Properties

Label 800.2.be.a.209.28
Level $800$
Weight $2$
Character 800.209
Analytic conductor $6.388$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [800,2,Mod(209,800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("800.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(800, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.be (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 209.28
Character \(\chi\) \(=\) 800.209
Dual form 800.2.be.a.689.28

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.970606 + 2.98722i) q^{3} +(-0.762120 + 2.10218i) q^{5} +1.71800i q^{7} +(-5.55435 + 4.03547i) q^{9} +(-1.35234 + 1.86134i) q^{11} +(4.80828 - 3.49342i) q^{13} +(-7.01940 - 0.236226i) q^{15} +(-2.53693 - 0.824300i) q^{17} +(5.48112 + 1.78092i) q^{19} +(-5.13203 + 1.66750i) q^{21} +(0.393834 - 0.542066i) q^{23} +(-3.83835 - 3.20423i) q^{25} +(-9.82268 - 7.13660i) q^{27} +(-1.22579 + 0.398283i) q^{29} +(-0.362926 + 1.11697i) q^{31} +(-6.87282 - 2.23312i) q^{33} +(-3.61155 - 1.30932i) q^{35} +(2.95345 - 2.14581i) q^{37} +(15.1026 + 10.9726i) q^{39} +(6.21636 - 4.51645i) q^{41} +3.75396 q^{43} +(-4.25022 - 14.7518i) q^{45} +(-8.51974 + 2.76823i) q^{47} +4.04848 q^{49} -8.37845i q^{51} +(1.09116 + 3.35825i) q^{53} +(-2.88223 - 4.26144i) q^{55} +18.1019i q^{57} +(-3.58141 - 4.92938i) q^{59} +(0.542140 - 0.746192i) q^{61} +(-6.93293 - 9.54236i) q^{63} +(3.67932 + 12.7703i) q^{65} +(-4.74089 + 14.5910i) q^{67} +(2.00153 + 0.650336i) q^{69} +(-1.92683 - 5.93017i) q^{71} +(3.14398 - 4.32732i) q^{73} +(5.84621 - 14.5760i) q^{75} +(-3.19778 - 2.32332i) q^{77} +(0.125628 + 0.386644i) q^{79} +(5.41990 - 16.6807i) q^{81} +(0.356893 - 1.09840i) q^{83} +(3.66628 - 4.70489i) q^{85} +(-2.37952 - 3.27513i) q^{87} +(3.34918 + 2.43332i) q^{89} +(6.00168 + 8.26061i) q^{91} -3.68890 q^{93} +(-7.92110 + 10.1650i) q^{95} +(-14.4383 + 4.69127i) q^{97} -15.7959i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q - 30 q^{9} + 2 q^{15} - 10 q^{17} + 10 q^{23} - 6 q^{25} + 18 q^{31} - 10 q^{33} + 10 q^{39} - 10 q^{41} + 10 q^{47} - 80 q^{49} + 34 q^{55} - 60 q^{63} + 40 q^{65} - 22 q^{71} - 10 q^{73} - 14 q^{79}+ \cdots - 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.970606 + 2.98722i 0.560380 + 1.72467i 0.681295 + 0.732009i \(0.261417\pi\)
−0.120915 + 0.992663i \(0.538583\pi\)
\(4\) 0 0
\(5\) −0.762120 + 2.10218i −0.340830 + 0.940125i
\(6\) 0 0
\(7\) 1.71800i 0.649342i 0.945827 + 0.324671i \(0.105254\pi\)
−0.945827 + 0.324671i \(0.894746\pi\)
\(8\) 0 0
\(9\) −5.55435 + 4.03547i −1.85145 + 1.34516i
\(10\) 0 0
\(11\) −1.35234 + 1.86134i −0.407747 + 0.561215i −0.962667 0.270688i \(-0.912749\pi\)
0.554920 + 0.831903i \(0.312749\pi\)
\(12\) 0 0
\(13\) 4.80828 3.49342i 1.33358 0.968900i 0.333922 0.942601i \(-0.391628\pi\)
0.999654 0.0262994i \(-0.00837233\pi\)
\(14\) 0 0
\(15\) −7.01940 0.236226i −1.81240 0.0609934i
\(16\) 0 0
\(17\) −2.53693 0.824300i −0.615297 0.199922i −0.0152459 0.999884i \(-0.504853\pi\)
−0.600051 + 0.799962i \(0.704853\pi\)
\(18\) 0 0
\(19\) 5.48112 + 1.78092i 1.25746 + 0.408572i 0.860587 0.509304i \(-0.170097\pi\)
0.396868 + 0.917876i \(0.370097\pi\)
\(20\) 0 0
\(21\) −5.13203 + 1.66750i −1.11990 + 0.363878i
\(22\) 0 0
\(23\) 0.393834 0.542066i 0.0821200 0.113029i −0.765981 0.642864i \(-0.777746\pi\)
0.848101 + 0.529835i \(0.177746\pi\)
\(24\) 0 0
\(25\) −3.83835 3.20423i −0.767669 0.640846i
\(26\) 0 0
\(27\) −9.82268 7.13660i −1.89038 1.37344i
\(28\) 0 0
\(29\) −1.22579 + 0.398283i −0.227624 + 0.0739594i −0.420608 0.907242i \(-0.638183\pi\)
0.192985 + 0.981202i \(0.438183\pi\)
\(30\) 0 0
\(31\) −0.362926 + 1.11697i −0.0651834 + 0.200614i −0.978344 0.206986i \(-0.933634\pi\)
0.913160 + 0.407600i \(0.133634\pi\)
\(32\) 0 0
\(33\) −6.87282 2.23312i −1.19640 0.388735i
\(34\) 0 0
\(35\) −3.61155 1.30932i −0.610463 0.221315i
\(36\) 0 0
\(37\) 2.95345 2.14581i 0.485545 0.352769i −0.317924 0.948116i \(-0.602986\pi\)
0.803468 + 0.595347i \(0.202986\pi\)
\(38\) 0 0
\(39\) 15.1026 + 10.9726i 2.41834 + 1.75703i
\(40\) 0 0
\(41\) 6.21636 4.51645i 0.970832 0.705351i 0.0151912 0.999885i \(-0.495164\pi\)
0.955641 + 0.294534i \(0.0951643\pi\)
\(42\) 0 0
\(43\) 3.75396 0.572473 0.286236 0.958159i \(-0.407596\pi\)
0.286236 + 0.958159i \(0.407596\pi\)
\(44\) 0 0
\(45\) −4.25022 14.7518i −0.633585 2.19906i
\(46\) 0 0
\(47\) −8.51974 + 2.76823i −1.24273 + 0.403788i −0.855311 0.518115i \(-0.826634\pi\)
−0.387421 + 0.921903i \(0.626634\pi\)
\(48\) 0 0
\(49\) 4.04848 0.578355
\(50\) 0 0
\(51\) 8.37845i 1.17322i
\(52\) 0 0
\(53\) 1.09116 + 3.35825i 0.149882 + 0.461291i 0.997607 0.0691467i \(-0.0220277\pi\)
−0.847724 + 0.530438i \(0.822028\pi\)
\(54\) 0 0
\(55\) −2.88223 4.26144i −0.388640 0.574612i
\(56\) 0 0
\(57\) 18.1019i 2.39765i
\(58\) 0 0
\(59\) −3.58141 4.92938i −0.466259 0.641751i 0.509533 0.860451i \(-0.329818\pi\)
−0.975792 + 0.218700i \(0.929818\pi\)
\(60\) 0 0
\(61\) 0.542140 0.746192i 0.0694139 0.0955401i −0.772898 0.634530i \(-0.781194\pi\)
0.842312 + 0.538990i \(0.181194\pi\)
\(62\) 0 0
\(63\) −6.93293 9.54236i −0.873467 1.20222i
\(64\) 0 0
\(65\) 3.67932 + 12.7703i 0.456364 + 1.58396i
\(66\) 0 0
\(67\) −4.74089 + 14.5910i −0.579192 + 1.78257i 0.0422481 + 0.999107i \(0.486548\pi\)
−0.621440 + 0.783462i \(0.713452\pi\)
\(68\) 0 0
\(69\) 2.00153 + 0.650336i 0.240956 + 0.0782912i
\(70\) 0 0
\(71\) −1.92683 5.93017i −0.228673 0.703782i −0.997898 0.0648044i \(-0.979358\pi\)
0.769225 0.638978i \(-0.220642\pi\)
\(72\) 0 0
\(73\) 3.14398 4.32732i 0.367975 0.506475i −0.584374 0.811485i \(-0.698660\pi\)
