Defining parameters
Level: | \( N \) | \(=\) | \( 800 = 2^{5} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 800.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(800, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 144 | 22 | 122 |
Cusp forms | 96 | 16 | 80 |
Eisenstein series | 48 | 6 | 42 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(800, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
800.2.d.a | $2$ | $6.388$ | \(\Q(\sqrt{-7}) \) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-\beta q^{3}-4q^{7}-4q^{9}+\beta q^{11}-3q^{17}+\cdots\) |
800.2.d.b | $2$ | $6.388$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+i q^{3}-2 q^{7}+2 q^{9}-5 i q^{11}+\cdots\) |
800.2.d.c | $2$ | $6.388$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+i q^{3}+2 q^{7}+2 q^{9}+5 i q^{11}+\cdots\) |
800.2.d.d | $2$ | $6.388$ | \(\Q(\sqrt{-7}) \) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q-\beta q^{3}+4q^{7}-4q^{9}-\beta q^{11}+3q^{17}+\cdots\) |
800.2.d.e | $4$ | $6.388$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q-\beta_{3} q^{3}+(-\beta_1-1)q^{7}+(2\beta_1-1)q^{9}+\cdots\) |
800.2.d.f | $4$ | $6.388$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}-\beta _{2}q^{7}+q^{9}+\beta _{3}q^{11}-2\beta _{2}q^{17}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(800, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)