Properties

Label 800.4.a
Level $800$
Weight $4$
Character orbit 800.a
Rep. character $\chi_{800}(1,\cdot)$
Character field $\Q$
Dimension $57$
Newform subspaces $28$
Sturm bound $480$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 800.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 28 \)
Sturm bound: \(480\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(3\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(800))\).

Total New Old
Modular forms 384 57 327
Cusp forms 336 57 279
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(15\)
\(+\)\(-\)\(-\)\(14\)
\(-\)\(+\)\(-\)\(12\)
\(-\)\(-\)\(+\)\(16\)
Plus space\(+\)\(31\)
Minus space\(-\)\(26\)

Trace form

\( 57 q + 533 q^{9} + O(q^{10}) \) \( 57 q + 533 q^{9} - 26 q^{13} + 2 q^{17} - 16 q^{21} + 198 q^{29} - 592 q^{33} + 174 q^{37} - 710 q^{41} + 2737 q^{49} + 1086 q^{53} - 1056 q^{57} + 1670 q^{61} + 1312 q^{69} + 2250 q^{73} + 2224 q^{77} + 8689 q^{81} + 1802 q^{89} - 1648 q^{93} + 2114 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(800))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
800.4.a.a 800.a 1.a $1$ $47.202$ \(\Q\) None 32.4.a.a \(0\) \(-8\) \(0\) \(-16\) $-$ $+$ $\mathrm{SU}(2)$ \(q-8q^{3}-2^{4}q^{7}+37q^{9}-40q^{11}+\cdots\)
800.4.a.b 800.a 1.a $1$ $47.202$ \(\Q\) None 800.4.a.b \(0\) \(-5\) \(0\) \(10\) $-$ $+$ $\mathrm{SU}(2)$ \(q-5q^{3}+10q^{7}-2q^{9}-15q^{11}+8q^{13}+\cdots\)
800.4.a.c 800.a 1.a $1$ $47.202$ \(\Q\) None 800.4.a.b \(0\) \(-5\) \(0\) \(10\) $+$ $-$ $\mathrm{SU}(2)$ \(q-5q^{3}+10q^{7}-2q^{9}+15q^{11}-8q^{13}+\cdots\)
800.4.a.d 800.a 1.a $1$ $47.202$ \(\Q\) None 160.4.a.a \(0\) \(-2\) \(0\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+6q^{7}-23q^{9}-60q^{11}-50q^{13}+\cdots\)
800.4.a.e 800.a 1.a $1$ $47.202$ \(\Q\) \(\Q(\sqrt{-1}) \) 160.4.c.a \(0\) \(0\) \(0\) \(0\) $-$ $-$ $N(\mathrm{U}(1))$ \(q-3^{3}q^{9}-92q^{13}+104q^{17}+130q^{29}+\cdots\)
800.4.a.f 800.a 1.a $1$ $47.202$ \(\Q\) \(\Q(\sqrt{-1}) \) 32.4.a.b \(0\) \(0\) \(0\) \(0\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-3^{3}q^{9}+18q^{13}+94q^{17}-130q^{29}+\cdots\)
800.4.a.g 800.a 1.a $1$ $47.202$ \(\Q\) \(\Q(\sqrt{-1}) \) 160.4.c.a \(0\) \(0\) \(0\) \(0\) $+$ $-$ $N(\mathrm{U}(1))$ \(q-3^{3}q^{9}+92q^{13}-104q^{17}+130q^{29}+\cdots\)
800.4.a.h 800.a 1.a $1$ $47.202$ \(\Q\) None 160.4.a.a \(0\) \(2\) \(0\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-6q^{7}-23q^{9}+60q^{11}-50q^{13}+\cdots\)
800.4.a.i 800.a 1.a $1$ $47.202$ \(\Q\) None 800.4.a.b \(0\) \(5\) \(0\) \(-10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+5q^{3}-10q^{7}-2q^{9}-15q^{11}-8q^{13}+\cdots\)
800.4.a.j 800.a 1.a $1$ $47.202$ \(\Q\) None 800.4.a.b \(0\) \(5\) \(0\) \(-10\) $-$ $+$ $\mathrm{SU}(2)$ \(q+5q^{3}-10q^{7}-2q^{9}+15q^{11}+8q^{13}+\cdots\)
800.4.a.k 800.a 1.a $1$ $47.202$ \(\Q\) None 32.4.a.a \(0\) \(8\) \(0\) \(16\) $+$ $+$ $\mathrm{SU}(2)$ \(q+8q^{3}+2^{4}q^{7}+37q^{9}+40q^{11}+\cdots\)
800.4.a.l 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 160.4.c.c \(0\) \(-14\) \(0\) \(-18\) $+$ $-$ $N(\mathrm{U}(1))$ \(q+(-7-\beta )q^{3}+(-9-11\beta )q^{7}+(3^{3}+\cdots)q^{9}+\cdots\)