0.952349 + 0.305010i \(0.0986598\pi\)
\(74\) 0 0
\(75\) 5.84621 14.5760i 0.675063 1.68309i
\(76\) 0 0
\(77\) −3.19778 2.32332i −0.364421 0.264767i
\(78\) 0 0
\(79\) 0.125628 + 0.386644i 0.0141343 + 0.0435008i 0.957875 0.287186i \(-0.0927197\pi\)
−0.943741 + 0.330687i \(0.892720\pi\)
\(80\) 0 0
\(81\) 5.41990 16.6807i 0.602211 1.85342i
\(82\) 0 0
\(83\) 0.356893 1.09840i 0.0391741 0.120565i −0.929557 0.368678i \(-0.879810\pi\)
0.968731 + 0.248113i \(0.0798104\pi\)
\(84\) 0 0
\(85\) 3.66628 4.70489i 0.397664 0.510317i
\(86\) 0 0
\(87\) −2.37952 3.27513i −0.255111 0.351131i
\(88\) 0 0
\(89\) 3.34918 + 2.43332i 0.355013 + 0.257932i 0.750969 0.660338i \(-0.229587\pi\)
−0.395956 + 0.918269i \(0.629587\pi\)
\(90\) 0 0
\(91\) 6.00168 + 8.26061i 0.629148 + 0.865947i
\(92\) 0 0
\(93\) −3.68890 −0.382521
\(94\) 0 0
\(95\) −7.92110 + 10.1650i −0.812688 + 1.04291i
\(96\) 0 0
\(97\) −14.4383 + 4.69127i −1.46598 + 0.476327i −0.929892 0.367833i \(-0.880100\pi\)
−0.536091 + 0.844160i \(0.680100\pi\)
\(98\) 0 0
\(99\) 15.7959i 1.58754i
\(100\) 0 0
\(101\) 13.7524i 1.36842i 0.729286 + 0.684209i \(0.239852\pi\)
−0.729286 + 0.684209i \(0.760148\pi\)
\(102\) 0 0
\(103\) −8.32817 + 2.70599i −0.820599 + 0.266629i −0.689081 0.724685i \(-0.741985\pi\)
−0.131519 + 0.991314i \(0.541985\pi\)
\(104\) 0 0
\(105\) 0.405836 12.0593i 0.0396056 1.17687i
\(106\) 0 0
\(107\) 3.49350 0.337729 0.168865 0.985639i \(-0.445990\pi\)
0.168865 + 0.985639i \(0.445990\pi\)
\(108\) 0 0
\(109\) 2.56568 + 3.53135i 0.245747 + 0.338242i 0.914016 0.405678i \(-0.132964\pi\)
−0.668269 + 0.743920i \(0.732964\pi\)
\(110\) 0 0
\(111\) 9.27664 + 6.73988i 0.880500 + 0.639721i
\(112\) 0 0
\(113\) −0.895884 1.23308i −0.0842776 0.115998i 0.764796 0.644272i \(-0.222839\pi\)
−0.849074 + 0.528274i \(0.822839\pi\)
\(114\) 0 0
\(115\) 0.839373 + 1.24103i 0.0782719 + 0.115727i
\(116\) 0 0
\(117\) −12.6093 + 38.8073i −1.16573 + 3.58774i
\(118\) 0 0
\(119\) 1.41615 4.35845i 0.129818 0.399538i
\(120\) 0 0
\(121\) 1.76343 + 5.42728i 0.160312 + 0.493389i
\(122\) 0 0
\(123\) 19.5253 + 14.1859i 1.76053 + 1.27910i
\(124\) 0 0
\(125\) 9.66116 5.62690i 0.864120 0.503285i
\(126\) 0 0
\(127\) 9.99210 13.7529i 0.886655 1.22038i −0.0878777 0.996131i \(-0.528008\pi\)
0.974533 0.224245i \(-0.0719915\pi\)
\(128\) 0 0
\(129\) 3.64361 + 11.2139i 0.320802 + 0.987328i
\(130\) 0 0
\(131\) 5.71604 + 1.85725i 0.499413 + 0.162269i 0.547882 0.836556i \(-0.315434\pi\)
−0.0484693 + 0.998825i \(0.515434\pi\)
\(132\) 0 0
\(133\) −3.05962 + 9.41655i −0.265303 + 0.816519i
\(134\) 0 0
\(135\) 22.4885 15.2101i 1.93550 1.30908i
\(136\) 0 0
\(137\) −2.43382 3.34986i −0.207935 0.286198i 0.692293 0.721616i \(-0.256600\pi\)
−0.900228 + 0.435418i \(0.856600\pi\)
\(138\) 0 0
\(139\) −5.91784 + 8.14520i −0.501944 + 0.690867i −0.982535 0.186078i \(-0.940422\pi\)
0.480591 + 0.876945i \(0.340422\pi\)
\(140\) 0 0
\(141\) −16.5386 22.7635i −1.39280 1.91703i
\(142\) 0 0
\(143\) 13.6741i 1.14349i
\(144\) 0 0
\(145\) 0.0969343 2.88038i 0.00804996 0.239202i
\(146\) 0 0
\(147\) 3.92948 + 12.0937i 0.324098 + 0.997472i
\(148\) 0 0
\(149\) 13.6951i 1.12195i 0.827834 + 0.560973i \(0.189573\pi\)
−0.827834 + 0.560973i \(0.810427\pi\)
\(150\) 0 0
\(151\) 12.0927 0.984088 0.492044 0.870570i \(-0.336250\pi\)
0.492044 + 0.870570i \(0.336250\pi\)
\(152\) 0 0
\(153\) 17.4175 5.65928i 1.40812 0.457525i
\(154\) 0 0
\(155\) −2.07149 1.61420i −0.166386 0.129656i
\(156\) 0 0
\(157\) 12.6051 1.00599 0.502997 0.864288i \(-0.332231\pi\)
0.502997 + 0.864288i \(0.332231\pi\)
\(158\) 0 0
\(159\) −8.97273 + 6.51907i −0.711584 + 0.516996i
\(160\) 0 0
\(161\) 0.931268 + 0.676606i 0.0733942 + 0.0533240i
\(162\) 0 0
\(163\) −9.55541 + 6.94241i −0.748438 + 0.543772i −0.895342 0.445379i \(-0.853069\pi\)
0.146904 + 0.989151i \(0.453069\pi\)
\(164\) 0 0
\(165\) 9.93233 12.7460i 0.773231 0.992277i
\(166\) 0 0
\(167\) −10.4420 3.39280i −0.808023 0.262543i −0.124263 0.992249i \(-0.539657\pi\)
−0.683760 + 0.729707i \(0.739657\pi\)
\(168\) 0 0
\(169\) 6.89835 21.2309i 0.530642 1.63315i
\(170\) 0 0
\(171\) −37.6309 + 12.2270i −2.87771 + 0.935024i
\(172\) 0 0
\(173\) 12.2681 + 8.91328i 0.932725 + 0.677664i 0.946659 0.322238i \(-0.104435\pi\)
−0.0139334 + 0.999903i \(0.504435\pi\)
\(174\) 0 0
\(175\) 5.50486 6.59427i 0.416128 0.498480i
\(176\) 0 0
\(177\) 11.2490 15.4829i 0.845527 1.16377i
\(178\) 0 0
\(179\) 20.5530 6.67808i 1.53620 0.499143i 0.585878 0.810399i \(-0.300750\pi\)
0.950326 + 0.311256i \(0.100750\pi\)
\(180\) 0 0
\(181\) −8.26366 2.68502i −0.614233 0.199576i −0.0146547 0.999893i \(-0.504665\pi\)
−0.599578 + 0.800316i \(0.704665\pi\)
\(182\) 0 0
\(183\) 2.75524 + 0.895233i 0.203673 + 0.0661775i
\(184\) 0 0
\(185\) 2.26000 + 7.84406i 0.166158 + 0.576707i
\(186\) 0 0
\(187\) 4.96511 3.60736i 0.363085 0.263796i
\(188\) 0 0
\(189\) 12.2607 16.8753i 0.891831 1.22750i
\(190\) 0 0
\(191\) −0.689197 + 0.500731i −0.0498686 + 0.0362316i −0.612440 0.790517i \(-0.709812\pi\)
0.562572 + 0.826748i \(0.309812\pi\)
\(192\) 0 0
\(193\) 10.7404i 0.773113i 0.922266 + 0.386557i \(0.126336\pi\)
−0.922266 + 0.386557i \(0.873664\pi\)
\(194\) 0 0
\(195\) −34.5765 + 23.3859i −2.47607 + 1.67470i
\(196\) 0 0
\(197\) −6.98882 21.5094i −0.497933 1.53248i −0.812336 0.583190i \(-0.801804\pi\)
0.314403 0.949290i \(-0.398196\pi\)
\(198\) 0 0
\(199\) −0.706769 −0.0501015 −0.0250508 0.999686i \(-0.507975\pi\)
−0.0250508 + 0.999686i \(0.507975\pi\)
\(200\) 0 0
\(201\) −48.1879 −3.39891
\(202\) 0 0
\(203\) −0.684250 2.10590i −0.0480249 0.147806i
