Properties

Label 800.4.a.d.1.1
Level $800$
Weight $4$
Character 800.1
Self dual yes
Analytic conductor $47.202$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,4,Mod(1,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{3} +6.00000 q^{7} -23.0000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} +6.00000 q^{7} -23.0000 q^{9} -60.0000 q^{11} -50.0000 q^{13} +30.0000 q^{17} -40.0000 q^{19} -12.0000 q^{21} +178.000 q^{23} +100.000 q^{27} +166.000 q^{29} -20.0000 q^{31} +120.000 q^{33} -10.0000 q^{37} +100.000 q^{39} -250.000 q^{41} +142.000 q^{43} +214.000 q^{47} -307.000 q^{49} -60.0000 q^{51} -490.000 q^{53} +80.0000 q^{57} +800.000 q^{59} +250.000 q^{61} -138.000 q^{63} -774.000 q^{67} -356.000 q^{69} -100.000 q^{71} +230.000 q^{73} -360.000 q^{77} +1320.00 q^{79} +421.000 q^{81} +982.000 q^{83} -332.000 q^{87} +874.000 q^{89} -300.000 q^{91} +40.0000 q^{93} +310.000 q^{97} +1380.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −0.384900 −0.192450 0.981307i \(-0.561643\pi\)
−0.192450 + 0.981307i \(0.561643\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 6.00000 0.323970 0.161985 0.986793i \(-0.448210\pi\)
0.161985 + 0.986793i \(0.448210\pi\)
\(8\) 0 0
\(9\) −23.0000 −0.851852
\(10\) 0 0
\(11\) −60.0000 −1.64461 −0.822304 0.569049i \(-0.807311\pi\)
−0.822304 + 0.569049i \(0.807311\pi\)
\(12\) 0 0
\(13\) −50.0000 −1.06673 −0.533366 0.845885i \(-0.679073\pi\)
−0.533366 + 0.845885i \(0.679073\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 30.0000 0.428004 0.214002 0.976833i \(-0.431350\pi\)
0.214002 + 0.976833i \(0.431350\pi\)
\(18\) 0 0
\(19\) −40.0000 −0.482980 −0.241490 0.970403i \(-0.577636\pi\)
−0.241490 + 0.970403i \(0.577636\pi\)
\(20\) 0 0
\(21\) −12.0000 −0.124696
\(22\) 0 0
\(23\) 178.000 1.61372 0.806860 0.590743i \(-0.201165\pi\)
0.806860 + 0.590743i \(0.201165\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 100.000 0.712778
\(28\) 0 0
\(29\) 166.000 1.06295 0.531473 0.847075i \(-0.321639\pi\)
0.531473 + 0.847075i \(0.321639\pi\)
\(30\) 0 0
\(31\) −20.0000 −0.115874 −0.0579372 0.998320i \(-0.518452\pi\)
−0.0579372 + 0.998320i \(0.518452\pi\)
\(32\) 0 0
\(33\) 120.000 0.633010
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −10.0000 −0.0444322 −0.0222161 0.999753i \(-0.507072\pi\)
−0.0222161 + 0.999753i \(0.507072\pi\)
\(38\) 0 0
\(39\) 100.000 0.410585
\(40\) 0 0
\(41\) −250.000 −0.952279 −0.476140 0.879370i \(-0.657964\pi\)
−0.476140 + 0.879370i \(0.657964\pi\)
\(42\) 0 0
\(43\) 142.000 0.503600 0.251800 0.967779i \(-0.418977\pi\)
0.251800 + 0.967779i \(0.418977\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 214.000 0.664151 0.332076 0.943253i \(-0.392251\pi\)
0.332076 + 0.943253i \(0.392251\pi\)
\(48\) 0 0
\(49\) −307.000 −0.895044
\(50\) 0 0
\(51\) −60.0000 −0.164739
\(52\) 0 0
\(53\) −490.000 −1.26994 −0.634969 0.772538i \(-0.718987\pi\)
−0.634969 + 0.772538i \(0.718987\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 80.0000 0.185899
\(58\) 0 0
\(59\) 800.000 1.76527 0.882637 0.470056i \(-0.155766\pi\)
0.882637 + 0.470056i \(0.155766\pi\)
\(60\) 0 0
\(61\) 250.000 0.524741 0.262371 0.964967i \(-0.415496\pi\)
0.262371 + 0.964967i \(0.415496\pi\)
\(62\) 0 0
\(63\) −138.000 −0.275974
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −774.000 −1.41133 −0.705665 0.708545i \(-0.749352\pi\)
−0.705665 + 0.708545i \(0.749352\pi\)
\(68\) 0 0
\(69\) −356.000 −0.621121
\(70\) 0 0
\(71\) −100.000 −0.167152 −0.0835762 0.996501i \(-0.526634\pi\)
−0.0835762 + 0.996501i \(0.526634\pi\)
\(72\) 0 0
\(73\) 230.000 0.368760 0.184380 0.982855i \(-0.440972\pi\)
0.184380 + 0.982855i \(0.440972\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −360.000 −0.532803
\(78\) 0 0
\(79\) 1320.00 1.87989 0.939947 0.341321i \(-0.110874\pi\)
0.939947 + 0.341321i \(0.110874\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) 0 0
\(83\) 982.000 1.29866 0.649328 0.760508i \(-0.275050\pi\)
0.649328 + 0.760508i \(0.275050\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −332.000 −0.409128
\(88\) 0 0
\(89\) 874.000 1.04094 0.520471 0.853879i \(-0.325756\pi\)
