Properties

Label 800.1.p.a
Level $800$
Weight $1$
Character orbit 800.p
Analytic conductor $0.399$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,1,Mod(193,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.193");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 800.p (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.399252010106\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (i - 1) q^{3} + (i + 1) q^{7} - i q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (i - 1) q^{3} + (i + 1) q^{7} - i q^{9} - 2 q^{21} + (i - 1) q^{23} + 2 i q^{29} + ( - i + 1) q^{43} + ( - i - 1) q^{47} + i q^{49} + ( - i + 1) q^{63} + (i + 1) q^{67} - 2 i q^{69} + q^{81} + ( - i + 1) q^{83} + ( - 2 i - 2) q^{87} - 2 i q^{89} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{7} - 4 q^{21} - 2 q^{23} + 2 q^{43} - 2 q^{47} + 2 q^{63} + 2 q^{67} + 2 q^{81} + 2 q^{83} - 4 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
1.00000i
1.00000i
0 −1.00000 1.00000i 0 0 0 1.00000 1.00000i 0 1.00000i 0
257.1 0 −1.00000 + 1.00000i 0 0 0 1.00000 + 1.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
5.c odd 4 1 inner
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.1.p.a 2
4.b odd 2 1 800.1.p.c yes 2
5.b even 2 1 800.1.p.c yes 2
5.c odd 4 1 inner 800.1.p.a 2
5.c odd 4 1 800.1.p.c yes 2
8.b even 2 1 1600.1.p.c 2
8.d odd 2 1 1600.1.p.a 2
20.d odd 2 1 CM 800.1.p.a 2
20.e even 4 1 inner 800.1.p.a 2
20.e even 4 1 800.1.p.c yes 2
40.e odd 2 1 1600.1.p.c 2
40.f even 2 1 1600.1.p.a 2
40.i odd 4 1 1600.1.p.a 2
40.i odd 4 1 1600.1.p.c 2
40.k even 4 1 1600.1.p.a 2
40.k even 4 1 1600.1.p.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
800.1.p.a 2 1.a even 1 1 trivial
800.1.p.a 2 5.c odd 4 1 inner
800.1.p.a 2 20.d odd 2 1 CM
800.1.p.a 2 20.e even 4 1 inner
800.1.p.c yes 2 4.b odd 2 1
800.1.p.c yes 2 5.b even 2 1
800.1.p.c yes 2 5.c odd 4 1
800.1.p.c yes 2 20.e even 4 1
1600.1.p.a 2 8.d odd 2 1
1600.1.p.a 2 40.f even 2 1
1600.1.p.a 2 40.i odd 4 1
1600.1.p.a 2 40.k even 4 1
1600.1.p.c 2 8.b even 2 1
1600.1.p.c 2 40.e odd 2 1
1600.1.p.c 2 40.i odd 4 1
1600.1.p.c 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 2T_{3} + 2 \) acting on \(S_{1}^{\mathrm{new}}(800, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} + 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$47$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$89$ \( T^{2} + 4 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less