\(204\) 0 0
\(205\) 4.75679 + 16.5100i 0.332229 + 1.15311i
\(206\) 0 0
\(207\) 4.60013i 0.319731i
\(208\) 0 0
\(209\) −10.7273 + 7.79381i −0.742020 + 0.539109i
\(210\) 0 0
\(211\) 10.7903 14.8516i 0.742834 1.02242i −0.255616 0.966778i \(-0.582278\pi\)
0.998451 0.0556452i \(-0.0177216\pi\)
\(212\) 0 0
\(213\) 15.8445 11.5117i 1.08565 0.788770i
\(214\) 0 0
\(215\) −2.86096 + 7.89150i −0.195116 + 0.538196i
\(216\) 0 0
\(217\) −1.91895 0.623506i −0.130267 0.0423263i
\(218\) 0 0
\(219\) 15.9782 + 5.19164i 1.07971 + 0.350818i
\(220\) 0 0
\(221\) −15.0779 + 4.89911i −1.01425 + 0.329550i
\(222\) 0 0
\(223\) 4.51123 6.20918i 0.302094 0.415797i −0.630801 0.775945i \(-0.717274\pi\)
0.932895 + 0.360147i \(0.117274\pi\)
\(224\) 0 0
\(225\) 34.2501 + 2.30788i 2.28334 + 0.153858i
\(226\) 0 0
\(227\) −9.47829 6.88638i −0.629096 0.457065i 0.226991 0.973897i \(-0.427111\pi\)
−0.856087 + 0.516832i \(0.827111\pi\)
\(228\) 0 0
\(229\) 25.6372 8.33003i 1.69415 0.550464i 0.706582 0.707631i \(-0.250236\pi\)
0.987572 + 0.157167i \(0.0502361\pi\)
\(230\) 0 0
\(231\) 3.83649 11.8075i 0.252422 0.776876i
\(232\) 0 0
\(233\) 13.2560 + 4.30712i 0.868426 + 0.282169i 0.709144 0.705064i \(-0.249082\pi\)
0.159283 + 0.987233i \(0.449082\pi\)
\(234\) 0 0
\(235\) 0.673733 20.0198i 0.0439495 1.30595i
\(236\) 0 0
\(237\) −1.03305 + 0.750558i −0.0671041 + 0.0487540i
\(238\) 0 0
\(239\) −7.73830 5.62220i −0.500549 0.363670i 0.308678 0.951167i \(-0.400114\pi\)
−0.809227 + 0.587497i \(0.800114\pi\)
\(240\) 0 0
\(241\) 20.3460 14.7823i 1.31060 0.952210i 0.310606 0.950539i \(-0.399468\pi\)
0.999999 0.00167085i \(-0.000531849\pi\)
\(242\) 0 0
\(243\) 18.6651 1.19737
\(244\) 0 0
\(245\) −3.08543 + 8.51066i −0.197121 + 0.543726i
\(246\) 0 0
\(247\) 32.5763 10.5847i 2.07278 0.673486i
\(248\) 0 0
\(249\) 3.62757 0.229888
\(250\) 0 0
\(251\) 6.91776i 0.436645i 0.975877 + 0.218323i \(0.0700585\pi\)
−0.975877 + 0.218323i \(0.929941\pi\)
\(252\) 0 0
\(253\) 0.476370 + 1.46612i 0.0299492 + 0.0921740i
\(254\) 0 0
\(255\) 17.6130 + 6.38538i 1.10297 + 0.399868i
\(256\) 0 0
\(257\) 29.8090i 1.85943i −0.368277 0.929716i \(-0.620052\pi\)
0.368277 0.929716i \(-0.379948\pi\)
\(258\) 0 0
\(259\) 3.68650 + 5.07403i 0.229068 + 0.315285i
\(260\) 0 0
\(261\) 5.20121 7.15885i 0.321947 0.443122i
\(262\) 0 0
\(263\) 15.5573 + 21.4128i 0.959304 + 1.32037i 0.947269 + 0.320441i \(0.103831\pi\)
0.0120353 + 0.999928i \(0.496169\pi\)
\(264\) 0 0
\(265\) −7.89125 0.265567i −0.484755 0.0163137i
\(266\) 0 0
\(267\) −4.01813 + 12.3665i −0.245906 + 0.756820i
\(268\) 0 0
\(269\) 7.64014 + 2.48243i 0.465827 + 0.151357i 0.532521 0.846417i \(-0.321245\pi\)
−0.0666932 + 0.997774i \(0.521245\pi\)
\(270\) 0 0
\(271\) −2.87827 8.85842i −0.174843 0.538111i 0.824784 0.565449i \(-0.191297\pi\)
−0.999626 + 0.0273381i \(0.991297\pi\)
\(272\) 0 0
\(273\) −18.8510 + 25.9461i −1.14091 + 1.57033i
\(274\) 0 0
\(275\) 11.1549 2.81125i 0.672667 0.169525i
\(276\) 0 0
\(277\) −3.05174 2.21722i −0.183361 0.133220i 0.492318 0.870415i \(-0.336150\pi\)
−0.675679 + 0.737196i \(0.736150\pi\)
\(278\) 0 0
\(279\) −2.49169 7.66863i −0.149173 0.459109i
\(280\) 0 0
\(281\) −6.62409 + 20.3869i −0.395160 + 1.21618i 0.533676 + 0.845689i \(0.320810\pi\)
−0.928837 + 0.370489i \(0.879190\pi\)
\(282\) 0 0
\(283\) −0.286114 + 0.880568i −0.0170077 + 0.0523443i −0.959200 0.282728i \(-0.908761\pi\)
0.942192 + 0.335072i \(0.108761\pi\)
\(284\) 0 0
\(285\) −38.0535 13.7958i −2.25409 0.817193i
\(286\) 0 0
\(287\) 7.75925 + 10.6797i 0.458014 + 0.630402i
\(288\) 0 0
\(289\) −7.99672 5.80996i −0.470395 0.341762i
\(290\) 0 0
\(291\) −28.0277 38.5769i −1.64301 2.26142i
\(292\) 0 0
\(293\) −13.3571 −0.780332 −0.390166 0.920744i \(-0.627582\pi\)
−0.390166 + 0.920744i \(0.627582\pi\)
\(294\) 0 0
\(295\) 13.0919 3.77199i 0.762241 0.219614i
\(296\) 0 0
\(297\) 26.5673 8.63223i 1.54159 0.500893i
\(298\) 0 0
\(299\) 3.98223i 0.230298i
\(300\) 0 0
\(301\) 6.44929i 0.371731i
\(302\) 0 0
\(303\) −41.0815 + 13.3482i −2.36007 + 0.766833i
\(304\) 0 0
\(305\) 1.15546 + 1.70837i 0.0661612 + 0.0978207i
\(306\) 0 0
\(307\) 14.1781 0.809186 0.404593 0.914497i \(-0.367413\pi\)
0.404593 + 0.914497i \(0.367413\pi\)
\(308\) 0 0
\(309\) −16.1668 22.2516i −0.919695 1.26585i
\(310\) 0 0
\(311\) −0.386936 0.281125i −0.0219411 0.0159412i 0.576761 0.816913i \(-0.304317\pi\)
−0.598702 + 0.800972i \(0.704317\pi\)
\(312\) 0 0
\(313\) −6.67701 9.19012i −0.377407 0.519456i 0.577488 0.816399i \(-0.304033\pi\)
−0.954895 + 0.296943i \(0.904033\pi\)
\(314\) 0 0
\(315\) 25.3435 7.30187i 1.42794 0.411414i
\(316\) 0 0
\(317\) −4.27173 + 13.1470i −0.239924 + 0.738411i 0.756505 + 0.653987i \(0.226905\pi\)
−0.996430 + 0.0844241i \(0.973095\pi\)
\(318\) 0 0
\(319\) 0.916348 2.82023i 0.0513056 0.157902i
\(320\) 0 0
\(321\) 3.39081 + 10.4358i 0.189257 + 0.582472i
\(322\) 0 0
\(323\) −12.4372 9.03618i −0.692026 0.502786i
\(324\) 0 0
\(325\) −29.6496 1.99788i −1.64466 0.110822i
\(326\) 0 0
\(327\) −8.05866 + 11.0918i −0.445645 + 0.613378i
\(328\) 0 0
\(329\) −4.75581 14.6369i −0.262197 0.806958i
\(330\) 0 0
\(331\) 6.42804 + 2.08860i 0.353317 + 0.114800i 0.480298 0.877105i \(-0.340529\pi\)
−0.126981 + 0.991905i \(0.540529\pi\)
\(332\) 0 0
\(333\) −7.74516 + 23.8372i −0.424432 + 1.30627i
\(334\) 0 0
\(335\) −27.0597 21.0863i −1.47843 1.15207i
\(336\) 0 0
\(337\) −9.77379 13.4525i −0.532412 0.732803i 0.455083 0.890449i \(-0.349609\pi\)
−0.987496 + 0.157646i \(0.949609\pi\)
\(338\) 0 0
\(339\) 2.81392 3.87303i 0.152831 0.210354i