0.520471 + 0.853879i \(0.325756\pi\)
\(90\) 0 0
\(91\) −300.000 −0.345588
\(92\) 0 0
\(93\) 40.0000 0.0446001
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 310.000 0.324492 0.162246 0.986750i \(-0.448126\pi\)
0.162246 + 0.986750i \(0.448126\pi\)
\(98\) 0 0
\(99\) 1380.00 1.40096
\(100\) 0 0
\(101\) −1498.00 −1.47581 −0.737904 0.674906i \(-0.764184\pi\)
−0.737904 + 0.674906i \(0.764184\pi\)
\(102\) 0 0
\(103\) 1402.00 1.34120 0.670598 0.741821i \(-0.266038\pi\)
0.670598 + 0.741821i \(0.266038\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1194.00 1.07877 0.539385 0.842059i \(-0.318657\pi\)
0.539385 + 0.842059i \(0.318657\pi\)
\(108\) 0 0
\(109\) 650.000 0.571181 0.285590 0.958352i \(-0.407810\pi\)
0.285590 + 0.958352i \(0.407810\pi\)
\(110\) 0 0
\(111\) 20.0000 0.0171019
\(112\) 0 0
\(113\) 1510.00 1.25707 0.628535 0.777782i \(-0.283655\pi\)
0.628535 + 0.777782i \(0.283655\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1150.00 0.908697
\(118\) 0 0
\(119\) 180.000 0.138660
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) 0 0
\(123\) 500.000 0.366532
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1246.00 0.870588 0.435294 0.900288i \(-0.356645\pi\)
0.435294 + 0.900288i \(0.356645\pi\)
\(128\) 0 0
\(129\) −284.000 −0.193836
\(130\) 0 0
\(131\) −2660.00 −1.77409 −0.887043 0.461687i \(-0.847244\pi\)
−0.887043 + 0.461687i \(0.847244\pi\)
\(132\) 0 0
\(133\) −240.000 −0.156471
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2770.00 −1.72742 −0.863712 0.503986i \(-0.831866\pi\)
−0.863712 + 0.503986i \(0.831866\pi\)
\(138\) 0 0
\(139\) 560.000 0.341716 0.170858 0.985296i \(-0.445346\pi\)
0.170858 + 0.985296i \(0.445346\pi\)
\(140\) 0 0
\(141\) −428.000 −0.255632
\(142\) 0 0
\(143\) 3000.00 1.75435
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 614.000 0.344502
\(148\) 0 0
\(149\) −2350.00 −1.29208 −0.646039 0.763305i \(-0.723576\pi\)
−0.646039 + 0.763305i \(0.723576\pi\)
\(150\) 0 0
\(151\) −580.000 −0.312581 −0.156290 0.987711i \(-0.549954\pi\)
−0.156290 + 0.987711i \(0.549954\pi\)
\(152\) 0 0
\(153\) −690.000 −0.364596
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1310.00 0.665920 0.332960 0.942941i \(-0.391953\pi\)
0.332960 + 0.942941i \(0.391953\pi\)
\(158\) 0 0
\(159\) 980.000 0.488799
\(160\) 0 0
\(161\) 1068.00 0.522796
\(162\) 0 0
\(163\) 1862.00 0.894743 0.447371 0.894348i \(-0.352360\pi\)
0.447371 + 0.894348i \(0.352360\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 726.000 0.336405 0.168202 0.985752i \(-0.446204\pi\)
0.168202 + 0.985752i \(0.446204\pi\)
\(168\) 0 0
\(169\) 303.000 0.137915
\(170\) 0 0
\(171\) 920.000 0.411428
\(172\) 0 0
\(173\) −3250.00 −1.42828 −0.714141 0.700001i \(-0.753183\pi\)
−0.714141 + 0.700001i \(0.753183\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1600.00 −0.679454
\(178\) 0 0
\(179\) 1120.00 0.467669 0.233834 0.972276i \(-0.424873\pi\)
0.233834 + 0.972276i \(0.424873\pi\)
\(180\) 0 0
\(181\) −2842.00 −1.16710 −0.583548 0.812079i \(-0.698336\pi\)
−0.583548 + 0.812079i \(0.698336\pi\)
\(182\) 0 0
\(183\) −500.000 −0.201973
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1800.00 −0.703899
\(188\) 0 0
\(189\) 600.000 0.230918
\(190\) 0 0
\(191\) −3180.00 −1.20469 −0.602347 0.798234i \(-0.705768\pi\)
−0.602347 + 0.798234i \(0.705768\pi\)
\(192\) 0 0
\(193\) 4670.00 1.74173 0.870865 0.491522i \(-0.163559\pi\)
0.870865 + 0.491522i \(0.163559\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2990.00 1.08136 0.540682 0.841227i \(-0.318166\pi\)
0.540682 + 0.841227i \(0.318166\pi\)
\(198\) 0 0
\(199\) 4240.00 1.51038 0.755190 0.655506i \(-0.227545\pi\)
0.755190 + 0.655506i \(0.227545\pi\)
\(200\) 0 0
\(201\) 1548.00 0.543221
\(202\) 0 0
\(203\) 996.000 0.344362
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4094.00 −1.37465
\(208\) 0 0
\(209\) 2400.00 0.794313
\(210\) 0 0
\(211\) 4060.00 1.32465 0.662327 0.749215i \(-0.269569\pi\)
0.662327 + 0.749215i \(0.269569\pi\)
\(212\) 0 0
\(213\) 200.000 0.0643370
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −120.000 −0.0375398
