.679984\pi\)
\(458\) 0 0
\(459\) 6548.36 0.665907
\(460\) 0 0
\(461\) 5806.00 0.586578 0.293289 0.956024i \(-0.405250\pi\)
0.293289 + 0.956024i \(0.405250\pi\)
\(462\) 0 0
\(463\) 5004.00 0.502280 0.251140 0.967951i \(-0.419195\pi\)
0.251140 + 0.967951i \(0.419195\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5148.00 −0.510109 −0.255055 0.966927i \(-0.582093\pi\)
−0.255055 + 0.966927i \(0.582093\pi\)
\(468\) 0 0
\(469\) 2768.00 0.272525
\(470\) 0 0
\(471\) −14216.8 −1.39082
\(472\) 0 0
\(473\) 13613.7 1.32338
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5449.79 −0.523121
\(478\) 0 0
\(479\) −4480.46 −0.427385 −0.213692 0.976901i \(-0.568549\pi\)
−0.213692 + 0.976901i \(0.568549\pi\)
\(480\) 0 0
\(481\) −6032.00 −0.571799
\(482\) 0 0
\(483\) 832.000 0.0783795
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3044.00 0.283238 0.141619 0.989921i \(-0.454769\pi\)
0.141619 + 0.989921i \(0.454769\pi\)
\(488\) 0 0
\(489\) 912.000 0.0843396
\(490\) 0 0
\(491\) 215.407 0.0197987 0.00989935 0.999951i \(-0.496849\pi\)
0.00989935 + 0.999951i \(0.496849\pi\)
\(492\) 0 0
\(493\) −6806.85 −0.621836
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3791.16 −0.342166
\(498\) 0 0
\(499\) 11416.5 1.02420 0.512099 0.858926i \(-0.328868\pi\)
0.512099 + 0.858926i \(0.328868\pi\)
\(500\) 0 0
\(501\) −1488.00 −0.132692
\(502\) 0 0
\(503\) −15348.0 −1.36050 −0.680252 0.732978i \(-0.738130\pi\)
−0.680252 + 0.732978i \(0.738130\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6932.00 0.607221
\(508\) 0 0
\(509\) −17502.0 −1.52409 −0.762046 0.647523i \(-0.775805\pi\)
−0.762046 + 0.647523i \(0.775805\pi\)
\(510\) 0 0
\(511\) −1723.25 −0.149182
\(512\) 0 0
\(513\) −19645.1 −1.69074
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10511.8 0.894217
\(518\) 0 0
\(519\) 7668.47 0.648572
\(520\) 0 0
\(521\) 2874.00 0.241674 0.120837 0.992672i \(-0.461442\pi\)
0.120837 + 0.992672i \(0.461442\pi\)
\(522\) 0 0
\(523\) 14604.0 1.22101 0.610505 0.792012i \(-0.290966\pi\)
0.610505 + 0.792012i \(0.290966\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7424.00 0.613652
\(528\) 0 0
\(529\) −9463.00 −0.777760
\(530\) 0 0
\(531\) −7108.42 −0.580940
\(532\) 0 0
\(533\) −3661.91 −0.297589
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −11201.1 −0.900121
\(538\) 0 0
\(539\) −14087.6 −1.12578
\(540\) 0 0
\(541\) −19330.0 −1.53616 −0.768079 0.640355i \(-0.778787\pi\)
−0.768079 + 0.640355i \(0.778787\pi\)
\(542\) 0 0
\(543\) −6168.00 −0.487466
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 708.000 0.0553417 0.0276708 0.999617i \(-0.491191\pi\)
0.0276708 + 0.999617i \(0.491191\pi\)
\(548\) 0 0
\(549\) −902.000 −0.0701210
\(550\) 0 0
\(551\) 20420.5 1.57885
\(552\) 0 0
\(553\) 1378.60 0.106011
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9284.02 −0.706242 −0.353121 0.935578i \(-0.614880\pi\)
