Properties

Label 800.4.a.l.1.2
Level $800$
Weight $4$
Character 800.1
Self dual yes
Analytic conductor $47.202$
Analytic rank $1$
Dimension $2$
CM discriminant -20
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(1,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.2015280046\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.76393 q^{3} +15.5967 q^{7} -4.30495 q^{9} -74.3018 q^{21} -207.872 q^{23} +149.135 q^{27} +306.000 q^{29} +460.630 q^{41} +30.9079 q^{43} -643.118 q^{47} -99.7415 q^{49} +40.2492 q^{61} -67.1432 q^{63} -1096.84 q^{67} +990.289 q^{69} -594.234 q^{81} +1143.60 q^{83} -1457.76 q^{87} -1386.00 q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} - 18 q^{7} + 54 q^{9} + 236 q^{21} - 134 q^{23} - 140 q^{27} + 612 q^{29} + 594 q^{43} - 602 q^{47} + 686 q^{49} - 2026 q^{63} - 1098 q^{67} + 308 q^{69} + 502 q^{81} + 154 q^{83} - 4284 q^{87}+ \cdots - 2772 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.76393 −0.916819 −0.458410 0.888741i \(-0.651581\pi\)
−0.458410 + 0.888741i \(0.651581\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 15.5967 0.842145 0.421073 0.907027i \(-0.361654\pi\)
0.421073 + 0.907027i \(0.361654\pi\)
\(8\) 0 0
\(9\) −4.30495 −0.159443
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −74.3018 −0.772095
\(22\) 0 0
\(23\) −207.872 −1.88454 −0.942269 0.334857i \(-0.891312\pi\)
−0.942269 + 0.334857i \(0.891312\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 149.135 1.06300
\(28\) 0 0
\(29\) 306.000 1.95941 0.979703 0.200455i \(-0.0642419\pi\)
0.979703 + 0.200455i \(0.0642419\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 460.630 1.75459 0.877297 0.479949i \(-0.159345\pi\)
0.877297 + 0.479949i \(0.159345\pi\)
\(42\) 0 0
\(43\) 30.9079 0.109614 0.0548071 0.998497i \(-0.482546\pi\)
0.0548071 + 0.998497i \(0.482546\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −643.118 −1.99592 −0.997962 0.0638057i \(-0.979676\pi\)
−0.997962 + 0.0638057i \(0.979676\pi\)
\(48\) 0 0
\(49\) −99.7415 −0.290791
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 40.2492 0.0844817 0.0422409 0.999107i \(-0.486550\pi\)
0.0422409 + 0.999107i \(0.486550\pi\)
\(62\) 0 0
\(63\) −67.1432 −0.134274
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1096.84 −2.00000 −0.999999 0.00106064i \(-0.999662\pi\)
−0.999999 + 0.00106064i \(0.999662\pi\)
\(68\) 0 0
\(69\) 990.289 1.72778
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −594.234 −0.815135
\(82\) 0 0
\(83\) 1143.60 1.51237 0.756186 0.654357i \(-0.227060\pi\)
0.756186 + 0.654357i \(0.227060\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1457.76 −1.79642
\(88\) 0 0
\(89\) −1386.00 −1.65074 −0.825369 0.564593i \(-0.809033\pi\)
−0.825369 + 0.564593i \(0.809033\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −378.000 −0.372400 −0.186200 0.982512i \(-0.559617\pi\)
−0.186200 + 0.982512i \(0.559617\pi\)
\(102\) 0 0
\(103\) −1982.64 −1.89665 −0.948327 0.317295i \(-0.897225\pi\)
−0.948327 + 0.317295i \(0.897225\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1770.60 −1.59972 −0.799859 0.600188i \(-0.795093\pi\)
−0.799859 + 0.600188i \(0.795093\pi\)
\(108\) 0 0
\(109\) −1972.21 −1.73306 −0.866530 0.499124i \(-0.833655\pi\)
−0.866530 + 0.499124i \(0.833655\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) −2194.41 −1.60864
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 617.120 0.431185 0.215593 0.976483i \(-0.430832\pi\)
0.215593 + 0.976483i \(0.430832\pi\)
\(128\) 0 0
\(129\) −147.243 −0.100496
