Properties

Label 800.4.a.bb
Level $800$
Weight $4$
Character orbit 800.a
Self dual yes
Analytic conductor $47.202$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,4,Mod(1,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,96,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.2015280046\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2106005.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 24x^{2} + 25x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{3} + \beta_1) q^{7} + (\beta_{2} + 24) q^{9} + ( - 3 \beta_{3} - 4 \beta_1) q^{11} + (\beta_{2} + 18) q^{13} + ( - \beta_{2} - 15) q^{17} + (2 \beta_{3} + 5 \beta_1) q^{19}+ \cdots + (77 \beta_{3} - 285 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 96 q^{9} + 72 q^{13} - 60 q^{17} + 224 q^{21} - 72 q^{29} - 756 q^{33} + 928 q^{37} + 724 q^{41} - 108 q^{49} - 888 q^{53} + 980 q^{57} + 1776 q^{61} + 3384 q^{69} - 1060 q^{73} + 2224 q^{77} + 7180 q^{81}+ \cdots - 504 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 24x^{2} + 25x - 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 4\nu^{2} - 4\nu - 50 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 8\nu^{3} - 12\nu^{2} - 198\nu + 101 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 2\beta _1 + 52 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 3\beta_{2} + 105\beta _1 + 154 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.54854
0.389272
0.610728
5.54854
0 −10.0971 0 0 0 −10.5923 0 74.9510 0
1.2 0 −0.221457 0 0 0 −22.7992 0 −26.9510 0
1.3 0 0.221457 0 0 0 22.7992 0 −26.9510 0
1.4 0 10.0971 0 0 0 10.5923 0 74.9510 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.4.a.bb yes 4
4.b odd 2 1 inner 800.4.a.bb yes 4
5.b even 2 1 800.4.a.ba 4
5.c odd 4 2 800.4.c.o 8
8.b even 2 1 1600.4.a.cw 4
8.d odd 2 1 1600.4.a.cw 4
20.d odd 2 1 800.4.a.ba 4
20.e even 4 2 800.4.c.o 8
40.e odd 2 1 1600.4.a.cx 4
40.f even 2 1 1600.4.a.cx 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
800.4.a.ba 4 5.b even 2 1
800.4.a.ba 4 20.d odd 2 1
800.4.a.bb yes 4 1.a even 1 1 trivial
800.4.a.bb yes 4 4.b odd 2 1 inner
800.4.c.o 8 5.c odd 4 2
800.4.c.o 8 20.e even 4 2
1600.4.a.cw 4 8.b even 2 1
1600.4.a.cw 4 8.d odd 2 1
1600.4.a.cx 4 40.e odd 2 1
1600.4.a.cx 4 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(800))\):

\( T_{3}^{4} - 102T_{3}^{2} + 5 \) Copy content Toggle raw display
\( T_{11}^{4} - 5982T_{11}^{2} + 6762845 \) Copy content Toggle raw display
\( T_{13}^{2} - 36T_{13} - 2272 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 102T^{2} + 5 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 632 T^{2} + 58320 \) Copy content Toggle raw display
$11$ \( T^{4} - 5982 T^{2} + 6762845 \) Copy content Toggle raw display
$13$ \( (T^{2} - 36 T - 2272)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 30 T - 2371)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 4390 T^{2} + 4753125 \) Copy content Toggle raw display
$23$ \( T^{4} - 46392 T^{2} + 523059920 \) Copy content Toggle raw display
$29$ \( (T^{2} + 36 T - 23040)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1457948880 \) Copy content Toggle raw display
$37$ \( (T^{2} - 464 T + 30460)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 362 T - 8775)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 1179648000 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 5516513280 \) Copy content Toggle raw display
$53$ \( (T + 222)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 83483873280 \) Copy content Toggle raw display
$61$ \( (T^{2} - 888 T + 194540)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 75081483405 \) Copy content Toggle raw display
$71$ \( T^{4} - 428432 T^{2} + 7787520 \) Copy content Toggle raw display
$73$ \( (T^{2} + 530 T - 680019)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 37300611920 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 842120280125 \) Copy content Toggle raw display
$89$ \( (T^{2} - 450 T - 14275)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 252 T - 243724)^{2} \) Copy content Toggle raw display
show more
show less