\(218\) 0 0
\(219\) −460.000 −0.141936
\(220\) 0 0
\(221\) −1500.00 −0.456565
\(222\) 0 0
\(223\) −5622.00 −1.68824 −0.844119 0.536156i \(-0.819876\pi\)
−0.844119 + 0.536156i \(0.819876\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1554.00 0.454373 0.227186 0.973851i \(-0.427047\pi\)
0.227186 + 0.973851i \(0.427047\pi\)
\(228\) 0 0
\(229\) 1134.00 0.327235 0.163618 0.986524i \(-0.447684\pi\)
0.163618 + 0.986524i \(0.447684\pi\)
\(230\) 0 0
\(231\) 720.000 0.205076
\(232\) 0 0
\(233\) 1710.00 0.480798 0.240399 0.970674i \(-0.422722\pi\)
0.240399 + 0.970674i \(0.422722\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2640.00 −0.723571
\(238\) 0 0
\(239\) −4440.00 −1.20167 −0.600836 0.799372i \(-0.705166\pi\)
−0.600836 + 0.799372i \(0.705166\pi\)
\(240\) 0 0
\(241\) −850.000 −0.227192 −0.113596 0.993527i \(-0.536237\pi\)
−0.113596 + 0.993527i \(0.536237\pi\)
\(242\) 0 0
\(243\) −3542.00 −0.935059
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2000.00 0.515210
\(248\) 0 0
\(249\) −1964.00 −0.499853
\(250\) 0 0
\(251\) 660.000 0.165971 0.0829857 0.996551i \(-0.473554\pi\)
0.0829857 + 0.996551i \(0.473554\pi\)
\(252\) 0 0
\(253\) −10680.0 −2.65394
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7590.00 1.84222 0.921111 0.389299i \(-0.127283\pi\)
0.921111 + 0.389299i \(0.127283\pi\)
\(258\) 0 0
\(259\) −60.0000 −0.0143947
\(260\) 0 0
\(261\) −3818.00 −0.905472
\(262\) 0 0
\(263\) 762.000 0.178658 0.0893288 0.996002i \(-0.471528\pi\)
0.0893288 + 0.996002i \(0.471528\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1748.00 −0.400659
\(268\) 0 0
\(269\) −150.000 −0.0339987 −0.0169994 0.999856i \(-0.505411\pi\)
−0.0169994 + 0.999856i \(0.505411\pi\)
\(270\) 0 0
\(271\) 6580.00 1.47493 0.737466 0.675384i \(-0.236022\pi\)
0.737466 + 0.675384i \(0.236022\pi\)
\(272\) 0 0
\(273\) 600.000 0.133017
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4530.00 −0.982604 −0.491302 0.870989i \(-0.663479\pi\)
−0.491302 + 0.870989i \(0.663479\pi\)
\(278\) 0 0
\(279\) 460.000 0.0987078
\(280\) 0 0
\(281\) 6950.00 1.47545 0.737726 0.675100i \(-0.235899\pi\)
0.737726 + 0.675100i \(0.235899\pi\)
\(282\) 0 0
\(283\) −3882.00 −0.815410 −0.407705 0.913114i \(-0.633671\pi\)
−0.407705 + 0.913114i \(0.633671\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1500.00 −0.308509
\(288\) 0 0
\(289\) −4013.00 −0.816813
\(290\) 0 0
\(291\) −620.000 −0.124897
\(292\) 0 0
\(293\) −1370.00 −0.273161 −0.136581 0.990629i \(-0.543611\pi\)
−0.136581 + 0.990629i \(0.543611\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −6000.00 −1.17224
\(298\) 0 0
\(299\) −8900.00 −1.72141
\(300\) 0 0
\(301\) 852.000 0.163151
\(302\) 0 0
\(303\) 2996.00 0.568039
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4106.00 0.763328 0.381664 0.924301i \(-0.375351\pi\)
0.381664 + 0.924301i \(0.375351\pi\)
\(308\) 0 0
\(309\) −2804.00 −0.516226
\(310\) 0 0
\(311\) −2220.00 −0.404774 −0.202387 0.979306i \(-0.564870\pi\)
−0.202387 + 0.979306i \(0.564870\pi\)
\(312\) 0 0
\(313\) 9430.00 1.70292 0.851462 0.524417i \(-0.175717\pi\)
0.851462 + 0.524417i \(0.175717\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6470.00 1.14635 0.573173 0.819435i \(-0.305712\pi\)
0.573173 + 0.819435i \(0.305712\pi\)
\(318\) 0 0
\(319\) −9960.00 −1.74813
\(320\) 0 0
\(321\) −2388.00 −0.415219
\(322\) 0 0
\(323\) −1200.00 −0.206718
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1300.00 −0.219848
\(328\) 0 0
\(329\) 1284.00 0.215165
\(330\) 0 0
\(331\) −900.000 −0.149452 −0.0747258 0.997204i \(-0.523808\pi\)
−0.0747258 + 0.997204i \(0.523808\pi\)
\(332\) 0 0
\(333\) 230.000 0.0378496
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −530.000 −0.0856704 −0.0428352 0.999082i \(-0.513639\pi\)
−0.0428352 + 0.999082i \(0.513639\pi\)
\(338\) 0 0
\(339\) −3020.00 −0.483846
\(340\) 0 0
\(341\) 1200.00 0.190568
\(342\) 0 0
\(343\) −3900.00 −0.613936
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −414.000 −0.0640481 −0.0320240 0.999487i \(-0.510195\pi\)
−0.0320240 + 0.999487i \(0.510195\pi\)