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 3063.77 1.82990
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 475.162 0.266603
\(148\) 0 0
\(149\) 1909.60 1.04994 0.524969 0.851121i \(-0.324077\pi\)
0.524969 + 0.851121i \(0.324077\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3242.13 −1.58705
\(162\) 0 0
\(163\) −2958.65 −1.42172 −0.710858 0.703336i \(-0.751693\pi\)
−0.710858 + 0.703336i \(0.751693\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4066.07 −1.88408 −0.942042 0.335494i \(-0.891097\pi\)
−0.942042 + 0.335494i \(0.891097\pi\)
\(168\) 0 0
\(169\) −2197.00 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 1078.00 0.442691 0.221346 0.975195i \(-0.428955\pi\)
0.221346 + 0.975195i \(0.428955\pi\)
\(182\) 0 0
\(183\) −191.745 −0.0774545
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2326.02 0.895200
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 5225.26 1.83364
\(202\) 0 0
\(203\) 4772.60 1.65010
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 894.880 0.300476
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2999.43 0.900703 0.450352 0.892851i \(-0.351299\pi\)
0.450352 + 0.892851i \(0.351299\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6677.07 −1.95230 −0.976152 0.217088i \(-0.930344\pi\)
−0.976152 + 0.217088i \(0.930344\pi\)
\(228\) 0 0
\(229\) 6874.00 1.98361 0.991805 0.127761i \(-0.0407789\pi\)
0.991805 + 0.127761i \(0.0407789\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −7285.11 −1.94720 −0.973600 0.228261i \(-0.926696\pi\)
−0.973600 + 0.228261i \(0.926696\pi\)
\(242\) 0 0
\(243\) −1195.75 −0.315667
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −5448.05 −1.38657
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1317.32 −0.312413
\(262\) 0 0
\(263\) 6439.62 1.50982 0.754912 0.655826i \(-0.227679\pi\)
0.754912 + 0.655826i \(0.227679\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6602.81 1.51343
\(268\) 0 0
\(269\) 6864.73 1.55595 0.777974 0.628297i \(-0.216248\pi\)
0.777974 + 0.628297i \(0.216248\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4288.78 0.910488 0.455244 0.890367i \(-0.349552\pi\)
0.455244 + 0.890367i \(0.349552\pi\)
\(282\) 0 0
\(283\) −6004.02 −1.26114 −0.630569 0.776133i \(-0.717178\pi\)
−0.630569 + 0.776133i \(0.717178\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7184.33 1.47762
\(288\) 0 0
\(289\) −4913.00 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 482.063 0.0923111
\(302\) 0 0
\(303\) 1800.77 0.341424
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4399.46 0.817884 0.408942 0.912560i \(-0.365898\pi\)
0.408942 + 0.912560i \(0.365898\pi\)
\(308\) 0 0
\(309\) 9445.16 1.73889
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 8434.99 1.46665
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 9395.48 1.58890
\(328\) 0 0
\(329\) −10030.6 −1.68086
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −6905.33 −1.08703
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12519.8 1.93688 0.968440 0.249247i \(-0.0801832\pi\)
0.968440 + 0.249247i \(0.0801832\pi\)
\(348\) 0 0
\(349\) −9646.00 −1.47948 −0.739740 0.672893i \(-0.765052\pi\)
−0.739740 + 0.672893i \(0.765052\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 6340.79 0.916819
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 12078.6 1.71797 0.858985 0.512000i \(-0.171095\pi\)
0.858985 + 0.512000i \(0.171095\pi\)
\(368\) 0 0
\(369\) −1982.99 −0.279757
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −2939.92 −0.395319
\(382\) 0 0
