Properties

Label 800.2.o.f.143.2
Level $800$
Weight $2$
Character 800.143
Analytic conductor $6.388$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(143,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.143");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.o (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 143.2
Root \(1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 800.143
Dual form 800.2.o.f.207.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.22474 + 2.22474i) q^{3} +6.89898i q^{9} -0.550510 q^{11} +(1.67423 - 1.67423i) q^{17} +8.34847i q^{19} +(-8.67423 + 8.67423i) q^{27} +(-1.22474 - 1.22474i) q^{33} +12.7980 q^{41} +(-6.00000 - 6.00000i) q^{43} -7.00000i q^{49} +7.44949 q^{51} +(-18.5732 + 18.5732i) q^{57} -6.00000i q^{59} +(5.57321 - 5.57321i) q^{67} +(-7.22474 - 7.22474i) q^{73} -17.8990 q^{81} +(-10.0227 - 10.0227i) q^{83} +13.8990i q^{89} +(12.0000 - 12.0000i) q^{97} -3.79796i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 12 q^{11} - 8 q^{17} - 20 q^{27} + 12 q^{41} - 24 q^{43} + 20 q^{51} - 40 q^{57} - 12 q^{67} - 24 q^{73} - 52 q^{81} + 4 q^{83} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.22474 + 2.22474i 1.28446 + 1.28446i 0.938104 + 0.346353i \(0.112580\pi\)
0.346353 + 0.938104i \(0.387420\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0 0
\(9\) 6.89898i 2.29966i
\(10\) 0 0
\(11\) −0.550510 −0.165985 −0.0829925 0.996550i \(-0.526448\pi\)
−0.0829925 + 0.996550i \(0.526448\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.67423 1.67423i 0.406062 0.406062i −0.474301 0.880363i \(-0.657299\pi\)
0.880363 + 0.474301i \(0.157299\pi\)
\(18\) 0 0
\(19\) 8.34847i 1.91527i 0.287984 + 0.957635i \(0.407015\pi\)
−0.287984 + 0.957635i \(0.592985\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −8.67423 + 8.67423i −1.66936 + 1.66936i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) −1.22474 1.22474i −0.213201 0.213201i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.7980 1.99871 0.999353 0.0359748i \(-0.0114536\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) −6.00000 6.00000i −0.914991 0.914991i 0.0816682 0.996660i \(-0.473975\pi\)
−0.996660 + 0.0816682i \(0.973975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 7.44949 1.04314
\(52\) 0 0
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −18.5732 + 18.5732i −2.46008 + 2.46008i
\(58\) 0 0
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.57321 5.57321i 0.680876 0.680876i −0.279321 0.960198i \(-0.590109\pi\)
0.960198 + 0.279321i \(0.0901094\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −7.22474 7.22474i −0.845592 0.845592i 0.143987 0.989580i \(-0.454008\pi\)
−0.989580 + 0.143987i \(0.954008\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −17.8990 −1.98878
\(82\) 0 0
\(83\) −10.0227 10.0227i −1.10013 1.10013i −0.994394 0.105741i \(-0.966279\pi\)
−0.105741 0.994394i \(-0.533721\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.8990i 1.47329i 0.676280 + 0.736644i \(0.263591\pi\)
−0.676280 + 0.736644i \(0.736409\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 12.0000 12.0000i 1.21842 1.21842i 0.250229 0.968187i \(-0.419494\pi\)
0.968187 0.250229i \(-0.0805058\pi\)
\(98\) 0 0
\(99\) 3.79796i 0.381709i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.32577 3.32577i 0.321514 0.321514i −0.527834 0.849348i \(-0.676996\pi\)
0.849348 + 0.527834i \(0.176996\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.0227 + 15.0227i 1.41322 + 1.41322i 0.733148 + 0.680069i \(0.238050\pi\)
0.680069 + 0.733148i \(0.261950\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.6969 −0.972449
\(122\) 0 0
\(123\) 28.4722 + 28.4722i 2.56725 + 2.56725i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 26.6969i 2.35053i