−0.353121 + 0.935578i \(0.614880\pi\)
\(558\) 0 0
\(559\) 6806.85 0.515025
\(560\) 0 0
\(561\) −7424.00 −0.558719
\(562\) 0 0
\(563\) −9220.00 −0.690189 −0.345095 0.938568i \(-0.612153\pi\)
−0.345095 + 0.938568i \(0.612153\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1244.00 −0.0921395
\(568\) 0 0
\(569\) 10458.0 0.770513 0.385257 0.922809i \(-0.374113\pi\)
0.385257 + 0.922809i \(0.374113\pi\)
\(570\) 0 0
\(571\) 13312.1 0.975648 0.487824 0.872942i \(-0.337791\pi\)
0.487824 + 0.872942i \(0.337791\pi\)
\(572\) 0 0
\(573\) 17921.8 1.30662
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 17491.0 1.26198 0.630988 0.775792i \(-0.282650\pi\)
0.630988 + 0.775792i \(0.282650\pi\)
\(578\) 0 0
\(579\) −10167.2 −0.729765
\(580\) 0 0
\(581\) 3760.00 0.268487
\(582\) 0 0
\(583\) 21344.0 1.51626
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11460.0 0.805800 0.402900 0.915244i \(-0.368002\pi\)
0.402900 + 0.915244i \(0.368002\pi\)
\(588\) 0 0
\(589\) −22272.0 −1.55807
\(590\) 0 0
\(591\) 10942.7 0.761626
\(592\) 0 0
\(593\) −2326.39 −0.161102 −0.0805510 0.996750i \(-0.525668\pi\)
−0.0805510 + 0.996750i \(0.525668\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1033.95 −0.0708825
\(598\) 0 0
\(599\) −24384.0 −1.66328 −0.831640 0.555316i \(-0.812597\pi\)
−0.831640 + 0.555316i \(0.812597\pi\)
\(600\) 0 0
\(601\) 24054.0 1.63258 0.816292 0.577639i \(-0.196026\pi\)
0.816292 + 0.577639i \(0.196026\pi\)
\(602\) 0 0
\(603\) −7612.00 −0.514071
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 17364.0 1.16109 0.580546 0.814227i \(-0.302839\pi\)
0.580546 + 0.814227i \(0.302839\pi\)
\(608\) 0 0
\(609\) 2528.00 0.168210
\(610\) 0 0
\(611\) 5255.92 0.348006
\(612\) 0 0
\(613\) −2434.09 −0.160379 −0.0801894 0.996780i \(-0.525553\pi\)
−0.0801894 + 0.996780i \(0.525553\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8616.26 0.562201 0.281100 0.959678i \(-0.409301\pi\)
0.281100 + 0.959678i \(0.409301\pi\)
\(618\) 0 0
\(619\) −9176.32 −0.595844 −0.297922 0.954590i \(-0.596294\pi\)
−0.297922 + 0.954590i \(0.596294\pi\)
\(620\) 0 0
\(621\) −7904.00 −0.510751
\(622\) 0 0
\(623\) 24.0000 0.00154340
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 22272.0 1.41859
\(628\) 0 0
\(629\) −12064.0 −0.764743
\(630\) 0 0
\(631\) −9219.40 −0.581646 −0.290823 0.956777i \(-0.593929\pi\)
−0.290823 + 0.956777i \(0.593929\pi\)
\(632\) 0 0
\(633\) 3618.83 0.227228
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −7043.80 −0.438125
\(638\) 0 0
\(639\) 10425.7 0.645436
\(640\) 0 0
\(641\) −25538.0 −1.57362 −0.786810 0.617195i \(-0.788269\pi\)
−0.786810 + 0.617195i \(0.788269\pi\)
\(642\) 0 0
\(643\) 22060.0 1.35297 0.676486 0.736455i \(-0.263502\pi\)
0.676486 + 0.736455i \(0.263502\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29444.0 1.78912 0.894562 0.446944i \(-0.147488\pi\)
0.894562 + 0.446944i \(0.147488\pi\)
\(648\) 0 0