\(348\) 0 0
\(349\) 8614.00 1.32119 0.660597 0.750741i \(-0.270303\pi\)
0.660597 + 0.750741i \(0.270303\pi\)
\(350\) 0 0
\(351\) −5000.00 −0.760343
\(352\) 0 0
\(353\) 2270.00 0.342266 0.171133 0.985248i \(-0.445257\pi\)
0.171133 + 0.985248i \(0.445257\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −360.000 −0.0533704
\(358\) 0 0
\(359\) −8080.00 −1.18787 −0.593936 0.804512i \(-0.702427\pi\)
−0.593936 + 0.804512i \(0.702427\pi\)
\(360\) 0 0
\(361\) −5259.00 −0.766730
\(362\) 0 0
\(363\) −4538.00 −0.656152
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2374.00 0.337662 0.168831 0.985645i \(-0.446001\pi\)
0.168831 + 0.985645i \(0.446001\pi\)
\(368\) 0 0
\(369\) 5750.00 0.811201
\(370\) 0 0
\(371\) −2940.00 −0.411421
\(372\) 0 0
\(373\) −1810.00 −0.251255 −0.125628 0.992077i \(-0.540094\pi\)
−0.125628 + 0.992077i \(0.540094\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8300.00 −1.13388
\(378\) 0 0
\(379\) −8120.00 −1.10052 −0.550259 0.834994i \(-0.685471\pi\)
−0.550259 + 0.834994i \(0.685471\pi\)
\(380\) 0 0
\(381\) −2492.00 −0.335089
\(382\) 0 0
\(383\) −11782.0 −1.57189 −0.785943 0.618299i \(-0.787822\pi\)
−0.785943 + 0.618299i \(0.787822\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3266.00 −0.428993
\(388\) 0 0
\(389\) −4350.00 −0.566976 −0.283488 0.958976i \(-0.591492\pi\)
−0.283488 + 0.958976i \(0.591492\pi\)
\(390\) 0 0
\(391\) 5340.00 0.690679
\(392\) 0 0
\(393\) 5320.00 0.682846
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7470.00 0.944354 0.472177 0.881504i \(-0.343468\pi\)
0.472177 + 0.881504i \(0.343468\pi\)
\(398\) 0 0
\(399\) 480.000 0.0602257
\(400\) 0 0
\(401\) 11698.0 1.45678 0.728392 0.685161i \(-0.240268\pi\)
0.728392 + 0.685161i \(0.240268\pi\)
\(402\) 0 0
\(403\) 1000.00 0.123607
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 600.000 0.0730735
\(408\) 0 0
\(409\) −3650.00 −0.441274 −0.220637 0.975356i \(-0.570814\pi\)
−0.220637 + 0.975356i \(0.570814\pi\)
\(410\) 0 0
\(411\) 5540.00 0.664886
\(412\) 0 0
\(413\) 4800.00 0.571895
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1120.00 −0.131527
\(418\) 0 0
\(419\) 1120.00 0.130586 0.0652931 0.997866i \(-0.479202\pi\)
0.0652931 + 0.997866i \(0.479202\pi\)
\(420\) 0 0
\(421\) 4850.00 0.561460 0.280730 0.959787i \(-0.409424\pi\)
0.280730 + 0.959787i \(0.409424\pi\)
\(422\) 0 0
\(423\) −4922.00 −0.565758
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1500.00 0.170000
\(428\) 0 0
\(429\) −6000.00 −0.675251
\(430\) 0 0
\(431\) 12580.0 1.40593 0.702967 0.711223i \(-0.251858\pi\)
0.702967 + 0.711223i \(0.251858\pi\)
\(432\) 0 0
\(433\) −13130.0 −1.45725 −0.728623 0.684915i \(-0.759839\pi\)
−0.728623 + 0.684915i \(0.759839\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7120.00 −0.779395
\(438\) 0 0
\(439\) −8560.00 −0.930630 −0.465315 0.885145i \(-0.654059\pi\)
−0.465315 + 0.885145i \(0.654059\pi\)
\(440\) 0 0
\(441\) 7061.00 0.762445
\(442\) 0 0
\(443\) −4258.00 −0.456667 −0.228334 0.973583i \(-0.573328\pi\)
−0.228334 + 0.973583i \(0.573328\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4700.00 0.497321
\(448\) 0 0
\(449\) 2550.00 0.268022 0.134011 0.990980i \(-0.457214\pi\)
0.134011 + 0.990980i \(0.457214\pi\)
\(450\) 0 0
\(451\) 15000.0 1.56613
\(452\) 0 0
\(453\) 1160.00 0.120312
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6710.00 0.686828 0.343414 0.939184i \(-0.388417\pi\)
0.343414 + 0.939184i \(0.388417\pi\)
\(458\) 0 0
\(459\) 3000.00 0.305072
\(460\) 0 0
\(461\) −14482.0 −1.46311 −0.731555 0.681782i \(-0.761205\pi\)
−0.731555 + 0.681782i \(0.761205\pi\)
\(462\) 0 0
\(463\) 162.000 0.0162609 0.00813043 0.999967i \(-0.497412\pi\)
0.00813043 + 0.999967i \(0.497412\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15974.0 −1.58284 −0.791422 0.611270i \(-0.790659\pi\)
−0.791422 + 0.611270i \(0.790659\pi\)
\(468\) 0 0
\(469\) −4644.00 −0.457228
\(470\) 0 0
\(471\) −2620.00 −0.256313
\(472\) 0 0
\(473\) −8520.00 −0.828224
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 11270.0 1.08180
\(478\) 0 0
\(479\) 10760.0 1.02638 0.513191 0.858274i \(-0.328463\pi\)