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.6742 11.6742i 0.997397 0.997397i −0.00259945 0.999997i \(-0.500827\pi\)
0.999997 + 0.00259945i \(0.000827431\pi\)
\(138\) 0 0
\(139\) 18.3485i 1.55630i 0.628080 + 0.778148i \(0.283841\pi\)
−0.628080 + 0.778148i \(0.716159\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 15.5732 15.5732i 1.28446 1.28446i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 11.5505 + 11.5505i 0.933803 + 0.933803i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.77526 7.77526i −0.609005 0.609005i 0.333681 0.942686i \(-0.391709\pi\)
−0.942686 + 0.333681i \(0.891709\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) −57.5959 −4.40447
\(172\) 0 0
\(173\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.3485 13.3485i 1.00333 1.00333i
\(178\) 0 0
\(179\) 26.1464i 1.95428i −0.212607 0.977138i \(-0.568195\pi\)
0.212607 0.977138i \(-0.431805\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.921683 + 0.921683i −0.0674002 + 0.0674002i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −19.4722 19.4722i −1.40164 1.40164i −0.794904 0.606735i \(-0.792479\pi\)
−0.606735 0.794904i \(-0.707521\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 24.7980 1.74911
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.59592i 0.317906i
\(210\) 0 0
\(211\) −15.0454 −1.03577 −0.517884 0.855451i \(-0.673280\pi\)
−0.517884 + 0.855451i \(0.673280\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 32.1464i 2.17225i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.00000 + 2.00000i −0.132745 + 0.132745i −0.770357 0.637613i \(-0.779922\pi\)
0.637613 + 0.770357i \(0.279922\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.00000 4.00000i −0.262049 0.262049i 0.563837 0.825886i \(-0.309325\pi\)
−0.825886 + 0.563837i \(0.809325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −1.69694 −0.109309 −0.0546547 0.998505i \(-0.517406\pi\)
−0.0546547 + 0.998505i \(0.517406\pi\)
\(242\) 0 0
\(243\) −13.7980 13.7980i −0.885139 0.885139i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 44.5959i 2.82615i
\(250\) 0 0
\(251\) 23.9444 1.51136 0.755678 0.654943i \(-0.227307\pi\)
0.755678 + 0.654943i \(0.227307\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8.00000 + 8.00000i −0.499026 + 0.499026i −0.911135 0.412108i \(-0.864792\pi\)
0.412108 + 0.911135i \(0.364792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −30.9217 + 30.9217i −1.89238 + 1.89238i
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 4.47219 + 4.47219i 0.265844 + 0.265844i 0.827423 0.561579i \(-0.189806\pi\)
−0.561579 + 0.827423i \(0.689806\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 11.3939i 0.670228i
\(290\) 0 0
\(291\) 53.3939 3.13000
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 4.77526 4.77526i 0.277088 0.277088i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.8207 17.8207i 1.01708 1.01708i 0.0172273 0.999852i \(-0.494516\pi\)
0.999852 0.0172273i \(-0.00548391\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −24.0000 24.0000i −1.35656 1.35656i −0.878120 0.478440i \(-0.841202\pi\)
−0.478440 0.878120i \(-0.658798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 14.7980 0.825942
\(322\) 0 0
\(323\) 13.9773 + 13.9773i 0.777718 + 0.777718i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −35.0454 −1.92627 −0.963135 0.269019i \(-0.913301\pi\)
−0.963135 + 0.269019i \(0.913301\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −20.5732 + 20.5732i −1.12069 + 1.12069i −0.129057 + 0.991637i \(0.541195\pi\)
−0.991637 + 0.129057i \(0.958805\pi\)
\(338\) 0 0
\(339\) 66.8434i 3.63043i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.6742 + 16.6742i −0.895120 + 0.895120i −0.995000 0.0998797i \(-0.968154\pi\)
0.0998797 + 0.995000i \(0.468154\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.0000 + 16.0000i 0.851594 + 0.851594i 0.990329 0.138735i \(-0.0443038\pi\)