\(340\) 0 0
\(341\) −1.58826 2.18606i −0.0860093 0.118382i
\(342\) 0 0
\(343\) 18.9813i 1.02489i
\(344\) 0 0
\(345\) −2.89253 + 3.71194i −0.155728 + 0.199844i
\(346\) 0 0
\(347\) −0.155098 0.477342i −0.00832608 0.0256250i 0.946807 0.321801i \(-0.104288\pi\)
−0.955133 + 0.296176i \(0.904288\pi\)
\(348\) 0 0
\(349\) 1.38740i 0.0742660i 0.999310 + 0.0371330i \(0.0118225\pi\)
−0.999310 + 0.0371330i \(0.988177\pi\)
\(350\) 0 0
\(351\) −72.1613 −3.85169
\(352\) 0 0
\(353\) −27.1323 + 8.81582i −1.44411 + 0.469218i −0.923175 0.384380i \(-0.874415\pi\)
−0.520931 + 0.853599i \(0.674415\pi\)
\(354\) 0 0
\(355\) 13.9348 + 0.468952i 0.739582 + 0.0248894i
\(356\) 0 0
\(357\) 14.3942 0.761820
\(358\) 0 0
\(359\) 18.7073 13.5917i 0.987336 0.717342i 0.0279998 0.999608i \(-0.491086\pi\)
0.959336 + 0.282266i \(0.0910862\pi\)
\(360\) 0 0
\(361\) 11.4997 + 8.35500i 0.605246 + 0.439737i
\(362\) 0 0
\(363\) −14.5009 + 10.5355i −0.761099 + 0.552971i
\(364\) 0 0
\(365\) 6.70073 + 9.90716i 0.350732 + 0.518565i
\(366\) 0 0
\(367\) −26.8195 8.71417i −1.39996 0.454876i −0.490785 0.871281i \(-0.663290\pi\)
−0.909179 + 0.416405i \(0.863290\pi\)
\(368\) 0 0
\(369\) −16.3018 + 50.1719i −0.848640 + 2.61184i
\(370\) 0 0
\(371\) −5.76946 + 1.87461i −0.299535 + 0.0973250i
\(372\) 0 0
\(373\) −14.5528 10.5732i −0.753515 0.547461i 0.143399 0.989665i \(-0.454197\pi\)
−0.896914 + 0.442204i \(0.854197\pi\)
\(374\) 0 0
\(375\) 26.1860 + 23.3985i 1.35224 + 1.20829i
\(376\) 0 0
\(377\) −4.50257 + 6.19726i −0.231894 + 0.319175i
\(378\) 0 0
\(379\) −5.18753 + 1.68553i −0.266466 + 0.0865799i −0.439203 0.898388i \(-0.644739\pi\)
0.172737 + 0.984968i \(0.444739\pi\)
\(380\) 0 0
\(381\) 50.7814 + 16.4999i 2.60161 + 0.845315i
\(382\) 0 0
\(383\) 13.2382 + 4.30135i 0.676440 + 0.219789i 0.627036 0.778990i \(-0.284268\pi\)
0.0494042 + 0.998779i \(0.484268\pi\)
\(384\) 0 0
\(385\) 7.32114 4.95166i 0.373120 0.252360i
\(386\) 0 0
\(387\) −20.8508 + 15.1490i −1.05990 + 0.770066i
\(388\) 0 0
\(389\) 21.7230 29.8991i 1.10140 1.51594i 0.267880 0.963452i \(-0.413677\pi\)
0.833518 0.552492i \(-0.186323\pi\)
\(390\) 0 0
\(391\) −1.44596 + 1.05055i −0.0731251 + 0.0531285i
\(392\) 0 0
\(393\) 18.8777i 0.952255i
\(394\) 0 0
\(395\) −0.908540 0.0305754i −0.0457136 0.00153842i
\(396\) 0 0
\(397\) 7.32490 + 22.5437i 0.367626 + 1.13144i 0.948320 + 0.317315i \(0.102781\pi\)
−0.580694 + 0.814122i \(0.697219\pi\)
\(398\) 0 0
\(399\) −31.0990 −1.55690
\(400\) 0 0
\(401\) −0.881338 −0.0440119 −0.0220060 0.999758i \(-0.507005\pi\)
−0.0220060 + 0.999758i \(0.507005\pi\)
\(402\) 0 0
\(403\) 2.15700 + 6.63856i 0.107448 + 0.330690i
\(404\) 0 0
\(405\) 30.9354 + 24.1063i 1.53719 + 1.19785i
\(406\) 0 0
\(407\) 8.39925i 0.416335i
\(408\) 0 0
\(409\) 28.9714 21.0489i 1.43254 1.04080i 0.443005 0.896519i \(-0.353912\pi\)
0.989536 0.144283i \(-0.0460876\pi\)
\(410\) 0 0
\(411\) 7.64449 10.5217i 0.377075 0.518999i
\(412\) 0 0
\(413\) 8.46866 6.15285i 0.416716 0.302762i
\(414\) 0 0
\(415\) 2.03705 + 1.58737i 0.0999949 + 0.0779209i
\(416\) 0 0
\(417\) −30.0754 9.77209i −1.47280 0.478541i
\(418\) 0 0
\(419\) −18.1069 5.88329i −0.884581 0.287418i −0.168723 0.985664i \(-0.553964\pi\)
−0.715858 + 0.698246i \(0.753964\pi\)
\(420\) 0 0
\(421\) −8.42477 + 2.73737i −0.410598 + 0.133411i −0.507031 0.861928i \(-0.669257\pi\)
0.0964323 + 0.995340i \(0.469257\pi\)
\(422\) 0 0
\(423\) 36.1505 49.7569i 1.75770 2.41926i
\(424\) 0 0
\(425\) 7.09639 + 11.2929i 0.344225 + 0.547785i
\(426\) 0 0
\(427\) 1.28196 + 0.931395i 0.0620382 + 0.0450734i
\(428\) 0 0
\(429\) −40.8476 + 13.2722i −1.97214 + 0.640788i
\(430\) 0 0
\(431\) −0.956566 + 2.94401i −0.0460762 + 0.141808i −0.971448 0.237253i \(-0.923753\pi\)
0.925372 + 0.379061i \(0.123753\pi\)
\(432\) 0 0
\(433\) 8.67407 + 2.81837i 0.416849 + 0.135442i 0.509930 0.860216i \(-0.329671\pi\)
−0.0930806 + 0.995659i \(0.529671\pi\)
\(434\) 0 0
\(435\) 8.69840 2.50615i 0.417056 0.120161i
\(436\) 0 0
\(437\) 3.12403 2.26974i 0.149443 0.108576i
\(438\) 0 0
\(439\) −31.0958 22.5924i −1.48412 1.07828i −0.976200 0.216872i \(-0.930415\pi\)
−0.507920 0.861404i \(-0.669585\pi\)
\(440\) 0 0
\(441\) −22.4867 + 16.3375i −1.07080 + 0.777978i
\(442\) 0 0
\(443\) −33.8214 −1.60690 −0.803451 0.595371i \(-0.797005\pi\)
−0.803451 + 0.595371i \(0.797005\pi\)
\(444\) 0 0
\(445\) −7.66777 + 5.18611i −0.363487 + 0.245845i
\(446\) 0 0
\(447\) −40.9102 + 13.2925i −1.93499 + 0.628715i
\(448\) 0 0
\(449\) 11.7494 0.554489 0.277245 0.960799i \(-0.410579\pi\)
0.277245 + 0.960799i \(0.410579\pi\)
\(450\) 0 0
\(451\) 17.6785i 0.832450i
\(452\) 0 0
\(453\) 11.7372 + 36.1235i 0.551463 + 1.69723i
\(454\) 0 0
\(455\) −21.9393 + 6.32107i −1.02853 + 0.296336i
\(456\) 0 0
\(457\) 12.5132i 0.585342i 0.956213 + 0.292671i \(0.0945441\pi\)
−0.956213 + 0.292671i \(0.905456\pi\)
\(458\) 0 0
\(459\) 19.0368 + 26.2019i 0.888562 + 1.22300i
\(460\) 0 0
\(461\) −7.24736 + 9.97513i −0.337543 + 0.464588i −0.943722 0.330740i \(-0.892702\pi\)
0.606179 + 0.795328i \(0.292702\pi\)
\(462\) 0 0
\(463\) 9.71829 + 13.3761i 0.451647 + 0.621639i 0.972751 0.231854i \(-0.0744793\pi\)
−0.521103 + 0.853494i \(0.674479\pi\)
\(464\) 0 0
\(465\) 2.81138 7.75474i 0.130375 0.359617i
\(466\) 0 0
\(467\) −4.96826 + 15.2907i −0.229904 + 0.707571i 0.767853 + 0.640626i \(0.221325\pi\)
−0.997757 + 0.0669450i \(0.978675\pi\)
\(468\) 0 0
\(469\) −25.0672 8.14484i −1.15750 0.376094i
\(470\) 0 0
\(471\) 12.2346 + 37.6541i 0.563739 + 1.73501i
\(472\) 0 0
\(473\) −5.07663 + 6.98739i −0.233424 + 0.321280i
\(474\) 0 0