\(649\) 27840.0 1.68385
\(650\) 0 0
\(651\) −2757.20 −0.165996
\(652\) 0 0
\(653\) 20786.7 1.24571 0.622854 0.782338i \(-0.285973\pi\)
0.622854 + 0.782338i \(0.285973\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4738.95 0.281406
\(658\) 0 0
\(659\) −13742.9 −0.812366 −0.406183 0.913792i \(-0.633140\pi\)
−0.406183 + 0.913792i \(0.633140\pi\)
\(660\) 0 0
\(661\) 11530.0 0.678464 0.339232 0.940703i \(-0.389833\pi\)
0.339232 + 0.940703i \(0.389833\pi\)
\(662\) 0 0
\(663\) −3712.00 −0.217439
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8216.00 0.476949
\(668\) 0 0
\(669\) −17136.0 −0.990308
\(670\) 0 0
\(671\) 3532.67 0.203245
\(672\) 0 0
\(673\) −23910.1 −1.36949 −0.684746 0.728782i \(-0.740087\pi\)
−0.684746 + 0.728782i \(0.740087\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2175.61 0.123509 0.0617543 0.998091i \(-0.480330\pi\)
0.0617543 + 0.998091i \(0.480330\pi\)
\(678\) 0 0
\(679\) −4308.13 −0.243492
\(680\) 0 0
\(681\) 19824.0 1.11550
\(682\) 0 0
\(683\) −20708.0 −1.16013 −0.580066 0.814570i \(-0.696973\pi\)
−0.580066 + 0.814570i \(0.696973\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −7080.00 −0.393186
\(688\) 0 0
\(689\) 10672.0 0.590088
\(690\) 0 0
\(691\) 4609.70 0.253779 0.126890 0.991917i \(-0.459501\pi\)
0.126890 + 0.991917i \(0.459501\pi\)
\(692\) 0 0
\(693\) −1895.58 −0.103906
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −7323.82 −0.398005
\(698\) 0 0
\(699\) 21713.0 1.17491
\(700\) 0 0
\(701\) −8942.00 −0.481790 −0.240895 0.970551i \(-0.577441\pi\)
−0.240895 + 0.970551i \(0.577441\pi\)
\(702\) 0 0
\(703\) 36192.0 1.94169
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4056.00 0.215759
\(708\) 0 0
\(709\) −3670.00 −0.194400 −0.0972001 0.995265i \(-0.530989\pi\)
−0.0972001 + 0.995265i \(0.530989\pi\)
\(710\) 0 0
\(711\) −3791.16 −0.199971
\(712\) 0 0
\(713\) −8960.91 −0.470672
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −22057.6 −1.14889
\(718\) 0 0
\(719\) −8616.26 −0.446916 −0.223458 0.974714i \(-0.571735\pi\)
−0.223458 + 0.974714i \(0.571735\pi\)
\(720\) 0 0
\(721\) 176.000 0.00909096
\(722\) 0 0
\(723\) 6472.00 0.332913
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 32004.0 1.63269 0.816343 0.577567i \(-0.195998\pi\)
0.816343 + 0.577567i \(0.195998\pi\)
\(728\) 0 0
\(729\) 19837.0 1.00782
\(730\) 0 0
\(731\) 13613.7 0.688811
\(732\) 0 0
\(733\) −5363.62 −0.270273 −0.135136 0.990827i \(-0.543147\pi\)
−0.135136 + 0.990827i \(0.543147\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29812.3 1.49003
\(738\) 0 0
\(739\) 25374.9 1.26310 0.631550 0.775335i \(-0.282419\pi\)
0.631550 + 0.775335i \(0.282419\pi\)
\(740\) 0 0
\(741\) 11136.0 0.552080
\(742\) 0 0
\(743\) 17404.0 0.859342 0.429671 0.902986i \(-0.358630\pi\)
0.429671 + 0.902986i \(0.358630\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −10340.0 −0.506454
\(748\) 0 0