−0.138735 + 0.990329i \(0.544304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −50.6969 −2.66826
\(362\) 0 0
\(363\) −23.7980 23.7980i −1.24907 1.24907i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 88.2929i 4.59634i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 11.6515i 0.598499i −0.954175 0.299249i \(-0.903264\pi\)
0.954175 0.299249i \(-0.0967363\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 41.3939 41.3939i 2.10417 2.10417i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 40.0454 + 40.0454i 2.02002 + 2.02002i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 37.2929 1.86232 0.931158 0.364615i \(-0.118800\pi\)
0.931158 + 0.364615i \(0.118800\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 18.3939i 0.909519i 0.890614 + 0.454759i \(0.150275\pi\)
−0.890614 + 0.454759i \(0.849725\pi\)
\(410\) 0 0
\(411\) 51.9444 2.56223
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −40.8207 + 40.8207i −1.99900 + 1.99900i
\(418\) 0 0
\(419\) 22.8434i 1.11597i 0.829851 + 0.557986i \(0.188426\pi\)
−0.829851 + 0.557986i \(0.811574\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 17.2702 + 17.2702i 0.829951 + 0.829951i 0.987510 0.157559i \(-0.0503624\pi\)
−0.157559 + 0.987510i \(0.550362\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 48.2929 2.29966
\(442\) 0 0
\(443\) 26.7196 + 26.7196i 1.26949 + 1.26949i 0.946353 + 0.323136i \(0.104737\pi\)
0.323136 + 0.946353i \(0.395263\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.1010i 0.759854i −0.925016 0.379927i \(-0.875949\pi\)
0.925016 0.379927i \(-0.124051\pi\)
\(450\) 0 0
\(451\) −7.04541 −0.331755
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.92168 3.92168i 0.183449 0.183449i −0.609408 0.792857i \(-0.708593\pi\)
0.792857 + 0.609408i \(0.208593\pi\)
\(458\) 0 0
\(459\) 29.0454i 1.35572i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −22.0000 + 22.0000i −1.01804 + 1.01804i −0.0182043 + 0.999834i \(0.505795\pi\)
−0.999834 + 0.0182043i \(0.994205\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.30306 + 3.30306i 0.151875 + 0.151875i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 0 0
\(489\) 34.5959i 1.56448i
\(490\) 0 0
\(491\) −42.0000 −1.89543 −0.947717 0.319113i \(-0.896615\pi\)
−0.947717 + 0.319113i \(0.896615\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.0000i 0.626726i 0.949633 + 0.313363i \(0.101456\pi\)
−0.949633 + 0.313363i \(0.898544\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −28.9217 + 28.9217i −1.28446 + 1.28446i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −72.4166 72.4166i −3.19727 3.19727i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −36.1918 −1.58559 −0.792797 0.609486i \(-0.791376\pi\)
−0.792797 + 0.609486i \(0.791376\pi\)
\(522\) 0 0
\(523\) −32.2702 32.2702i −1.41108 1.41108i −0.752619 0.658456i \(-0.771210\pi\)
−0.658456 0.752619i \(-0.728790\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 41.3939 1.79634
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 58.1691 58.1691i 2.51018 2.51018i
\(538\) 0 0
\(539\) 3.85357i 0.165985i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −31.1691 + 31.1691i −1.33270 + 1.33270i −0.429746 + 0.902950i \(0.641397\pi\)
−0.902950 + 0.429746i \(0.858603\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −4.10102 −0.173145
\(562\) 0 0
\(563\) −26.0000 26.0000i −1.09577 1.09577i −0.994900 0.100870i \(-0.967837\pi\)
−0.100870 0.994900i \(-0.532163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.5959i 1.70187i −0.525271 0.850935i \(-0.676036\pi\)
0.525271 0.850935i \(-0.323964\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −32.8207 + 32.8207i −1.36634 + 1.36634i −0.500750 + 0.865592i \(0.666942\pi\)
