Properties

Label 800.2.n.e
Level $800$
Weight $2$
Character orbit 800.n
Analytic conductor $6.388$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.n (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - i ) q^{3} + ( 3 - 3 i ) q^{7} -i q^{9} +O(q^{10})\) \( q + ( -1 - i ) q^{3} + ( 3 - 3 i ) q^{7} -i q^{9} -2 i q^{11} + ( -3 + 3 i ) q^{13} + ( -1 - i ) q^{17} + 4 q^{19} -6 q^{21} + ( 1 + i ) q^{23} + ( -4 + 4 i ) q^{27} -10 i q^{31} + ( -2 + 2 i ) q^{33} + ( 1 + i ) q^{37} + 6 q^{39} -10 q^{41} + ( -5 - 5 i ) q^{43} + ( 3 - 3 i ) q^{47} -11 i q^{49} + 2 i q^{51} + ( 5 - 5 i ) q^{53} + ( -4 - 4 i ) q^{57} -12 q^{59} + 2 q^{61} + ( -3 - 3 i ) q^{63} + ( 1 - i ) q^{67} -2 i q^{69} -2 i q^{71} + ( -1 + i ) q^{73} + ( -6 - 6 i ) q^{77} + 8 q^{79} + 5 q^{81} + ( -5 - 5 i ) q^{83} + 16 i q^{89} + 18 i q^{91} + ( -10 + 10 i ) q^{93} + ( 3 + 3 i ) q^{97} -2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} + 6q^{7} + O(q^{10}) \) \( 2q - 2q^{3} + 6q^{7} - 6q^{13} - 2q^{17} + 8q^{19} - 12q^{21} + 2q^{23} - 8q^{27} - 4q^{33} + 2q^{37} + 12q^{39} - 20q^{41} - 10q^{43} + 6q^{47} + 10q^{53} - 8q^{57} - 24q^{59} + 4q^{61} - 6q^{63} + 2q^{67} - 2q^{73} - 12q^{77} + 16q^{79} + 10q^{81} - 10q^{83} - 20q^{93} + 6q^{97} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
543.1
1.00000i
1.00000i
0 −1.00000 + 1.00000i 0 0 0 3.00000 + 3.00000i 0 1.00000i 0
607.1 0 −1.00000 1.00000i 0 0 0 3.00000 3.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.2.n.e 2
4.b odd 2 1 800.2.n.f 2
5.b even 2 1 160.2.n.d yes 2
5.c odd 4 1 160.2.n.c 2
5.c odd 4 1 800.2.n.f 2
8.b even 2 1 1600.2.n.m 2
8.d odd 2 1 1600.2.n.c 2
15.d odd 2 1 1440.2.x.a 2
15.e even 4 1 1440.2.x.f 2
20.d odd 2 1 160.2.n.c 2
20.e even 4 1 160.2.n.d yes 2
20.e even 4 1 inner 800.2.n.e 2
40.e odd 2 1 320.2.n.g 2
40.f even 2 1 320.2.n.b 2
40.i odd 4 1 320.2.n.g 2
40.i odd 4 1 1600.2.n.c 2
40.k even 4 1 320.2.n.b 2
40.k even 4 1 1600.2.n.m 2
60.h even 2 1 1440.2.x.f 2
60.l odd 4 1 1440.2.x.a 2
80.i odd 4 1 1280.2.o.m 2
80.j even 4 1 1280.2.o.l 2
80.k odd 4 1 1280.2.o.c 2
80.k odd 4 1 1280.2.o.m 2
80.q even 4 1 1280.2.o.f 2
80.q even 4 1 1280.2.o.l 2
80.s even 4 1 1280.2.o.f 2
80.t odd 4 1 1280.2.o.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.n.c 2 5.c odd 4 1
160.2.n.c 2 20.d odd 2 1
160.2.n.d yes 2 5.b even 2 1
160.2.n.d yes 2 20.e even 4 1
320.2.n.b 2 40.f even 2 1
320.2.n.b 2 40.k even 4 1
320.2.n.g 2 40.e odd 2 1
320.2.n.g 2 40.i odd 4 1
800.2.n.e 2 1.a even 1 1 trivial
800.2.n.e 2 20.e even 4 1 inner
800.2.n.f 2 4.b odd 2 1
800.2.n.f 2 5.c odd 4 1
1280.2.o.c 2 80.k odd 4 1
1280.2.o.c 2 80.t odd 4 1
1280.2.o.f 2 80.q even 4 1
1280.2.o.f 2 80.s even 4 1
1280.2.o.l 2 80.j even 4 1
1280.2.o.l 2 80.q even 4 1
1280.2.o.m 2 80.i odd 4 1
1280.2.o.m 2 80.k odd 4 1
1440.2.x.a 2 15.d odd 2 1
1440.2.x.a 2 60.l odd 4 1
1440.2.x.f 2 15.e even 4 1
1440.2.x.f 2 60.h even 2 1
1600.2.n.c 2 8.d odd 2 1
1600.2.n.c 2 40.i odd 4 1
1600.2.n.m 2 8.b even 2 1
1600.2.n.m 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(800, [\chi])\):

\( T_{3}^{2} + 2 T_{3} + 2 \)
\( T_{7}^{2} - 6 T_{7} + 18 \)
\( T_{11}^{2} + 4 \)
\( T_{13}^{2} + 6 T_{13} + 18 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 2 + 2 T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 18 - 6 T + T^{2} \)
$11$ \( 4 + T^{2} \)
$13$ \( 18 + 6 T + T^{2} \)
$17$ \( 2 + 2 T + T^{2} \)
$19$ \( ( -4 + T )^{2} \)
$23$ \( 2 - 2 T + T^{2} \)
$29$ \( T^{2} \)
$31$ \( 100 + T^{2} \)
$37$ \( 2 - 2 T + T^{2} \)
$41$ \( ( 10 + T )^{2} \)
$43$ \( 50 + 10 T + T^{2} \)
$47$ \( 18 - 6 T + T^{2} \)
$53$ \( 50 - 10 T + T^{2} \)
$59$ \( ( 12 + T )^{2} \)
$61$ \( ( -2 + T )^{2} \)
$67$ \( 2 - 2 T + T^{2} \)
$71$ \( 4 + T^{2} \)
$73$ \( 2 + 2 T + T^{2} \)
$79$ \( ( -8 + T )^{2} \)
$83$ \( 50 + 10 T + T^{2} \)
$89$ \( 256 + T^{2} \)
$97$ \( 18 - 6 T + T^{2} \)
show more
show less