Properties

Label 800.2.d
Level $800$
Weight $2$
Character orbit 800.d
Rep. character $\chi_{800}(401,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $6$
Sturm bound $240$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(240\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(800, [\chi])\).

Total New Old
Modular forms 144 22 122
Cusp forms 96 16 80
Eisenstein series 48 6 42

Trace form

\( 16 q - 4 q^{7} - 8 q^{9} - 4 q^{23} + 8 q^{31} - 8 q^{33} + 20 q^{47} + 8 q^{49} - 8 q^{57} - 20 q^{63} - 16 q^{73} - 40 q^{79} - 32 q^{81} - 48 q^{87} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
800.2.d.a 800.d 8.b $2$ $6.388$ \(\Q(\sqrt{-7}) \) None 200.2.d.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}-4q^{7}-4q^{9}+\beta q^{11}-3q^{17}+\cdots\)
800.2.d.b 800.d 8.b $2$ $6.388$ \(\Q(\sqrt{-1}) \) None 200.2.d.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-2 q^{7}+2 q^{9}-5 i q^{11}+\cdots\)
800.2.d.c 800.d 8.b $2$ $6.388$ \(\Q(\sqrt{-1}) \) None 200.2.d.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 q^{7}+2 q^{9}+5 i q^{11}+\cdots\)
800.2.d.d 800.d 8.b $2$ $6.388$ \(\Q(\sqrt{-7}) \) None 200.2.d.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}+4q^{7}-4q^{9}-\beta q^{11}+3q^{17}+\cdots\)
800.2.d.e 800.d 8.b $4$ $6.388$ \(\Q(\zeta_{12})\) None 40.2.d.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{3} q^{3}+(-\beta_1-1)q^{7}+(2\beta_1-1)q^{9}+\cdots\)
800.2.d.f 800.d 8.b $4$ $6.388$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 40.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-\beta _{2}q^{7}+q^{9}+\beta _{3}q^{11}-2\beta _{2}q^{17}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(800, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)