−0.865592 + 0.500750i \(0.833058\pi\)
\(578\) 0 0
\(579\) 86.6413i 3.60069i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.3258 13.3258i 0.550013 0.550013i −0.376431 0.926445i \(-0.622849\pi\)
0.926445 + 0.376431i \(0.122849\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.97730 4.97730i −0.204393 0.204393i 0.597486 0.801879i \(-0.296166\pi\)
−0.801879 + 0.597486i \(0.796166\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 8.30306 0.338689 0.169344 0.985557i \(-0.445835\pi\)
0.169344 + 0.985557i \(0.445835\pi\)
\(602\) 0 0
\(603\) 38.4495 + 38.4495i 1.56578 + 1.56578i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −28.0000 + 28.0000i −1.12724 + 1.12724i −0.136613 + 0.990624i \(0.543622\pi\)
−0.990624 + 0.136613i \(0.956378\pi\)
\(618\) 0 0
\(619\) 26.0000i 1.04503i −0.852631 0.522514i \(-0.824994\pi\)
0.852631 0.522514i \(-0.175006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 10.2247 10.2247i 0.408337 0.408337i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) −33.4722 33.4722i −1.33040 1.33040i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 0 0
\(643\) −6.00000 6.00000i −0.236617 0.236617i 0.578831 0.815448i \(-0.303509\pi\)
−0.815448 + 0.578831i \(0.803509\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 0 0
\(649\) 3.30306i 0.129657i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 49.8434 49.8434i 1.94457 1.94457i
\(658\) 0 0
\(659\) 50.6413i 1.97271i −0.164644 0.986353i \(-0.552648\pi\)
0.164644 0.986353i \(-0.447352\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 36.0000 + 36.0000i 1.38770 + 1.38770i 0.830134 + 0.557564i \(0.188264\pi\)
0.557564 + 0.830134i \(0.311736\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −8.89898 −0.341010
\(682\) 0 0
\(683\) 36.7196 + 36.7196i 1.40504 + 1.40504i 0.782937 + 0.622101i \(0.213721\pi\)
0.622101 + 0.782937i \(0.286279\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −45.0454 −1.71361 −0.856804 0.515642i \(-0.827553\pi\)
−0.856804 + 0.515642i \(0.827553\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 21.4268 21.4268i 0.811597 0.811597i
\(698\) 0 0
\(699\) 17.7980i 0.673181i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −3.77526 3.77526i −0.140403 0.140403i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 7.69694i 0.285072i
\(730\) 0 0
\(731\) −20.0908 −0.743086
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.06811 + 3.06811i −0.113015 + 0.113015i
\(738\) 0 0
\(739\) 34.0000i 1.25071i 0.780340 + 0.625355i \(0.215046\pi\)
−0.780340 + 0.625355i \(0.784954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 69.1464 69.1464i 2.52994 2.52994i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 53.2702 + 53.2702i 1.94127 + 1.94127i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17.2020 −0.623574 −0.311787 0.950152i \(-0.600927\pi\)
−0.311787 + 0.950152i \(0.600927\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 55.0908i 1.98663i −0.115454 0.993313i \(-0.536832\pi\)
0.115454 0.993313i \(-0.463168\pi\)
\(770\) 0 0
\(771\) −35.5959 −1.28196
\(772\) 0 0
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 106.843i 3.82806i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18.0000 18.0000i 0.641631 0.641631i −0.309326 0.950956i \(-0.600103\pi\)
0.950956 + 0.309326i \(0.100103\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −95.8888 −3.38806
\(802\) 0 0
\(803\) 3.97730 + 3.97730i 0.140356 + 0.140356i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000i 0.210949i 0.994422 + 0.105474i \(0.0336361\pi\)
−0.994422 + 0.105474i \(0.966364\pi\)
\(810\) 0 0
\(811\) 38.0000 1.33436 0.667180 0.744896i \(-0.267501\pi\)
0.667180 + 0.744896i \(0.267501\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 50.0908 50.0908i 1.75246 1.75246i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 40.0681 40.0681i 1.39330 1.39330i 0.575510 0.817795i \(-0.304804\pi\)