0.513191 + 0.858274i \(0.328463\pi\)
\(480\) 0 0
\(481\) 500.000 0.0473972
\(482\) 0 0
\(483\) −2136.00 −0.201224
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −9266.00 −0.862182 −0.431091 0.902309i \(-0.641871\pi\)
−0.431091 + 0.902309i \(0.641871\pi\)
\(488\) 0 0
\(489\) −3724.00 −0.344387
\(490\) 0 0
\(491\) −2860.00 −0.262872 −0.131436 0.991325i \(-0.541959\pi\)
−0.131436 + 0.991325i \(0.541959\pi\)
\(492\) 0 0
\(493\) 4980.00 0.454945
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −600.000 −0.0541523
\(498\) 0 0
\(499\) −7160.00 −0.642336 −0.321168 0.947022i \(-0.604075\pi\)
−0.321168 + 0.947022i \(0.604075\pi\)
\(500\) 0 0
\(501\) −1452.00 −0.129482
\(502\) 0 0
\(503\) −1398.00 −0.123924 −0.0619620 0.998079i \(-0.519736\pi\)
−0.0619620 + 0.998079i \(0.519736\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −606.000 −0.0530836
\(508\) 0 0
\(509\) 7446.00 0.648405 0.324203 0.945988i \(-0.394904\pi\)
0.324203 + 0.945988i \(0.394904\pi\)
\(510\) 0 0
\(511\) 1380.00 0.119467
\(512\) 0 0
\(513\) −4000.00 −0.344258
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −12840.0 −1.09227
\(518\) 0 0
\(519\) 6500.00 0.549746
\(520\) 0 0
\(521\) −16438.0 −1.38227 −0.691134 0.722726i \(-0.742889\pi\)
−0.691134 + 0.722726i \(0.742889\pi\)
\(522\) 0 0
\(523\) −7322.00 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −600.000 −0.0495947
\(528\) 0 0
\(529\) 19517.0 1.60409
\(530\) 0 0
\(531\) −18400.0 −1.50375
\(532\) 0 0
\(533\) 12500.0 1.01583
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2240.00 −0.180006
\(538\) 0 0
\(539\) 18420.0 1.47200
\(540\) 0 0
\(541\) 10878.0 0.864476 0.432238 0.901759i \(-0.357724\pi\)
0.432238 + 0.901759i \(0.357724\pi\)
\(542\) 0 0
\(543\) 5684.00 0.449215
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16114.0 1.25957 0.629785 0.776769i \(-0.283143\pi\)
0.629785 + 0.776769i \(0.283143\pi\)
\(548\) 0 0
\(549\) −5750.00 −0.447002
\(550\) 0 0
\(551\) −6640.00 −0.513382
\(552\) 0 0
\(553\) 7920.00 0.609028
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3690.00 −0.280701 −0.140350 0.990102i \(-0.544823\pi\)
−0.140350 + 0.990102i \(0.544823\pi\)
\(558\) 0 0
\(559\) −7100.00 −0.537206
\(560\) 0 0
\(561\) 3600.00 0.270931
\(562\) 0 0
\(563\) −2562.00 −0.191786 −0.0958929 0.995392i \(-0.530571\pi\)
−0.0958929 + 0.995392i \(0.530571\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2526.00 0.187094
\(568\) 0 0
\(569\) −6050.00 −0.445746 −0.222873 0.974848i \(-0.571543\pi\)
−0.222873 + 0.974848i \(0.571543\pi\)
\(570\) 0 0
\(571\) −8260.00 −0.605377 −0.302688 0.953090i \(-0.597884\pi\)
−0.302688 + 0.953090i \(0.597884\pi\)
\(572\) 0 0
\(573\) 6360.00 0.463687
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 16870.0 1.21717 0.608585 0.793489i \(-0.291737\pi\)
0.608585 + 0.793489i \(0.291737\pi\)
\(578\) 0 0
\(579\) −9340.00 −0.670392
\(580\) 0 0
\(581\) 5892.00 0.420725
\(582\) 0 0
\(583\) 29400.0 2.08855
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −966.000 −0.0679235 −0.0339617 0.999423i \(-0.510812\pi\)
−0.0339617 + 0.999423i \(0.510812\pi\)
\(588\) 0 0
\(589\) 800.000 0.0559651
\(590\) 0 0
\(591\) −5980.00 −0.416217
\(592\) 0 0
\(593\) −26290.0 −1.82057 −0.910287 0.413977i \(-0.864139\pi\)
−0.910287 + 0.413977i \(0.864139\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8480.00 −0.581346
\(598\) 0 0
\(599\) 11640.0 0.793986 0.396993 0.917822i \(-0.370054\pi\)
0.396993 + 0.917822i \(0.370054\pi\)
\(600\) 0 0
\(601\) −25450.0 −1.72733 −0.863667 0.504064i \(-0.831838\pi\)
−0.863667 + 0.504064i \(0.831838\pi\)
\(602\) 0 0
\(603\) 17802.0 1.20224
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 16694.0 1.11629 0.558145 0.829743i \(-0.311513\pi\)
0.558145 + 0.829743i \(0.311513\pi\)
\(608\) 0 0
\(609\) −1992.00 −0.132545
\(610\) 0 0
\(611\) −10700.0 −0.708471
\(612\) 0 0
\(613\) −15890.0 −1.04697 −0.523484 0.852036i \(-0.675368\pi\)
−0.523484 + 0.852036i \(0.675368\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1230.00 0.0802560 0.0401280 0.999195i \(-0.487223\pi\)