\(475\) −15.3320 24.3986i −0.703478 1.11948i
\(476\) 0 0
\(477\) −19.6128 14.2495i −0.898008 0.652441i
\(478\) 0 0
\(479\) 6.65413 + 20.4793i 0.304035 + 0.935723i 0.980036 + 0.198822i \(0.0637116\pi\)
−0.676001 + 0.736901i \(0.736288\pi\)
\(480\) 0 0
\(481\) 6.70481 20.6353i 0.305713 0.940889i
\(482\) 0 0
\(483\) −1.11727 + 3.43862i −0.0508378 + 0.156463i
\(484\) 0 0
\(485\) 1.14176 33.9272i 0.0518448 1.54055i
\(486\) 0 0
\(487\) −15.7256 21.6444i −0.712593 0.980800i −0.999737 0.0229129i \(-0.992706\pi\)
0.287144 0.957887i \(-0.407294\pi\)
\(488\) 0 0
\(489\) −30.0131 21.8058i −1.35724 0.986091i
\(490\) 0 0
\(491\) −0.191575 0.263680i −0.00864564 0.0118997i 0.804672 0.593719i \(-0.202341\pi\)
−0.813318 + 0.581820i \(0.802341\pi\)
\(492\) 0 0
\(493\) 3.43806 0.154842
\(494\) 0 0
\(495\) 33.2058 + 12.0383i 1.49249 + 0.541083i
\(496\) 0 0
\(497\) 10.1880 3.31029i 0.456995 0.148487i
\(498\) 0 0
\(499\) 23.2206i 1.03950i −0.854320 0.519748i \(-0.826026\pi\)
0.854320 0.519748i \(-0.173974\pi\)
\(500\) 0 0
\(501\) 34.4855i 1.54070i
\(502\) 0 0
\(503\) 8.85545 2.87731i 0.394845 0.128293i −0.104863 0.994487i \(-0.533441\pi\)
0.499708 + 0.866194i \(0.333441\pi\)
\(504\) 0 0
\(505\) −28.9101 10.4810i −1.28648 0.466398i
\(506\) 0 0
\(507\) 70.1170 3.11401
\(508\) 0 0
\(509\) 11.8276 + 16.2793i 0.524249 + 0.721567i 0.986240 0.165318i \(-0.0528650\pi\)
−0.461992 + 0.886884i \(0.652865\pi\)
\(510\) 0 0
\(511\) 7.43433 + 5.40135i 0.328875 + 0.238942i
\(512\) 0 0
\(513\) −41.1296 56.6100i −1.81592 2.49939i
\(514\) 0 0
\(515\) 0.658584 19.5696i 0.0290207 0.862341i
\(516\) 0 0
\(517\) 6.36899 19.6017i 0.280108 0.862083i
\(518\) 0 0
\(519\) −14.7185 + 45.2987i −0.646068 + 1.98839i
\(520\) 0 0
\(521\) 5.18227 + 15.9494i 0.227039 + 0.698755i 0.998078 + 0.0619670i \(0.0197373\pi\)
−0.771039 + 0.636788i \(0.780263\pi\)
\(522\) 0 0
\(523\) −0.0366350 0.0266169i −0.00160194 0.00116388i 0.586984 0.809599i \(-0.300315\pi\)
−0.588586 + 0.808435i \(0.700315\pi\)
\(524\) 0 0
\(525\) 25.0416 + 10.0438i 1.09290 + 0.438347i
\(526\) 0 0
\(527\) 1.84144 2.53452i 0.0802144 0.110406i
\(528\) 0 0
\(529\) 6.96866 + 21.4473i 0.302985 + 0.932493i
\(530\) 0 0
\(531\) 39.7848 + 12.9268i 1.72651 + 0.560978i
\(532\) 0 0
\(533\) 14.1121 43.4327i 0.611265 1.88128i
\(534\) 0 0
\(535\) −2.66246 + 7.34397i −0.115108 + 0.317508i
\(536\) 0 0
\(537\) 39.8978 + 54.9146i 1.72172 + 2.36974i
\(538\) 0 0
\(539\) −5.47494 + 7.53561i −0.235822 + 0.324582i
\(540\) 0 0
\(541\) −10.3777 14.2837i −0.446173 0.614104i 0.525397 0.850857i \(-0.323917\pi\)
−0.971570 + 0.236753i \(0.923917\pi\)
\(542\) 0 0
\(543\) 27.2915i 1.17119i
\(544\) 0 0
\(545\) −9.37891 + 2.70221i −0.401748 + 0.115750i
\(546\) 0 0
\(547\) −10.9369 33.6604i −0.467630 1.43922i −0.855645 0.517563i \(-0.826839\pi\)
0.388015 0.921653i \(-0.373161\pi\)
\(548\) 0 0
\(549\) 6.33240i 0.270260i
\(550\) 0 0
\(551\) −7.42802 −0.316444
\(552\) 0 0
\(553\) −0.664253 + 0.215829i −0.0282469 + 0.00917798i
\(554\) 0 0
\(555\) −21.2384 + 14.3646i −0.901518 + 0.609744i
\(556\) 0 0
\(557\) −27.7529 −1.17593 −0.587964 0.808887i \(-0.700070\pi\)
−0.587964 + 0.808887i \(0.700070\pi\)
\(558\) 0 0
\(559\) 18.0501 13.1141i 0.763436 0.554669i
\(560\) 0 0
\(561\) 15.5951 + 11.3305i 0.658428 + 0.478376i
\(562\) 0 0
\(563\) 23.5565 17.1148i 0.992788 0.721303i 0.0322580 0.999480i \(-0.489730\pi\)
0.960530 + 0.278177i \(0.0897302\pi\)
\(564\) 0 0
\(565\) 3.27493 0.943558i 0.137777 0.0396958i
\(566\) 0 0
\(567\) 28.6575 + 9.31138i 1.20350 + 0.391041i
\(568\) 0 0
\(569\) 5.68191 17.4871i 0.238198 0.733098i −0.758483 0.651693i \(-0.774059\pi\)
0.996681 0.0814052i \(-0.0259408\pi\)
\(570\) 0 0
\(571\) −20.4740 + 6.65241i −0.856811 + 0.278395i −0.704296 0.709906i \(-0.748737\pi\)
−0.152515 + 0.988301i \(0.548737\pi\)
\(572\) 0 0
\(573\) −2.16473 1.57277i −0.0904330 0.0657034i
\(574\) 0 0
\(575\) −3.24857 + 0.818702i −0.135475 + 0.0341422i
\(576\) 0 0
\(577\) 1.65018 2.27128i 0.0686978 0.0945545i −0.773285 0.634058i \(-0.781388\pi\)
0.841983 + 0.539504i \(0.181388\pi\)
\(578\) 0 0
\(579\) −32.0840 + 10.4247i −1.33337 + 0.433237i
\(580\) 0 0
\(581\) 1.88705 + 0.613141i 0.0782882 + 0.0254374i
\(582\) 0 0
\(583\) −7.72646 2.51048i −0.319997 0.103973i
\(584\) 0 0
\(585\) −71.9704 56.0828i −2.97561 2.31874i
\(586\) 0 0
\(587\) 9.41724 6.84202i 0.388691 0.282401i −0.376228 0.926527i \(-0.622779\pi\)
0.764919 + 0.644127i \(0.222779\pi\)
\(588\) 0 0
\(589\) −3.97848 + 5.47591i −0.163931 + 0.225631i
\(590\) 0 0
\(591\) 57.4698 41.7543i 2.36399 1.71754i
\(592\) 0 0
\(593\) 12.6560i 0.519720i 0.965646 + 0.259860i \(0.0836765\pi\)
−0.965646 + 0.259860i \(0.916324\pi\)
\(594\) 0 0
\(595\) 8.08298 + 6.29866i 0.331370 + 0.258220i
\(596\) 0 0
\(597\) −0.685994 2.11127i −0.0280759 0.0864087i
\(598\) 0 0
\(599\) 20.9771 0.857101 0.428550 0.903518i \(-0.359024\pi\)
0.428550 + 0.903518i \(0.359024\pi\)
\(600\) 0 0
\(601\) 23.0207 0.939032 0.469516 0.882924i \(-0.344428\pi\)
0.469516 + 0.882924i \(0.344428\pi\)
\(602\) 0 0
\(603\) −32.5488 100.175i −1.32549 4.07944i
\(604\) 0 0
\(605\) −12.7531 0.429184i −0.518487 0.0174488i
\(606\) 0 0
\(607\) 26.0419i 1.05701i −0.848931 0.528504i \(-0.822753\pi\)
0.848931 0.528504i \(-0.177247\pi\)
\(608\) 0 0
\(609\) 5.62666 4.08801i 0.228004 0.165654i
\(610\) 0 0
\(611\) −31.2947 + 43.0734i −1.26605 + 1.74257i
\(612\) 0 0
\(613\) −13.6825 + 9.94089i −0.552629 + 0.401509i −0.828754 0.559613i \(-0.810950\pi\)
0.276125 + 0.961122i \(0.410950\pi\)
\(614\) 0 0
\(615\) −44.7020 + 30.2343i −1.80256 + 1.21916i