0.817795 0.575510i \(-0.195196\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.7196 11.7196i −0.406062 0.406062i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −40.0454 40.0454i −1.37924 1.37924i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 19.8990i 0.682931i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.0681 + 25.0681i −0.856310 + 0.856310i −0.990901 0.134591i \(-0.957028\pi\)
0.134591 + 0.990901i \(0.457028\pi\)
\(858\) 0 0
\(859\) 21.6515i 0.738741i −0.929282 0.369370i \(-0.879573\pi\)
0.929282 0.369370i \(-0.120427\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −25.3485 + 25.3485i −0.860879 + 0.860879i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 82.7878 + 82.7878i 2.80194 + 2.80194i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 22.2247 + 22.2247i 0.747922 + 0.747922i 0.974089 0.226166i \(-0.0726193\pi\)
−0.226166 + 0.974089i \(0.572619\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 9.85357 0.330107
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −42.0000 + 42.0000i −1.39459 + 1.39459i −0.579898 + 0.814689i \(0.696908\pi\)
−0.814689 + 0.579898i \(0.803092\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 5.51760 + 5.51760i 0.182606 + 0.182606i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 79.2929 2.61279
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 54.0000i 1.77168i −0.463988 0.885841i \(-0.653582\pi\)
0.463988 0.885841i \(-0.346418\pi\)
\(930\) 0 0
\(931\) 58.4393 1.91527
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.82066 + 2.82066i −0.0921470 + 0.0921470i −0.751678 0.659531i \(-0.770755\pi\)
0.659531 + 0.751678i \(0.270755\pi\)
\(938\) 0 0
\(939\) 106.788i 3.48489i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.0000 38.0000i 1.23483 1.23483i 0.272749 0.962085i \(-0.412067\pi\)
0.962085 0.272749i \(-0.0879328\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −41.7196 41.7196i −1.35143 1.35143i −0.884062 0.467370i \(-0.845202\pi\)
−0.467370 0.884062i \(-0.654798\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 22.9444 + 22.9444i 0.739373 + 0.739373i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 0 0
\(969\) 62.1918i 1.99789i
\(970\) 0 0
\(971\) 53.9444 1.73116 0.865579 0.500773i \(-0.166951\pi\)
0.865579 + 0.500773i \(0.166951\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.3258 + 18.3258i −0.586293 + 0.586293i −0.936625 0.350332i \(-0.886069\pi\)
0.350332 + 0.936625i \(0.386069\pi\)
\(978\) 0 0
\(979\) 7.65153i 0.244544i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −77.9671 77.9671i −2.47421 2.47421i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.o.f.143.2 4
4.3 odd 2 200.2.k.f.43.1 yes 4
5.2 odd 4 inner 800.2.o.f.207.2 4
5.3 odd 4 800.2.o.e.207.1 4
5.4 even 2 800.2.o.e.143.1 4
8.3 odd 2 CM 800.2.o.f.143.2 4
8.5 even 2 200.2.k.f.43.1 yes 4
20.3 even 4 200.2.k.e.107.2 yes 4
20.7 even 4 200.2.k.f.107.1 yes 4
20.19 odd 2 200.2.k.e.43.2 4
40.3 even 4 800.2.o.e.207.1 4
40.13 odd 4 200.2.k.e.107.2 yes 4
40.19 odd 2 800.2.o.e.143.1 4
40.27 even 4 inner 800.2.o.f.207.2 4
40.29 even 2 200.2.k.e.43.2 4
40.37 odd 4 200.2.k.f.107.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.k.e.43.2 4 20.19 odd 2
200.2.k.e.43.2 4 40.29 even 2
200.2.k.e.107.2 yes 4 20.3 even 4
200.2.k.e.107.2 yes 4 40.13 odd 4
200.2.k.f.43.1 yes 4 4.3 odd 2
200.2.k.f.43.1 yes 4 8.5 even 2
200.2.k.f.107.1 yes 4 20.7 even 4
200.2.k.f.107.1 yes 4 40.37 odd 4
800.2.o.e.143.1 4 5.4 even 2
800.2.o.e.143.1 4 40.19 odd 2
800.2.o.e.207.1 4 5.3 odd 4
800.2.o.e.207.1 4 40.3 even 4
800.2.o.f.143.2 4 1.1 even 1 trivial
800.2.o.f.143.2 4 8.3 odd 2 CM
800.2.o.f.207.2 4 5.2 odd 4 inner
800.2.o.f.207.2 4 40.27 even 4 inner