0.0401280 + 0.999195i \(0.487223\pi\)
\(618\) 0 0
\(619\) 10840.0 0.703871 0.351936 0.936024i \(-0.385524\pi\)
0.351936 + 0.936024i \(0.385524\pi\)
\(620\) 0 0
\(621\) 17800.0 1.15022
\(622\) 0 0
\(623\) 5244.00 0.337233
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −4800.00 −0.305731
\(628\) 0 0
\(629\) −300.000 −0.0190171
\(630\) 0 0
\(631\) 14060.0 0.887036 0.443518 0.896265i \(-0.353730\pi\)
0.443518 + 0.896265i \(0.353730\pi\)
\(632\) 0 0
\(633\) −8120.00 −0.509859
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15350.0 0.954771
\(638\) 0 0
\(639\) 2300.00 0.142389
\(640\) 0 0
\(641\) −17650.0 −1.08757 −0.543786 0.839224i \(-0.683010\pi\)
−0.543786 + 0.839224i \(0.683010\pi\)
\(642\) 0 0
\(643\) 27358.0 1.67791 0.838953 0.544203i \(-0.183168\pi\)
0.838953 + 0.544203i \(0.183168\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6786.00 −0.412342 −0.206171 0.978516i \(-0.566100\pi\)
−0.206171 + 0.978516i \(0.566100\pi\)
\(648\) 0 0
\(649\) −48000.0 −2.90318
\(650\) 0 0
\(651\) 240.000 0.0144491
\(652\) 0 0
\(653\) 9030.00 0.541150 0.270575 0.962699i \(-0.412786\pi\)
0.270575 + 0.962699i \(0.412786\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5290.00 −0.314129
\(658\) 0 0
\(659\) 15600.0 0.922139 0.461070 0.887364i \(-0.347466\pi\)
0.461070 + 0.887364i \(0.347466\pi\)
\(660\) 0 0
\(661\) 16850.0 0.991511 0.495756 0.868462i \(-0.334891\pi\)
0.495756 + 0.868462i \(0.334891\pi\)
\(662\) 0 0
\(663\) 3000.00 0.175732
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 29548.0 1.71530
\(668\) 0 0
\(669\) 11244.0 0.649803
\(670\) 0 0
\(671\) −15000.0 −0.862993
\(672\) 0 0
\(673\) 7990.00 0.457640 0.228820 0.973469i \(-0.426513\pi\)
0.228820 + 0.973469i \(0.426513\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18690.0 −1.06103 −0.530513 0.847677i \(-0.678001\pi\)
−0.530513 + 0.847677i \(0.678001\pi\)
\(678\) 0 0
\(679\) 1860.00 0.105126
\(680\) 0 0
\(681\) −3108.00 −0.174888
\(682\) 0 0
\(683\) 19182.0 1.07464 0.537320 0.843379i \(-0.319437\pi\)
0.537320 + 0.843379i \(0.319437\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2268.00 −0.125953
\(688\) 0 0
\(689\) 24500.0 1.35468
\(690\) 0 0
\(691\) 23380.0 1.28714 0.643572 0.765385i \(-0.277452\pi\)
0.643572 + 0.765385i \(0.277452\pi\)
\(692\) 0 0
\(693\) 8280.00 0.453869
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −7500.00 −0.407579
\(698\) 0 0
\(699\) −3420.00 −0.185059
\(700\) 0 0
\(701\) 11850.0 0.638471 0.319236 0.947675i \(-0.396574\pi\)
0.319236 + 0.947675i \(0.396574\pi\)
\(702\) 0 0
\(703\) 400.000 0.0214599
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8988.00 −0.478117
\(708\) 0 0
\(709\) 25646.0 1.35847 0.679235 0.733921i \(-0.262312\pi\)
0.679235 + 0.733921i \(0.262312\pi\)
\(710\) 0 0
\(711\) −30360.0 −1.60139
\(712\) 0 0
\(713\) −3560.00 −0.186989
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8880.00 0.462524
\(718\) 0 0
\(719\) 30280.0 1.57059 0.785294 0.619122i \(-0.212512\pi\)
0.785294 + 0.619122i \(0.212512\pi\)
\(720\) 0 0
\(721\) 8412.00 0.434507
\(722\) 0 0
\(723\) 1700.00 0.0874463
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17446.0 0.890009 0.445004 0.895528i \(-0.353202\pi\)
0.445004 + 0.895528i \(0.353202\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) 4260.00 0.215543
\(732\) 0 0
\(733\) 16750.0 0.844032 0.422016 0.906588i \(-0.361323\pi\)
0.422016 + 0.906588i \(0.361323\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 46440.0 2.32108
\(738\) 0 0
\(739\) 36560.0 1.81987 0.909933 0.414755i \(-0.136133\pi\)
0.909933 + 0.414755i \(0.136133\pi\)
\(740\) 0 0
\(741\) −4000.00 −0.198305
\(742\) 0 0
\(743\) −30142.0 −1.48829 −0.744147 0.668016i \(-0.767144\pi\)
−0.744147 + 0.668016i \(0.767144\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −22586.0 −1.10626
\(748\) 0 0
\(749\) 7164.00 0.349488
\(750\) 0 0
\(751\) −11860.0 −0.576268 −0.288134 0.957590i \(-0.593035\pi\)
−0.288134 + 0.957590i \(0.593035\pi\)
\(752\) 0 0
\(753\) −1320.00 −0.0638824
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −37010.0 −1.77695 −0.888475 0.458925i \(-0.848235\pi\)
