Defining parameters
Level: | \( N \) | \(=\) | \( 800 = 2^{5} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 800.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(800, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 144 | 18 | 126 |
Cusp forms | 96 | 18 | 78 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(800, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
800.2.c.a | $2$ | $6.388$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{3}-iq^{7}-q^{9}-4q^{11}+3iq^{13}+\cdots\) |
800.2.c.b | $2$ | $6.388$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{3}-iq^{7}-q^{9}+4q^{11}-3iq^{13}+\cdots\) |
800.2.c.c | $2$ | $6.388$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{3}+2iq^{7}+2q^{9}-5q^{11}+5iq^{17}+\cdots\) |
800.2.c.d | $2$ | $6.388$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+iq^{3}+2iq^{7}+2q^{9}+5q^{11}-5iq^{17}+\cdots\) |
800.2.c.e | $2$ | $6.388$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+3q^{9}+3iq^{13}-iq^{17}+10q^{29}+\cdots\) |
800.2.c.f | $4$ | $6.388$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}^{2}q^{3}+\zeta_{8}^{2}q^{7}-5q^{9}+\zeta_{8}^{3}q^{11}+\cdots\) |
800.2.c.g | $4$ | $6.388$ | \(\Q(i, \sqrt{5})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{3}-2\beta _{2}q^{7}-2q^{9}+\beta _{3}q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(800, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)