\(616\) 0 0
\(617\) 5.20768 + 1.69208i 0.209653 + 0.0681205i 0.411961 0.911202i \(-0.364844\pi\)
−0.202308 + 0.979322i \(0.564844\pi\)
\(618\) 0 0
\(619\) −15.1429 4.92021i −0.608643 0.197760i −0.0115514 0.999933i \(-0.503677\pi\)
−0.597091 + 0.802173i \(0.703677\pi\)
\(620\) 0 0
\(621\) −7.73701 + 2.51391i −0.310476 + 0.100880i
\(622\) 0 0
\(623\) −4.18044 + 5.75389i −0.167486 + 0.230525i
\(624\) 0 0
\(625\) 4.46582 + 24.5979i 0.178633 + 0.983916i
\(626\) 0 0
\(627\) −33.6938 24.4799i −1.34560 0.977635i
\(628\) 0 0
\(629\) −9.26151 + 3.00925i −0.369281 + 0.119987i
\(630\) 0 0
\(631\) 15.0147 46.2106i 0.597727 1.83961i 0.0570726 0.998370i \(-0.481823\pi\)
0.540654 0.841245i \(-0.318177\pi\)
\(632\) 0 0
\(633\) 54.8380 + 17.8179i 2.17961 + 0.708200i
\(634\) 0 0
\(635\) 21.2960 + 31.4866i 0.845107 + 1.24951i
\(636\) 0 0
\(637\) 19.4662 14.1431i 0.771280 0.560368i
\(638\) 0 0
\(639\) 34.6333 + 25.1626i 1.37007 + 0.995417i
\(640\) 0 0
\(641\) 15.1755 11.0256i 0.599396 0.435486i −0.246269 0.969202i \(-0.579205\pi\)
0.845664 + 0.533715i \(0.179205\pi\)
\(642\) 0 0
\(643\) 37.8673 1.49334 0.746669 0.665195i \(-0.231652\pi\)
0.746669 + 0.665195i \(0.231652\pi\)
\(644\) 0 0
\(645\) −26.3505 0.886783i −1.03755 0.0349171i
\(646\) 0 0
\(647\) 37.5073 12.1869i 1.47456 0.479115i 0.542080 0.840327i \(-0.317637\pi\)
0.932484 + 0.361212i \(0.117637\pi\)
\(648\) 0 0
\(649\) 14.0185 0.550276
\(650\) 0 0
\(651\) 6.33752i 0.248387i
\(652\) 0 0
\(653\) −6.71891 20.6787i −0.262931 0.809219i −0.992163 0.124952i \(-0.960122\pi\)
0.729232 0.684267i \(-0.239878\pi\)
\(654\) 0 0
\(655\) −8.26059 + 10.6007i −0.322768 + 0.414204i
\(656\) 0 0
\(657\) 36.7229i 1.43270i
\(658\) 0 0
\(659\) −3.19947 4.40369i −0.124634 0.171543i 0.742141 0.670244i \(-0.233811\pi\)
−0.866774 + 0.498701i \(0.833811\pi\)
\(660\) 0 0
\(661\) 26.8362 36.9368i 1.04381 1.43668i 0.149747 0.988724i \(-0.452154\pi\)
0.894058 0.447951i \(-0.147846\pi\)
\(662\) 0 0
\(663\) −29.2694 40.2859i −1.13673 1.56458i
\(664\) 0 0
\(665\) −17.4635 13.6084i −0.677206 0.527712i
\(666\) 0 0
\(667\) −0.266862 + 0.821317i −0.0103329 + 0.0318015i
\(668\) 0 0
\(669\) 22.9268 + 7.44937i 0.886402 + 0.288009i
\(670\) 0 0
\(671\) 0.655758 + 2.01821i 0.0253152 + 0.0779123i
\(672\) 0 0
\(673\) 25.2847 34.8014i 0.974654 1.34150i 0.0349929 0.999388i \(-0.488859\pi\)
0.939661 0.342108i \(-0.111141\pi\)
\(674\) 0 0
\(675\) 14.8356 + 58.8669i 0.571021 + 2.26579i
\(676\) 0 0
\(677\) −37.8808 27.5220i −1.45588 1.05776i −0.984413 0.175873i \(-0.943725\pi\)
−0.471466 0.881884i \(-0.656275\pi\)
\(678\) 0 0
\(679\) −8.05960 24.8049i −0.309299 0.951924i
\(680\) 0 0
\(681\) 11.3714 34.9977i 0.435755 1.34111i
\(682\) 0 0
\(683\) 0.331130 1.01911i 0.0126703 0.0389953i −0.944521 0.328450i \(-0.893474\pi\)
0.957192 + 0.289454i \(0.0934739\pi\)
\(684\) 0 0
\(685\) 8.89688 2.56333i 0.339932 0.0979399i
\(686\) 0 0
\(687\) 49.7673 + 68.4988i 1.89874 + 2.61339i
\(688\) 0 0
\(689\) 16.9784 + 12.3355i 0.646824 + 0.469945i
\(690\) 0 0
\(691\) 8.71658 + 11.9973i 0.331595 + 0.456401i 0.941963 0.335717i \(-0.108979\pi\)
−0.610368 + 0.792118i \(0.708979\pi\)
\(692\) 0 0
\(693\) 27.1373 1.03086
\(694\) 0 0
\(695\) −12.6126 18.6480i −0.478424 0.707359i
\(696\) 0 0
\(697\) −19.4934 + 6.33379i −0.738366 + 0.239910i
\(698\) 0 0
\(699\) 43.7790i 1.65587i
\(700\) 0 0
\(701\) 6.33651i 0.239327i −0.992815 0.119663i \(-0.961818\pi\)
0.992815 0.119663i \(-0.0381815\pi\)
\(702\) 0 0
\(703\) 20.0098 6.50156i 0.754682 0.245211i
\(704\) 0 0
\(705\) 60.4574 17.4187i 2.27696 0.656027i
\(706\) 0 0
\(707\) −23.6266 −0.888571
\(708\) 0 0
\(709\) 25.4810 + 35.0716i 0.956960 + 1.31714i 0.948366 + 0.317179i \(0.102736\pi\)
0.00859395 + 0.999963i \(0.497264\pi\)
\(710\) 0 0
\(711\) −2.25807 1.64059i −0.0846843 0.0615268i
\(712\) 0 0
\(713\) 0.462540 + 0.636631i 0.0173222 + 0.0238420i
\(714\) 0 0
\(715\) −28.7455 10.4213i −1.07502 0.389736i
\(716\) 0 0
\(717\) 9.28391 28.5729i 0.346714 1.06708i
\(718\) 0 0
\(719\) −2.82195 + 8.68507i −0.105241 + 0.323898i −0.989787 0.142555i \(-0.954468\pi\)
0.884546 + 0.466453i \(0.154468\pi\)
\(720\) 0 0
\(721\) −4.64888 14.3078i −0.173133 0.532850i
\(722\) 0 0
\(723\) 63.9059 + 46.4303i 2.37669 + 1.72676i
\(724\) 0 0
\(725\) 5.98120 + 2.39896i 0.222136 + 0.0890953i
\(726\) 0 0
\(727\) −24.3866 + 33.5653i −0.904449 + 1.24487i 0.0645777 + 0.997913i \(0.479430\pi\)
−0.969027 + 0.246955i \(0.920570\pi\)
\(728\) 0 0
\(729\) 1.85677 + 5.71454i 0.0687691 + 0.211649i
\(730\) 0 0
\(731\) −9.52354 3.09439i −0.352241 0.114450i
\(732\) 0 0
\(733\) −11.2254 + 34.5481i −0.414619 + 1.27606i 0.497973 + 0.867193i \(0.334078\pi\)
−0.912592 + 0.408872i \(0.865922\pi\)
\(734\) 0 0
\(735\) −28.4179 0.956359i −1.04821 0.0352758i
\(736\) 0 0
\(737\) −20.7474 28.5564i −0.764241 1.05189i
\(738\) 0 0
\(739\) −27.2866 + 37.5567i −1.00375 + 1.38155i −0.0807577 + 0.996734i \(0.525734\pi\)
−0.922995 + 0.384813i \(0.874266\pi\)
\(740\) 0 0
\(741\) 63.2375 + 87.0389i 2.32309 + 3.19745i
\(742\) 0 0
\(743\) 43.8156i 1.60744i −0.595008 0.803720i \(-0.702851\pi\)
0.595008 0.803720i \(-0.297149\pi\)
\(744\) 0 0
\(745\) −28.7896 10.4373i −1.05477 0.382393i
\(746\) 0 0
\(747\) 2.45027 + 7.54115i 0.0896506 + 0.275916i
\(748\) 0 0
\(749\) 6.00182i 0.219302i
\(750\) 0 0
\(751\) −0.0692442 −0.00252676 −0.00126338 0.999999i \(-0.500402\pi\)
−0.00126338 + 0.999999i \(0.500402\pi\)
\(752\) 0 0
\(753\) −20.6649 + 6.71442i −0.753070 + 0.244687i
\(754\) 0 0
\(755\) −9.21607 + 25.4210i −0.335407 + 0.925166i
