Defining parameters
| Level: | \( N \) | \(=\) | \( 800 = 2^{5} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 800.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 28 \) | ||
| Sturm bound: | \(480\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(3\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(800))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 384 | 57 | 327 |
| Cusp forms | 336 | 57 | 279 |
| Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(99\) | \(15\) | \(84\) | \(87\) | \(15\) | \(72\) | \(12\) | \(0\) | \(12\) | |||
| \(+\) | \(-\) | \(-\) | \(93\) | \(14\) | \(79\) | \(81\) | \(14\) | \(67\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(93\) | \(12\) | \(81\) | \(81\) | \(12\) | \(69\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(+\) | \(99\) | \(16\) | \(83\) | \(87\) | \(16\) | \(71\) | \(12\) | \(0\) | \(12\) | |||
| Plus space | \(+\) | \(198\) | \(31\) | \(167\) | \(174\) | \(31\) | \(143\) | \(24\) | \(0\) | \(24\) | ||||
| Minus space | \(-\) | \(186\) | \(26\) | \(160\) | \(162\) | \(26\) | \(136\) | \(24\) | \(0\) | \(24\) | ||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(800))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(800))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(800)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 2}\)