\(749\) 7248.00 0.353586
\(750\) 0 0
\(751\) −32569.5 −1.58253 −0.791263 0.611476i \(-0.790576\pi\)
−0.791263 + 0.611476i \(0.790576\pi\)
\(752\) 0 0
\(753\) 19817.4 0.959079
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6139.09 −0.294754 −0.147377 0.989080i \(-0.547083\pi\)
−0.147377 + 0.989080i \(0.547083\pi\)
\(758\) 0 0
\(759\) 8960.91 0.428538
\(760\) 0 0
\(761\) 27850.0 1.32663 0.663313 0.748342i \(-0.269150\pi\)
0.663313 + 0.748342i \(0.269150\pi\)
\(762\) 0 0
\(763\) 8056.00 0.382237
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13920.0 0.655309
\(768\) 0 0
\(769\) 33550.0 1.57327 0.786635 0.617419i \(-0.211822\pi\)
0.786635 + 0.617419i \(0.211822\pi\)
\(770\) 0 0
\(771\) −18611.1 −0.869343
\(772\) 0 0
\(773\) −1658.63 −0.0771757 −0.0385878 0.999255i \(-0.512286\pi\)
−0.0385878 + 0.999255i \(0.512286\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4480.46 0.206867
\(778\) 0 0
\(779\) 21971.5 1.01054
\(780\) 0 0
\(781\) −40832.0 −1.87079
\(782\) 0 0
\(783\) −24016.0 −1.09612
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 27028.0 1.22420 0.612099 0.790781i \(-0.290325\pi\)
0.612099 + 0.790781i \(0.290325\pi\)
\(788\) 0 0
\(789\) −2416.00 −0.109014
\(790\) 0 0
\(791\) 6548.36 0.294353
\(792\) 0 0
\(793\) 1766.33 0.0790976
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2692.58 −0.119669 −0.0598345 0.998208i \(-0.519057\pi\)
−0.0598345 + 0.998208i \(0.519057\pi\)
\(798\) 0 0
\(799\) 10511.8 0.465435
\(800\) 0 0
\(801\) −66.0000 −0.00291135
\(802\) 0 0
\(803\) −18560.0 −0.815652
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −13048.0 −0.569159
\(808\) 0 0
\(809\) −1434.00 −0.0623198 −0.0311599 0.999514i \(-0.509920\pi\)
−0.0311599 + 0.999514i \(0.509920\pi\)
\(810\) 0 0
\(811\) −42004.3 −1.81871 −0.909353 0.416026i \(-0.863422\pi\)
−0.909353 + 0.416026i \(0.863422\pi\)
\(812\) 0 0
\(813\) −8271.61 −0.356824
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −40841.1 −1.74890
\(818\) 0 0
\(819\) −947.789 −0.0404376
\(820\) 0 0
\(821\) 21322.0 0.906386 0.453193 0.891412i \(-0.350285\pi\)
0.453193 + 0.891412i \(0.350285\pi\)
\(822\) 0 0
\(823\) 21548.0 0.912656 0.456328 0.889812i \(-0.349164\pi\)
0.456328 + 0.889812i \(0.349164\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9660.00 −0.406180 −0.203090 0.979160i \(-0.565098\pi\)
−0.203090 + 0.979160i \(0.565098\pi\)
\(828\) 0 0
\(829\) −24082.0 −1.00893 −0.504465 0.863432i \(-0.668310\pi\)
−0.504465 + 0.863432i \(0.668310\pi\)
\(830\) 0 0
\(831\) 4911.27 0.205018
\(832\) 0 0
\(833\) −14087.6 −0.585962
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 26193.4 1.08169
\(838\) 0 0
\(839\) 14906.1 0.613369 0.306685 0.951811i \(-0.400780\pi\)
0.306685 + 0.951811i \(0.400780\pi\)
\(840\) 0 0
\(841\) 575.000 0.0235762
\(842\) 0 0
\(843\) 5160.00 0.210818
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2100.00 0.0851911