−0.888475 + 0.458925i \(0.848235\pi\)
\(758\) 0 0
\(759\) 21360.0 1.02150
\(760\) 0 0
\(761\) −11718.0 −0.558183 −0.279091 0.960265i \(-0.590033\pi\)
−0.279091 + 0.960265i \(0.590033\pi\)
\(762\) 0 0
\(763\) 3900.00 0.185045
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −40000.0 −1.88307
\(768\) 0 0
\(769\) 4706.00 0.220680 0.110340 0.993894i \(-0.464806\pi\)
0.110340 + 0.993894i \(0.464806\pi\)
\(770\) 0 0
\(771\) −15180.0 −0.709072
\(772\) 0 0
\(773\) 28670.0 1.33401 0.667004 0.745054i \(-0.267576\pi\)
0.667004 + 0.745054i \(0.267576\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 120.000 0.00554051
\(778\) 0 0
\(779\) 10000.0 0.459932
\(780\) 0 0
\(781\) 6000.00 0.274900
\(782\) 0 0
\(783\) 16600.0 0.757644
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 20434.0 0.925532 0.462766 0.886481i \(-0.346857\pi\)
0.462766 + 0.886481i \(0.346857\pi\)
\(788\) 0 0
\(789\) −1524.00 −0.0687653
\(790\) 0 0
\(791\) 9060.00 0.407252
\(792\) 0 0
\(793\) −12500.0 −0.559758
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3930.00 −0.174665 −0.0873323 0.996179i \(-0.527834\pi\)
−0.0873323 + 0.996179i \(0.527834\pi\)
\(798\) 0 0
\(799\) 6420.00 0.284259
\(800\) 0 0
\(801\) −20102.0 −0.886728
\(802\) 0 0
\(803\) −13800.0 −0.606465
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 300.000 0.0130861
\(808\) 0 0
\(809\) −4854.00 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 13140.0 0.568937 0.284468 0.958685i \(-0.408183\pi\)
0.284468 + 0.958685i \(0.408183\pi\)
\(812\) 0 0
\(813\) −13160.0 −0.567702
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −5680.00 −0.243229
\(818\) 0 0
\(819\) 6900.00 0.294390
\(820\) 0 0
\(821\) 22050.0 0.937333 0.468666 0.883375i \(-0.344735\pi\)
0.468666 + 0.883375i \(0.344735\pi\)
\(822\) 0 0
\(823\) 14578.0 0.617445 0.308722 0.951152i \(-0.400099\pi\)
0.308722 + 0.951152i \(0.400099\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −37054.0 −1.55803 −0.779017 0.627003i \(-0.784281\pi\)
−0.779017 + 0.627003i \(0.784281\pi\)
\(828\) 0 0
\(829\) −6150.00 −0.257658 −0.128829 0.991667i \(-0.541122\pi\)
−0.128829 + 0.991667i \(0.541122\pi\)
\(830\) 0 0
\(831\) 9060.00 0.378204
\(832\) 0 0
\(833\) −9210.00 −0.383082
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2000.00 −0.0825927
\(838\) 0 0
\(839\) 8200.00 0.337420 0.168710 0.985666i \(-0.446040\pi\)
0.168710 + 0.985666i \(0.446040\pi\)
\(840\) 0 0
\(841\) 3167.00 0.129854
\(842\) 0 0
\(843\) −13900.0 −0.567902
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 13614.0 0.552282
\(848\) 0 0
\(849\) 7764.00 0.313851
\(850\) 0 0
\(851\) −1780.00 −0.0717011
\(852\) 0 0
\(853\) 42990.0 1.72561 0.862807 0.505533i \(-0.168704\pi\)
0.862807 + 0.505533i \(0.168704\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −32130.0 −1.28068 −0.640338 0.768093i \(-0.721206\pi\)
−0.640338 + 0.768093i \(0.721206\pi\)
\(858\) 0 0
\(859\) −15440.0 −0.613278 −0.306639 0.951826i \(-0.599204\pi\)
−0.306639 + 0.951826i \(0.599204\pi\)
\(860\) 0 0
\(861\) 3000.00 0.118745
\(862\) 0 0
\(863\) 46938.0 1.85143 0.925717 0.378216i \(-0.123462\pi\)
0.925717 + 0.378216i \(0.123462\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8026.00 0.314391
\(868\) 0 0
\(869\) −79200.0 −3.09169
\(870\) 0 0
\(871\) 38700.0 1.50551
\(872\) 0 0
\(873\) −7130.00 −0.276419
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 31230.0 1.20247 0.601233 0.799074i \(-0.294676\pi\)
0.601233 + 0.799074i \(0.294676\pi\)
\(878\) 0 0
\(879\) 2740.00 0.105140
\(880\) 0 0
\(881\) 25550.0 0.977073 0.488537 0.872543i \(-0.337531\pi\)
0.488537 + 0.872543i \(0.337531\pi\)
\(882\) 0 0
\(883\) 4318.00 0.164567 0.0822833 0.996609i \(-0.473779\pi\)
0.0822833 + 0.996609i \(0.473779\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1766.00 0.0668506 0.0334253 0.999441i \(-0.489358\pi\)
0.0334253 + 0.999441i \(0.489358\pi\)
\(888\) 0 0
\(889\) 7476.00 0.282044
\(890\) 0 0
\(891\) −25260.0 −0.949766
\(892\) 0 0
\(893\) −8560.00 −0.320772
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 17800.0 0.662569
\(898\) 0 0