\(383\) 1290.76 0.172205 0.0861026 0.996286i \(-0.472559\pi\)
0.0861026 + 0.996286i \(0.472559\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −133.057 −0.0174772
\(388\) 0 0
\(389\) −5854.03 −0.763010 −0.381505 0.924367i \(-0.624594\pi\)
−0.381505 + 0.924367i \(0.624594\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15822.0 −1.97036 −0.985178 0.171534i \(-0.945128\pi\)
−0.985178 + 0.171534i \(0.945128\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 15817.9 1.91234 0.956170 0.292812i \(-0.0945911\pi\)
0.956170 + 0.292812i \(0.0945911\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 14369.0 1.66342 0.831711 0.555208i \(-0.187362\pi\)
0.831711 + 0.555208i \(0.187362\pi\)
\(422\) 0 0
\(423\) 2768.59 0.318236
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 627.757 0.0711459
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 429.382 0.0463646
\(442\) 0 0
\(443\) 18548.5 1.98931 0.994655 0.103256i \(-0.0329261\pi\)
0.994655 + 0.103256i \(0.0329261\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −9097.21 −0.962603
\(448\) 0 0
\(449\) −18939.5 −1.99067 −0.995334 0.0964880i \(-0.969239\pi\)
−0.995334 + 0.0964880i \(0.969239\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16002.0 −1.61668 −0.808338 0.588719i \(-0.799632\pi\)
−0.808338 + 0.588719i \(0.799632\pi\)
\(462\) 0 0
\(463\) −2293.27 −0.230188 −0.115094 0.993355i \(-0.536717\pi\)
−0.115094 + 0.993355i \(0.536717\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4004.65 0.396816 0.198408 0.980120i \(-0.436423\pi\)
0.198408 + 0.980120i \(0.436423\pi\)
\(468\) 0 0
\(469\) −17107.1 −1.68429
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 15445.3 1.45504
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −15279.6 −1.42173 −0.710865 0.703328i \(-0.751696\pi\)
−0.710865 + 0.703328i \(0.751696\pi\)
\(488\) 0 0
\(489\) 14094.8 1.30346
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 19370.5 1.72736
\(502\) 0 0
\(503\) −3284.06 −0.291111 −0.145556 0.989350i \(-0.546497\pi\)
−0.145556 + 0.989350i \(0.546497\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 10466.4 0.916819
\(508\) 0 0
\(509\) 8946.00 0.779026 0.389513 0.921021i \(-0.372643\pi\)
0.389513 + 0.921021i \(0.372643\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8442.00 0.709886 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(522\) 0 0
\(523\) −5596.77 −0.467934 −0.233967 0.972245i \(-0.575171\pi\)
−0.233967 + 0.972245i \(0.575171\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 31043.9 2.55148
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −6802.00 −0.540556 −0.270278 0.962782i \(-0.587116\pi\)
−0.270278 + 0.962782i \(0.587116\pi\)
\(542\) 0 0
\(543\) −5135.52 −0.405868
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −14074.0 −1.10011 −0.550055 0.835129i \(-0.685393\pi\)
−0.550055 + 0.835129i \(0.685393\pi\)
\(548\) 0 0
\(549\) −173.271 −0.0134700
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20503.5 −1.53485 −0.767425 0.641139i \(-0.778462\pi\)
−0.767425 + 0.641139i \(0.778462\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −9268.11 −0.686462
\(568\) 0 0
\(569\) 22758.7 1.67679 0.838396 0.545062i \(-0.183494\pi\)
0.838396 + 0.545062i \(0.183494\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 17836.5 1.27364
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4760.56 0.334735 0.167367 0.985895i \(-0.446473\pi\)
0.167367 + 0.985895i \(0.446473\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 7365.61 0.499916 0.249958 0.968257i \(-0.419583\pi\)