\(756\) 0 0
\(757\) 17.1602 0.623700 0.311850 0.950131i \(-0.399051\pi\)
0.311850 + 0.950131i \(0.399051\pi\)
\(758\) 0 0
\(759\) −3.91725 + 2.84605i −0.142187 + 0.103305i
\(760\) 0 0
\(761\) 8.77922 + 6.37847i 0.318246 + 0.231220i 0.735427 0.677604i \(-0.236982\pi\)
−0.417180 + 0.908824i \(0.636982\pi\)
\(762\) 0 0
\(763\) −6.06686 + 4.40783i −0.219635 + 0.159574i
\(764\) 0 0
\(765\) −1.37736 + 40.9277i −0.0497984 + 1.47975i
\(766\) 0 0
\(767\) −34.4408 11.1905i −1.24358 0.404065i
\(768\) 0 0
\(769\) 5.30296 16.3208i 0.191230 0.588545i −0.808770 0.588125i \(-0.799866\pi\)
1.00000 0.000419828i \(-0.000133635\pi\)
\(770\) 0 0
\(771\) 89.0459 28.9328i 3.20691 1.04199i
\(772\) 0 0
\(773\) −29.9036 21.7262i −1.07556 0.781437i −0.0986535 0.995122i \(-0.531454\pi\)
−0.976903 + 0.213685i \(0.931454\pi\)
\(774\) 0 0
\(775\) 4.97207 3.12443i 0.178602 0.112233i
\(776\) 0 0
\(777\) −11.5791 + 15.9372i −0.415398 + 0.571746i
\(778\) 0 0
\(779\) 42.1161 13.6843i 1.50896 0.490292i
\(780\) 0 0
\(781\) 13.6438 + 4.43314i 0.488214 + 0.158630i
\(782\) 0 0
\(783\) 14.8829 + 4.83576i 0.531873 + 0.172816i
\(784\) 0 0
\(785\) −9.60657 + 26.4982i −0.342873 + 0.945760i
\(786\) 0 0
\(787\) 19.5842 14.2288i 0.698102 0.507201i −0.181212 0.983444i \(-0.558002\pi\)
0.879313 + 0.476244i \(0.158002\pi\)
\(788\) 0 0
\(789\) −48.8646 + 67.2564i −1.73963 + 2.39439i
\(790\) 0 0
\(791\) 2.11843 1.53913i 0.0753225 0.0547250i
\(792\) 0 0
\(793\) 5.48182i 0.194665i
\(794\) 0 0
\(795\) −6.86599 23.8306i −0.243511 0.845186i
\(796\) 0 0
\(797\) −0.311905 0.959946i −0.0110483 0.0340030i 0.945380 0.325969i \(-0.105691\pi\)
−0.956429 + 0.291966i \(0.905691\pi\)
\(798\) 0 0
\(799\) 23.8959 0.845375
\(800\) 0 0
\(801\) −28.4221 −1.00425
\(802\) 0 0
\(803\) 3.80287 + 11.7040i 0.134200 + 0.413027i
\(804\) 0 0
\(805\) −2.13209 + 1.44204i −0.0751462 + 0.0508253i
\(806\) 0 0
\(807\) 25.2322i 0.888217i
\(808\) 0 0
\(809\) −14.0834 + 10.2322i −0.495147 + 0.359745i −0.807160 0.590332i \(-0.798997\pi\)
0.312013 + 0.950078i \(0.398997\pi\)
\(810\) 0 0
\(811\) 4.13632 5.69316i 0.145246 0.199914i −0.730195 0.683238i \(-0.760571\pi\)
0.875441 + 0.483325i \(0.160571\pi\)
\(812\) 0 0
\(813\) 23.6684 17.1961i 0.830086 0.603093i
\(814\) 0 0
\(815\) −7.31186 25.3782i −0.256123 0.888959i
\(816\) 0 0
\(817\) 20.5759 + 6.68551i 0.719859 + 0.233896i
\(818\) 0 0
\(819\) −66.6709 21.6627i −2.32967 0.756956i
\(820\) 0 0
\(821\) −24.4826 + 7.95489i −0.854450 + 0.277628i −0.703309 0.710884i \(-0.748295\pi\)
−0.151141 + 0.988512i \(0.548295\pi\)
\(822\) 0 0
\(823\) −24.5580 + 33.8012i −0.856038 + 1.17823i 0.126462 + 0.991971i \(0.459638\pi\)
−0.982500 + 0.186264i \(0.940362\pi\)
\(824\) 0 0
\(825\) 19.2249 + 30.5936i 0.669324 + 1.06513i
\(826\) 0 0
\(827\) 21.0719 + 15.3096i 0.732741 + 0.532368i 0.890429 0.455121i \(-0.150404\pi\)
−0.157688 + 0.987489i \(0.550404\pi\)
\(828\) 0 0
\(829\) 3.94736 1.28257i 0.137097 0.0445457i −0.239665 0.970856i \(-0.577037\pi\)
0.376762 + 0.926310i \(0.377037\pi\)
\(830\) 0 0
\(831\) 3.66128 11.2683i 0.127008 0.390892i
\(832\) 0 0
\(833\) −10.2707 3.33717i −0.355860 0.115626i
\(834\) 0 0
\(835\) 15.0903 19.3652i 0.522222 0.670160i
\(836\) 0 0
\(837\) 11.5363 8.38160i 0.398752 0.289710i
\(838\) 0 0
\(839\) 31.5974 + 22.9568i 1.09086 + 0.792557i 0.979545 0.201227i \(-0.0644930\pi\)
0.111317 + 0.993785i \(0.464493\pi\)
\(840\) 0 0
\(841\) −22.1176 + 16.0693i −0.762674 + 0.554115i
\(842\) 0 0
\(843\) −67.3294 −2.31895
\(844\) 0 0
\(845\) 39.3739 + 30.6821i 1.35450 + 1.05550i
\(846\) 0 0
\(847\) −9.32406 + 3.02957i −0.320378 + 0.104097i
\(848\) 0 0
\(849\) −2.90815 −0.0998075
\(850\) 0 0
\(851\) 2.44606i 0.0838498i
\(852\) 0 0
\(853\) 3.09392 + 9.52211i 0.105934 + 0.326031i 0.989948 0.141428i \(-0.0451695\pi\)
−0.884015 + 0.467459i \(0.845169\pi\)
\(854\) 0 0
\(855\) 2.97582 88.4256i 0.101771 3.02409i
\(856\) 0 0
\(857\) 31.6591i 1.08146i −0.841198 0.540728i \(-0.818149\pi\)
0.841198 0.540728i \(-0.181851\pi\)
\(858\) 0 0
\(859\) 10.6822 + 14.7028i 0.364473 + 0.501654i 0.951388 0.307994i \(-0.0996577\pi\)
−0.586915 + 0.809649i \(0.699658\pi\)
\(860\) 0 0
\(861\) −24.3714 + 33.5444i −0.830575 + 1.14319i
\(862\) 0 0
\(863\) −1.06034 1.45943i −0.0360944 0.0496797i 0.790588 0.612348i \(-0.209775\pi\)
−0.826683 + 0.562668i \(0.809775\pi\)
\(864\) 0 0
\(865\) −28.0871 + 18.9968i −0.954990 + 0.645909i
\(866\) 0 0
\(867\) 9.59395 29.5271i 0.325828 1.00279i
\(868\) 0 0
\(869\) −0.889568 0.289038i −0.0301765 0.00980495i
\(870\) 0 0
\(871\) 28.1768 + 86.7193i 0.954735 + 2.93837i
\(872\) 0 0
\(873\) 61.2636 84.3221i 2.07346 2.85387i
\(874\) 0 0
\(875\) 9.66700 + 16.5978i 0.326804 + 0.561110i
\(876\) 0 0
\(877\) 25.8054 + 18.7487i 0.871387 + 0.633100i 0.930959 0.365124i \(-0.118974\pi\)
−0.0595719 + 0.998224i \(0.518974\pi\)
\(878\) 0 0
\(879\) −12.9645 39.9007i −0.437282 1.34582i
\(880\) 0 0
\(881\) 5.46376 16.8157i 0.184079 0.566536i −0.815852 0.578260i \(-0.803732\pi\)
0.999931 + 0.0117237i \(0.00373186\pi\)
\(882\) 0 0
\(883\) −3.19347 + 9.82850i −0.107469 + 0.330755i −0.990302 0.138932i \(-0.955633\pi\)
0.882833 + 0.469687i \(0.155633\pi\)
\(884\) 0 0
\(885\) 23.9749 + 35.4473i 0.805906 + 1.19155i
\(886\) 0 0
\(887\) −18.9891 26.1362i −0.637591 0.877568i 0.360894 0.932607i \(-0.382472\pi\)
−0.998484 + 0.0550388i \(0.982472\pi\)
\(888\) 0 0
\(889\) 23.6275 + 17.1664i 0.792442 + 0.575742i
\(890\) 0 0
\(891\) 23.7190 + 32.6464i 0.794615 + 1.09369i
\(892\) 0 0
\(893\) −51.6277 −1.72766
\(894\) 0 0
\(895\) −1.62531 + 48.2957i −0.0543282 + 1.61435i