\(848\) 0 0
\(849\) 2768.00 0.111893
\(850\) 0 0
\(851\) 14561.5 0.586559
\(852\) 0 0
\(853\) 21002.1 0.843024 0.421512 0.906823i \(-0.361499\pi\)
0.421512 + 0.906823i \(0.361499\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19860.5 −0.791624 −0.395812 0.918332i \(-0.629537\pi\)
−0.395812 + 0.918332i \(0.629537\pi\)
\(858\) 0 0
\(859\) −34852.8 −1.38436 −0.692178 0.721727i \(-0.743349\pi\)
−0.692178 + 0.721727i \(0.743349\pi\)
\(860\) 0 0
\(861\) 2720.00 0.107662
\(862\) 0 0
\(863\) 11468.0 0.452347 0.226173 0.974087i \(-0.427378\pi\)
0.226173 + 0.974087i \(0.427378\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 12228.0 0.478990
\(868\) 0 0
\(869\) 14848.0 0.579613
\(870\) 0 0
\(871\) 14906.1 0.579880
\(872\) 0 0
\(873\) 11847.4 0.459304
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 34572.8 1.33117 0.665587 0.746321i \(-0.268181\pi\)
0.665587 + 0.746321i \(0.268181\pi\)
\(878\) 0 0
\(879\) −22143.8 −0.849706
\(880\) 0 0
\(881\) −33186.0 −1.26909 −0.634543 0.772888i \(-0.718812\pi\)
−0.634543 + 0.772888i \(0.718812\pi\)
\(882\) 0 0
\(883\) 15196.0 0.579146 0.289573 0.957156i \(-0.406487\pi\)
0.289573 + 0.957156i \(0.406487\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3036.00 −0.114925 −0.0574627 0.998348i \(-0.518301\pi\)
−0.0574627 + 0.998348i \(0.518301\pi\)
\(888\) 0 0
\(889\) 11152.0 0.420727
\(890\) 0 0
\(891\) −13398.3 −0.503771
\(892\) 0 0
\(893\) −31535.5 −1.18174
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4480.46 0.166776
\(898\) 0 0
\(899\) −27227.4 −1.01011
\(900\) 0 0
\(901\) 21344.0 0.789203
\(902\) 0 0
\(903\) −5056.00 −0.186327
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −7404.00 −0.271054 −0.135527 0.990774i \(-0.543273\pi\)
−0.135527 + 0.990774i \(0.543273\pi\)
\(908\) 0 0
\(909\) −11154.0 −0.406991
\(910\) 0 0
\(911\) 6548.36 0.238152 0.119076 0.992885i \(-0.462007\pi\)
0.119076 + 0.992885i \(0.462007\pi\)
\(912\) 0 0
\(913\) 40496.4 1.46795
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −172.325 −0.00620576
\(918\) 0 0
\(919\) 34206.6 1.22782 0.613912 0.789374i \(-0.289595\pi\)
0.613912 + 0.789374i \(0.289595\pi\)
\(920\) 0 0
\(921\) 29744.0 1.06417
\(922\) 0 0
\(923\) −20416.0 −0.728062
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −484.000 −0.0171485
\(928\) 0 0
\(929\) −24286.0 −0.857694 −0.428847 0.903377i \(-0.641080\pi\)
−0.428847 + 0.903377i \(0.641080\pi\)
\(930\) 0 0
\(931\) 42262.8 1.48776
\(932\) 0 0
\(933\) −9994.87 −0.350715
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 37997.7 1.32479 0.662397 0.749153i \(-0.269539\pi\)
0.662397 + 0.749153i \(0.269539\pi\)
\(938\) 0 0
\(939\) −10856.5 −0.377304
\(940\) 0 0
\(941\) −36722.0 −1.27216 −0.636080 0.771623i \(-0.719445\pi\)
−0.636080 + 0.771623i \(0.719445\pi\)
\(942\) 0 0
\(943\) 8840.00 0.305270
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16364.0 −0.561519 −0.280760 0.959778i \(-0.590586\pi\)