0.249958 + 0.968257i \(0.419583\pi\)
\(602\) 0 0
\(603\) 4721.83 0.318885
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5783.31 0.386717 0.193359 0.981128i \(-0.438062\pi\)
0.193359 + 0.981128i \(0.438062\pi\)
\(608\) 0 0
\(609\) −22736.4 −1.51285
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −31001.0 −2.00326
\(622\) 0 0
\(623\) −21617.1 −1.39016
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24449.2 1.50653 0.753264 0.657719i \(-0.228478\pi\)
0.753264 + 0.657719i \(0.228478\pi\)
\(642\) 0 0
\(643\) −28934.5 −1.77459 −0.887297 0.461199i \(-0.847420\pi\)
−0.887297 + 0.461199i \(0.847420\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31203.2 1.89602 0.948009 0.318244i \(-0.103093\pi\)
0.948009 + 0.318244i \(0.103093\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −14610.5 −0.859730 −0.429865 0.902893i \(-0.641439\pi\)
−0.429865 + 0.902893i \(0.641439\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −63608.9 −3.69257
\(668\) 0 0
\(669\) −14289.1 −0.825782
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 31809.1 1.78991
\(682\) 0 0
\(683\) −20997.4 −1.17634 −0.588172 0.808736i \(-0.700152\pi\)
−0.588172 + 0.808736i \(0.700152\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −32747.3 −1.81861
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −35844.2 −1.93126 −0.965632 0.259914i \(-0.916306\pi\)
−0.965632 + 0.259914i \(0.916306\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5895.57 −0.313615
\(708\) 0 0
\(709\) 506.000 0.0268029 0.0134014 0.999910i \(-0.495734\pi\)
0.0134014 + 0.999910i \(0.495734\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −30922.7 −1.59726
\(722\) 0 0
\(723\) 34705.8 1.78523
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −33440.3 −1.70596 −0.852980 0.521943i \(-0.825207\pi\)
−0.852980 + 0.521943i \(0.825207\pi\)
\(728\) 0 0
\(729\) 21740.8 1.10455
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27928.6 1.37901 0.689504 0.724282i \(-0.257829\pi\)
0.689504 + 0.724282i \(0.257829\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4923.16 −0.241137
\(748\) 0 0
\(749\) −27615.5 −1.34720
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21798.0 −1.03834 −0.519170 0.854671i \(-0.673759\pi\)
−0.519170 + 0.854671i \(0.673759\pi\)
\(762\) 0 0
\(763\) −30760.1 −1.45949
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −29554.0 −1.38588 −0.692942 0.720994i \(-0.743686\pi\)
−0.692942 + 0.720994i \(0.743686\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 45635.2 2.08285
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −4875.78 −0.220842 −0.110421 0.993885i \(-0.535220\pi\)
−0.110421 + 0.993885i \(0.535220\pi\)
\(788\) 0 0
\(789\) −30677.9 −1.38424
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 5966.66 0.263198
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −32703.1 −1.42652
\(808\) 0 0
\(809\) 26406.0 1.14757 0.573786 0.819005i \(-0.305474\pi\)
0.573786 + 0.819005i \(0.305474\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 46425.2 1.97351 0.986755 0.162216i \(-0.0518641\pi\)
0.986755 + 0.162216i \(0.0518641\pi\)
\(822\) 0 0
\(823\) −47156.2 −1.99728 −0.998640 0.0521422i \(-0.983395\pi\)
−0.998640 + 0.0521422i \(0.983395\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −40477.0 −1.70196 −0.850981 0.525197i \(-0.823992\pi\)
−0.850981 + 0.525197i \(0.823992\pi\)
\(828\) 0 0
\(829\) −30951.7 −1.29674 −0.648369 0.761326i \(-0.724548\pi\)