\(899\) −3320.00 −0.123168
\(900\) 0 0
\(901\) −14700.0 −0.543538
\(902\) 0 0
\(903\) −1704.00 −0.0627969
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 41906.0 1.53414 0.767071 0.641563i \(-0.221714\pi\)
0.767071 + 0.641563i \(0.221714\pi\)
\(908\) 0 0
\(909\) 34454.0 1.25717
\(910\) 0 0
\(911\) −25140.0 −0.914298 −0.457149 0.889390i \(-0.651129\pi\)
−0.457149 + 0.889390i \(0.651129\pi\)
\(912\) 0 0
\(913\) −58920.0 −2.13578
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15960.0 −0.574750
\(918\) 0 0
\(919\) −32920.0 −1.18164 −0.590822 0.806802i \(-0.701196\pi\)
−0.590822 + 0.806802i \(0.701196\pi\)
\(920\) 0 0
\(921\) −8212.00 −0.293805
\(922\) 0 0
\(923\) 5000.00 0.178307
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −32246.0 −1.14250
\(928\) 0 0
\(929\) 10150.0 0.358461 0.179231 0.983807i \(-0.442639\pi\)
0.179231 + 0.983807i \(0.442639\pi\)
\(930\) 0 0
\(931\) 12280.0 0.432289
\(932\) 0 0
\(933\) 4440.00 0.155798
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −28530.0 −0.994701 −0.497350 0.867550i \(-0.665694\pi\)
−0.497350 + 0.867550i \(0.665694\pi\)
\(938\) 0 0
\(939\) −18860.0 −0.655456
\(940\) 0 0
\(941\) 9678.00 0.335275 0.167638 0.985849i \(-0.446386\pi\)
0.167638 + 0.985849i \(0.446386\pi\)
\(942\) 0 0
\(943\) −44500.0 −1.53671
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36986.0 1.26915 0.634574 0.772862i \(-0.281176\pi\)
0.634574 + 0.772862i \(0.281176\pi\)
\(948\) 0 0
\(949\) −11500.0 −0.393368
\(950\) 0 0
\(951\) −12940.0 −0.441228
\(952\) 0 0
\(953\) 3350.00 0.113869 0.0569345 0.998378i \(-0.481867\pi\)
0.0569345 + 0.998378i \(0.481867\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 19920.0 0.672855
\(958\) 0 0
\(959\) −16620.0 −0.559633
\(960\) 0 0
\(961\) −29391.0 −0.986573
\(962\) 0 0
\(963\) −27462.0 −0.918952
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 43774.0 1.45572 0.727858 0.685728i \(-0.240516\pi\)
0.727858 + 0.685728i \(0.240516\pi\)
\(968\) 0 0
\(969\) 2400.00 0.0795656
\(970\) 0 0
\(971\) −8740.00 −0.288857 −0.144428 0.989515i \(-0.546134\pi\)
−0.144428 + 0.989515i \(0.546134\pi\)
\(972\) 0 0
\(973\) 3360.00 0.110706
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 48310.0 1.58196 0.790979 0.611843i \(-0.209571\pi\)
0.790979 + 0.611843i \(0.209571\pi\)
\(978\) 0 0
\(979\) −52440.0 −1.71194
\(980\) 0 0
\(981\) −14950.0 −0.486561
\(982\) 0 0
\(983\) 2282.00 0.0740432 0.0370216 0.999314i \(-0.488213\pi\)
0.0370216 + 0.999314i \(0.488213\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2568.00 −0.0828170
\(988\) 0 0
\(989\) 25276.0 0.812669
\(990\) 0 0
\(991\) 31580.0 1.01228 0.506141 0.862451i \(-0.331071\pi\)
0.506141 + 0.862451i \(0.331071\pi\)
\(992\) 0 0
\(993\) 1800.00 0.0575239
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2790.00 0.0886261 0.0443130 0.999018i \(-0.485890\pi\)
0.0443130 + 0.999018i \(0.485890\pi\)
\(998\) 0 0
\(999\) −1000.00 −0.0316703
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.4.a.d.1.1 1
4.3 odd 2 800.4.a.h.1.1 1
5.2 odd 4 800.4.c.e.449.2 2
5.3 odd 4 800.4.c.e.449.1 2
5.4 even 2 160.4.a.b.1.1 yes 1
8.3 odd 2 1600.4.a.r.1.1 1
8.5 even 2 1600.4.a.bj.1.1 1
15.14 odd 2 1440.4.a.n.1.1 1
20.3 even 4 800.4.c.f.449.2 2
20.7 even 4 800.4.c.f.449.1 2
20.19 odd 2 160.4.a.a.1.1 1
40.19 odd 2 320.4.a.i.1.1 1
40.29 even 2 320.4.a.f.1.1 1
60.59 even 2 1440.4.a.o.1.1 1
80.19 odd 4 1280.4.d.f.641.1 2
80.29 even 4 1280.4.d.k.641.2 2
80.59 odd 4 1280.4.d.f.641.2 2
80.69 even 4 1280.4.d.k.641.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.a.a.1.1 1 20.19 odd 2
160.4.a.b.1.1 yes 1 5.4 even 2
320.4.a.f.1.1 1 40.29 even 2
320.4.a.i.1.1 1 40.19 odd 2
800.4.a.d.1.1 1 1.1 even 1 trivial
800.4.a.h.1.1 1 4.3 odd 2
800.4.c.e.449.1 2 5.3 odd 4
800.4.c.e.449.2 2 5.2 odd 4
800.4.c.f.449.1 2 20.7 even 4
800.4.c.f.449.2 2 20.3 even 4
1280.4.d.f.641.1 2 80.19 odd 4
1280.4.d.f.641.2 2 80.59 odd 4
1280.4.d.k.641.1 2 80.69 even 4
1280.4.d.k.641.2 2 80.29 even 4
1440.4.a.n.1.1 1 15.14 odd 2
1440.4.a.o.1.1 1 60.59 even 2
1600.4.a.r.1.1 1 8.3 odd 2
1600.4.a.bj.1.1 1 8.5 even 2