800.4.a.m 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{6}) \) None 160.4.a.c \(0\) \(-8\) \(0\) \(-8\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-4+\beta )q^{3}+(-4-5\beta )q^{7}+(13+\cdots)q^{9}+\cdots\)
800.4.a.n 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{29}) \) None 160.4.c.b \(0\) \(-8\) \(0\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}+4q^{7}-11q^{9}+2\beta q^{11}+\beta q^{13}+\cdots\)
800.4.a.o 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{5}) \) None 160.4.a.d \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+7\beta q^{7}-7q^{9}-2\beta q^{11}+62q^{13}+\cdots\)
800.4.a.p 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{10}) \) None 160.4.a.f \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+3\beta q^{7}+13q^{9}+2\beta q^{11}+\cdots\)
800.4.a.q 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{13}) \) None 160.4.a.e \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}-\beta q^{7}+5^{2}q^{9}+6\beta q^{11}-34q^{13}+\cdots\)
800.4.a.r 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{29}) \) None 160.4.c.b \(0\) \(8\) \(0\) \(-8\) $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{3}-4q^{7}-11q^{9}-2\beta q^{11}+\beta q^{13}+\cdots\)
800.4.a.s 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{6}) \) None 160.4.a.c \(0\) \(8\) \(0\) \(8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{3}+(4-5\beta )q^{7}+(13+8\beta )q^{9}+\cdots\)
800.4.a.t 800.a 1.a $2$ $47.202$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 160.4.c.c \(0\) \(14\) \(0\) \(18\) $-$ $-$ $N(\mathrm{U}(1))$ \(q+(7-\beta )q^{3}+(9-11\beta )q^{7}+(3^{3}-14\beta )q^{9}+\cdots\)
800.4.a.u 800.a 1.a $3$ $47.202$ 3.3.5685.1 None 800.4.a.u \(0\) \(-5\) \(0\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{3}+(1+\beta _{1}+\beta _{2})q^{7}+\cdots\)
800.4.a.v 800.a 1.a $3$ $47.202$ 3.3.5685.1 None 800.4.a.u \(0\) \(-5\) \(0\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{3}+(1+\beta _{1}+\beta _{2})q^{7}+\cdots\)
800.4.a.w 800.a 1.a $3$ $47.202$ 3.3.5685.1 None 800.4.a.u \(0\) \(5\) \(0\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{3}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
800.4.a.x 800.a 1.a $3$ $47.202$ 3.3.5685.1 None 800.4.a.u \(0\) \(5\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{3}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
800.4.a.y 800.a 1.a $4$ $47.202$ 4.4.37485.2 None 160.4.c.d \(0\) \(0\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(\beta _{1}+\beta _{3})q^{7}+(19-3\beta _{2}+\cdots)q^{9}+\cdots\)
800.4.a.z 800.a 1.a $4$ $47.202$ 4.4.37485.2 None 160.4.c.d \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(\beta _{1}+\beta _{3})q^{7}+(19-3\beta _{2}+\cdots)q^{9}+\cdots\)
800.4.a.ba 800.a 1.a $4$ $47.202$ 4.4.2106005.1 None 800.4.a.ba \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{3})q^{7}+(24+\beta _{2})q^{9}+\cdots\)
800.4.a.bb 800.a 1.a $4$ $47.202$ 4.4.2106005.1 None 800.4.a.ba \(0\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{3})q^{7}+(24+\beta _{2})q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(800))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(800)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 2}\)