−0.648369 + 0.761326i \(0.724548\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 69247.0 2.83927
\(842\) 0 0
\(843\) −20431.4 −0.834753
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −20759.3 −0.842145
\(848\) 0 0
\(849\) 28602.8 1.15624
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) −34225.7 −1.35471
\(862\) 0 0
\(863\) 48456.8 1.91134 0.955671 0.294436i \(-0.0951316\pi\)
0.955671 + 0.294436i \(0.0951316\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 23405.2 0.916819
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −42847.5 −1.63856 −0.819279 0.573395i \(-0.805626\pi\)
−0.819279 + 0.573395i \(0.805626\pi\)
\(882\) 0 0
\(883\) 18466.7 0.703798 0.351899 0.936038i \(-0.385536\pi\)
0.351899 + 0.936038i \(0.385536\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 34401.7 1.30225 0.651124 0.758971i \(-0.274298\pi\)
0.651124 + 0.758971i \(0.274298\pi\)
\(888\) 0 0
\(889\) 9625.06 0.363121
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −2296.51 −0.0846326
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 29660.4 1.08584 0.542921 0.839784i \(-0.317318\pi\)
0.542921 + 0.839784i \(0.317318\pi\)
\(908\) 0 0
\(909\) 1627.27 0.0593765
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −20958.7 −0.749852
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 8535.17 0.302407
\(928\) 0 0
\(929\) 18054.0 0.637603 0.318801 0.947822i \(-0.396720\pi\)
0.318801 + 0.947822i \(0.396720\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 44478.0 1.54085 0.770426 0.637530i \(-0.220044\pi\)
0.770426 + 0.637530i \(0.220044\pi\)
\(942\) 0 0
\(943\) −95752.2 −3.30660
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18396.7 0.631271 0.315635 0.948881i \(-0.397782\pi\)
0.315635 + 0.948881i \(0.397782\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) 7622.33 0.255063
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 59061.4 1.96410 0.982051 0.188614i \(-0.0603995\pi\)
0.982051 + 0.188614i \(0.0603995\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 8490.28 0.276324
\(982\) 0 0
\(983\) −13297.8 −0.431470 −0.215735 0.976452i \(-0.569215\pi\)
−0.215735 + 0.976452i \(0.569215\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 47784.9 1.54104
\(988\) 0 0
\(989\) −6424.90 −0.206572
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.a.l.1.2 2
4.3 odd 2 800.4.a.t.1.1 2
5.2 odd 4 160.4.c.c.129.3 yes 4
5.3 odd 4 160.4.c.c.129.2 4
5.4 even 2 800.4.a.t.1.1 2
8.3 odd 2 1600.4.a.cb.1.2 2
8.5 even 2 1600.4.a.cp.1.1 2
15.2 even 4 1440.4.f.g.289.2 4
15.8 even 4 1440.4.f.g.289.1 4
20.3 even 4 160.4.c.c.129.3 yes 4
20.7 even 4 160.4.c.c.129.2 4
20.19 odd 2 CM 800.4.a.l.1.2 2
40.3 even 4 320.4.c.f.129.2 4
40.13 odd 4 320.4.c.f.129.3 4
40.19 odd 2 1600.4.a.cp.1.1 2
40.27 even 4 320.4.c.f.129.3 4
40.29 even 2 1600.4.a.cb.1.2 2
40.37 odd 4 320.4.c.f.129.2 4
60.23 odd 4 1440.4.f.g.289.2 4
60.47 odd 4 1440.4.f.g.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.c.c.129.2 4 5.3 odd 4
160.4.c.c.129.2 4 20.7 even 4
160.4.c.c.129.3 yes 4 5.2 odd 4
160.4.c.c.129.3 yes 4 20.3 even 4
320.4.c.f.129.2 4 40.3 even 4
320.4.c.f.129.2 4 40.37 odd 4
320.4.c.f.129.3 4 40.13 odd 4
320.4.c.f.129.3 4 40.27 even 4
800.4.a.l.1.2 2 1.1 even 1 trivial
800.4.a.l.1.2 2 20.19 odd 2 CM
800.4.a.t.1.1 2 4.3 odd 2
800.4.a.t.1.1 2 5.4 even 2
1440.4.f.g.289.1 4 15.8 even 4
1440.4.f.g.289.1 4 60.47 odd 4
1440.4.f.g.289.2 4 15.2 even 4
1440.4.f.g.289.2 4 60.23 odd 4
1600.4.a.cb.1.2 2 8.3 odd 2
1600.4.a.cb.1.2 2 40.29 even 2
1600.4.a.cp.1.1 2 8.5 even 2
1600.4.a.cp.1.1 2 40.19 odd 2