\(896\) 0 0
\(897\) 11.8958 3.86518i 0.397189 0.129055i
\(898\) 0 0
\(899\) 1.51372i 0.0504854i
\(900\) 0 0
\(901\) 9.41910i 0.313796i
\(902\) 0 0
\(903\) −19.2654 + 6.25972i −0.641113 + 0.208310i
\(904\) 0 0
\(905\) 11.9423 15.3254i 0.396976 0.509434i
\(906\) 0 0
\(907\) −38.2694 −1.27071 −0.635357 0.772219i \(-0.719147\pi\)
−0.635357 + 0.772219i \(0.719147\pi\)
\(908\) 0 0
\(909\) −55.4975 76.3858i −1.84074 2.53356i
\(910\) 0 0
\(911\) 39.1122 + 28.4167i 1.29584 + 0.941486i 0.999906 0.0137212i \(-0.00436774\pi\)
0.295938 + 0.955207i \(0.404368\pi\)
\(912\) 0 0
\(913\) 1.56186 + 2.14972i 0.0516901 + 0.0711453i
\(914\) 0 0
\(915\) −3.98177 + 5.10975i −0.131633 + 0.168923i
\(916\) 0 0
\(917\) −3.19076 + 9.82014i −0.105368 + 0.324290i
\(918\) 0 0
\(919\) 2.97260 9.14872i 0.0980570 0.301788i −0.889981 0.455997i \(-0.849283\pi\)
0.988038 + 0.154209i \(0.0492828\pi\)
\(920\) 0 0
\(921\) 13.7613 + 42.3531i 0.453452 + 1.39558i
\(922\) 0 0
\(923\) −29.9813 21.7827i −0.986847 0.716986i
\(924\) 0 0
\(925\) −18.2120 1.22718i −0.598808 0.0403495i
\(926\) 0 0
\(927\) 35.3377 48.6381i 1.16064 1.59749i
\(928\) 0 0
\(929\) 5.02685 + 15.4710i 0.164926 + 0.507589i 0.999031 0.0440168i \(-0.0140155\pi\)
−0.834105 + 0.551605i \(0.814015\pi\)
\(930\) 0 0
\(931\) 22.1902 + 7.21004i 0.727255 + 0.236300i
\(932\) 0 0
\(933\) 0.464221 1.42872i 0.0151979 0.0467743i
\(934\) 0 0
\(935\) 3.79933 + 13.1868i 0.124251 + 0.431255i
\(936\) 0 0
\(937\) 2.13418 + 2.93745i 0.0697207 + 0.0959623i 0.842453 0.538769i \(-0.181111\pi\)
−0.772733 + 0.634732i \(0.781111\pi\)
\(938\) 0 0
\(939\) 20.9721 28.8657i 0.684400 0.941996i
\(940\) 0 0
\(941\) 23.9722 + 32.9948i 0.781470 + 1.07560i 0.995118 + 0.0986904i \(0.0314654\pi\)
−0.213648 + 0.976911i \(0.568535\pi\)
\(942\) 0 0
\(943\) 5.14841i 0.167655i
\(944\) 0 0
\(945\) 26.1310 + 38.6352i 0.850041 + 1.25680i
\(946\) 0 0
\(947\) −7.79156 23.9800i −0.253192 0.779244i −0.994181 0.107727i \(-0.965643\pi\)
0.740989 0.671517i \(-0.234357\pi\)
\(948\) 0 0
\(949\) 31.7902i 1.03195i
\(950\) 0 0
\(951\) −43.4193 −1.40797
\(952\) 0 0
\(953\) 22.2071 7.21551i 0.719357 0.233733i 0.0736128 0.997287i \(-0.476547\pi\)
0.645745 + 0.763554i \(0.276547\pi\)
\(954\) 0 0
\(955\) −0.527378 1.83044i −0.0170655 0.0592315i
\(956\) 0 0
\(957\) 9.31405 0.301081
\(958\) 0 0
\(959\) 5.75505 4.18129i 0.185840 0.135021i
\(960\) 0 0
\(961\) 23.9636 + 17.4106i 0.773020 + 0.561632i
\(962\) 0 0
\(963\) −19.4041 + 14.0979i −0.625289 + 0.454299i
\(964\) 0 0
\(965\) −22.5784 8.18550i −0.726823 0.263500i
\(966\) 0 0
\(967\) 23.8786 + 7.75862i 0.767883 + 0.249500i 0.666659 0.745363i \(-0.267724\pi\)
0.101225 + 0.994864i \(0.467724\pi\)
\(968\) 0 0
\(969\) 14.9214 45.9233i 0.479344 1.47527i
\(970\) 0 0
\(971\) 9.54087 3.10002i 0.306181 0.0994843i −0.151897 0.988396i \(-0.548538\pi\)
0.458078 + 0.888912i \(0.348538\pi\)
\(972\) 0 0
\(973\) −13.9934 10.1668i −0.448609 0.325934i
\(974\) 0 0
\(975\) −22.8100 90.5089i −0.730503 2.89860i
\(976\) 0 0
\(977\) 12.8529 17.6906i 0.411202 0.565971i −0.552309 0.833640i \(-0.686253\pi\)
0.963511 + 0.267668i \(0.0862531\pi\)
\(978\) 0 0
\(979\) −9.05848 + 2.94328i −0.289510 + 0.0940676i
\(980\) 0 0
\(981\) −28.5014 9.26065i −0.909978 0.295670i
\(982\) 0 0
\(983\) 17.7241 + 5.75890i 0.565311 + 0.183681i 0.577709 0.816243i \(-0.303947\pi\)
−0.0123987 + 0.999923i \(0.503947\pi\)
\(984\) 0 0
\(985\) 50.5430 + 1.70094i 1.61043 + 0.0541965i
\(986\) 0 0
\(987\) 39.1076 28.4133i 1.24481 0.904406i
\(988\) 0 0
\(989\) 1.47843 2.03489i 0.0470115 0.0647058i
\(990\) 0 0
\(991\) −29.3074 + 21.2931i −0.930981 + 0.676398i −0.946233 0.323486i \(-0.895145\pi\)
0.0152515 + 0.999884i \(0.495145\pi\)
\(992\) 0 0
\(993\) 21.2292i 0.673688i
\(994\) 0 0
\(995\) 0.538643 1.48576i 0.0170761 0.0471017i
\(996\) 0 0
\(997\) 5.62136 + 17.3008i 0.178030 + 0.547921i 0.999759 0.0219581i \(-0.00699003\pi\)
−0.821729 + 0.569879i \(0.806990\pi\)
\(998\) 0 0
\(999\) −44.3246 −1.40237
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 800.2.be.a.209.28 112
4.3 odd 2 200.2.o.a.109.17 112
8.3 odd 2 200.2.o.a.109.24 yes 112
8.5 even 2 inner 800.2.be.a.209.1 112
20.3 even 4 1000.2.t.b.701.4 224
20.7 even 4 1000.2.t.b.701.53 224
20.19 odd 2 1000.2.o.a.549.12 112
25.14 even 10 inner 800.2.be.a.689.1 112
40.3 even 4 1000.2.t.b.701.19 224
40.19 odd 2 1000.2.o.a.549.5 112
40.27 even 4 1000.2.t.b.701.38 224
100.11 odd 10 1000.2.o.a.949.5 112
100.23 even 20 1000.2.t.b.301.19 224
100.27 even 20 1000.2.t.b.301.38 224
100.39 odd 10 200.2.o.a.189.24 yes 112
200.11 odd 10 1000.2.o.a.949.12 112
200.27 even 20 1000.2.t.b.301.53 224
200.123 even 20 1000.2.t.b.301.4 224
200.139 odd 10 200.2.o.a.189.17 yes 112
200.189 even 10 inner 800.2.be.a.689.28 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.17 112 4.3 odd 2
200.2.o.a.109.24 yes 112 8.3 odd 2
200.2.o.a.189.17 yes 112 200.139 odd 10
200.2.o.a.189.24 yes 112 100.39 odd 10
800.2.be.a.209.1 112 8.5 even 2 inner
800.2.be.a.209.28 112 1.1 even 1 trivial
800.2.be.a.689.1 112 25.14 even 10 inner
800.2.be.a.689.28 112 200.189 even 10 inner
1000.2.o.a.549.5 112 40.19 odd 2
1000.2.o.a.549.12 112 20.19 odd 2
1000.2.o.a.949.5 112 100.11 odd 10
1000.2.o.a.949.12 112 200.11 odd 10
1000.2.t.b.301.4 224 200.123 even 20
1000.2.t.b.301.19 224 100.23 even 20
1000.2.t.b.301.38 224 100.27 even 20
1000.2.t.b.301.53 224 200.27 even 20
1000.2.t.b.701.4 224 20.3 even 4
1000.2.t.b.701.19 224 40.3 even 4
1000.2.t.b.701.38 224 40.27 even 4
1000.2.t.b.701.53 224 20.7 even 4