−0.280760 + 0.959778i \(0.590586\pi\)
\(948\) 0 0
\(949\) −9280.00 −0.317431
\(950\) 0 0
\(951\) 13182.9 0.449510
\(952\) 0 0
\(953\) 7797.72 0.265050 0.132525 0.991180i \(-0.457691\pi\)
0.132525 + 0.991180i \(0.457691\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 27227.4 0.919683
\(958\) 0 0
\(959\) 1895.58 0.0638284
\(960\) 0 0
\(961\) −95.0000 −0.00318888
\(962\) 0 0
\(963\) −19932.0 −0.666978
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 16756.0 0.557225 0.278613 0.960404i \(-0.410125\pi\)
0.278613 + 0.960404i \(0.410125\pi\)
\(968\) 0 0
\(969\) 22272.0 0.738369
\(970\) 0 0
\(971\) 16414.0 0.542482 0.271241 0.962512i \(-0.412566\pi\)
0.271241 + 0.962512i \(0.412566\pi\)
\(972\) 0 0
\(973\) −8443.94 −0.278212
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −50362.1 −1.64916 −0.824578 0.565749i \(-0.808587\pi\)
−0.824578 + 0.565749i \(0.808587\pi\)
\(978\) 0 0
\(979\) 258.488 0.00843852
\(980\) 0 0
\(981\) −22154.0 −0.721022
\(982\) 0 0
\(983\) −60612.0 −1.96666 −0.983328 0.181841i \(-0.941794\pi\)
−0.983328 + 0.181841i \(0.941794\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −3904.00 −0.125902
\(988\) 0 0
\(989\) −16432.0 −0.528319
\(990\) 0 0
\(991\) 16198.6 0.519238 0.259619 0.965711i \(-0.416403\pi\)
0.259619 + 0.965711i \(0.416403\pi\)
\(992\) 0 0
\(993\) −11890.4 −0.379992
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −54002.4 −1.71542 −0.857710 0.514133i \(-0.828114\pi\)
−0.857710 + 0.514133i \(0.828114\pi\)
\(998\) 0 0
\(999\) −42564.3 −1.34802
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.a.n.1.2 2
4.3 odd 2 800.4.a.r.1.1 2
5.2 odd 4 160.4.c.b.129.3 yes 4
5.3 odd 4 160.4.c.b.129.2 yes 4
5.4 even 2 800.4.a.r.1.2 2
8.3 odd 2 1600.4.a.cc.1.2 2
8.5 even 2 1600.4.a.co.1.1 2
15.2 even 4 1440.4.f.h.289.4 4
15.8 even 4 1440.4.f.h.289.1 4
20.3 even 4 160.4.c.b.129.4 yes 4
20.7 even 4 160.4.c.b.129.1 4
20.19 odd 2 inner 800.4.a.n.1.1 2
40.3 even 4 320.4.c.i.129.1 4
40.13 odd 4 320.4.c.i.129.3 4
40.19 odd 2 1600.4.a.co.1.2 2
40.27 even 4 320.4.c.i.129.4 4
40.29 even 2 1600.4.a.cc.1.1 2
40.37 odd 4 320.4.c.i.129.2 4
60.23 odd 4 1440.4.f.h.289.2 4
60.47 odd 4 1440.4.f.h.289.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.c.b.129.1 4 20.7 even 4
160.4.c.b.129.2 yes 4 5.3 odd 4
160.4.c.b.129.3 yes 4 5.2 odd 4
160.4.c.b.129.4 yes 4 20.3 even 4
320.4.c.i.129.1 4 40.3 even 4
320.4.c.i.129.2 4 40.37 odd 4
320.4.c.i.129.3 4 40.13 odd 4
320.4.c.i.129.4 4 40.27 even 4
800.4.a.n.1.1 2 20.19 odd 2 inner
800.4.a.n.1.2 2 1.1 even 1 trivial
800.4.a.r.1.1 2 4.3 odd 2
800.4.a.r.1.2 2 5.4 even 2
1440.4.f.h.289.1 4 15.8 even 4
1440.4.f.h.289.2 4 60.23 odd 4
1440.4.f.h.289.3 4 60.47 odd 4
1440.4.f.h.289.4 4 15.2 even 4
1600.4.a.cc.1.1 2 40.29 even 2
1600.4.a.cc.1.2 2 8.3 odd 2
1600.4.a.co.1.1 2 8.5 even 2
1600.4.a.co.1.2 2 40.19 odd 2