Properties

Label 80.5.p.c.17.1
Level $80$
Weight $5$
Character 80.17
Analytic conductor $8.270$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,5,Mod(17,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.17"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 80.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.26959704671\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 17.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 80.17
Dual form 80.5.p.c.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{3} +(-15.0000 - 20.0000i) q^{5} +(19.0000 + 19.0000i) q^{7} +79.0000i q^{9} -202.000 q^{11} +(-99.0000 + 99.0000i) q^{13} +(35.0000 + 5.00000i) q^{15} +(-239.000 - 239.000i) q^{17} -40.0000i q^{19} -38.0000 q^{21} +(-541.000 + 541.000i) q^{23} +(-175.000 + 600.000i) q^{25} +(-160.000 - 160.000i) q^{27} -200.000i q^{29} +758.000 q^{31} +(202.000 - 202.000i) q^{33} +(95.0000 - 665.000i) q^{35} +(141.000 + 141.000i) q^{37} -198.000i q^{39} +1042.00 q^{41} +(759.000 - 759.000i) q^{43} +(1580.00 - 1185.00i) q^{45} +(459.000 + 459.000i) q^{47} -1679.00i q^{49} +478.000 q^{51} +(-1819.00 + 1819.00i) q^{53} +(3030.00 + 4040.00i) q^{55} +(40.0000 + 40.0000i) q^{57} -4600.00i q^{59} +2082.00 q^{61} +(-1501.00 + 1501.00i) q^{63} +(3465.00 + 495.000i) q^{65} +(-5081.00 - 5081.00i) q^{67} -1082.00i q^{69} +3478.00 q^{71} +(-3479.00 + 3479.00i) q^{73} +(-425.000 - 775.000i) q^{75} +(-3838.00 - 3838.00i) q^{77} +7680.00i q^{79} -6079.00 q^{81} +(-6081.00 + 6081.00i) q^{83} +(-1195.00 + 8365.00i) q^{85} +(200.000 + 200.000i) q^{87} -5680.00i q^{89} -3762.00 q^{91} +(-758.000 + 758.000i) q^{93} +(-800.000 + 600.000i) q^{95} +(561.000 + 561.000i) q^{97} -15958.0i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 30 q^{5} + 38 q^{7} - 404 q^{11} - 198 q^{13} + 70 q^{15} - 478 q^{17} - 76 q^{21} - 1082 q^{23} - 350 q^{25} - 320 q^{27} + 1516 q^{31} + 404 q^{33} + 190 q^{35} + 282 q^{37} + 2084 q^{41}+ \cdots + 1122 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.00000i −0.111111 + 0.111111i −0.760477 0.649365i \(-0.775035\pi\)
0.649365 + 0.760477i \(0.275035\pi\)
\(4\) 0 0
\(5\) −15.0000 20.0000i −0.600000 0.800000i
\(6\) 0 0
\(7\) 19.0000 + 19.0000i 0.387755 + 0.387755i 0.873886 0.486131i \(-0.161592\pi\)
−0.486131 + 0.873886i \(0.661592\pi\)
\(8\) 0 0
\(9\) 79.0000i 0.975309i
\(10\) 0 0
\(11\) −202.000 −1.66942 −0.834711 0.550689i \(-0.814365\pi\)
−0.834711 + 0.550689i \(0.814365\pi\)
\(12\) 0 0
\(13\) −99.0000 + 99.0000i −0.585799 + 0.585799i −0.936491 0.350692i \(-0.885946\pi\)
0.350692 + 0.936491i \(0.385946\pi\)
\(14\) 0 0
\(15\) 35.0000 + 5.00000i 0.155556 + 0.0222222i
\(16\) 0 0
\(17\) −239.000 239.000i −0.826990 0.826990i 0.160110 0.987099i \(-0.448815\pi\)
−0.987099 + 0.160110i \(0.948815\pi\)
\(18\) 0 0
\(19\) 40.0000i 0.110803i −0.998464 0.0554017i \(-0.982356\pi\)
0.998464 0.0554017i \(-0.0176439\pi\)
\(20\) 0 0
\(21\) −38.0000 −0.0861678
\(22\) 0 0
\(23\) −541.000 + 541.000i −1.02268 + 1.02268i −0.0229476 + 0.999737i \(0.507305\pi\)
−0.999737 + 0.0229476i \(0.992695\pi\)
\(24\) 0 0
\(25\) −175.000 + 600.000i −0.280000 + 0.960000i
\(26\) 0 0
\(27\) −160.000 160.000i −0.219479 0.219479i
\(28\) 0 0
\(29\) 200.000i 0.237812i −0.992906 0.118906i \(-0.962061\pi\)
0.992906 0.118906i \(-0.0379387\pi\)
\(30\) 0 0
\(31\) 758.000 0.788762 0.394381 0.918947i \(-0.370959\pi\)
0.394381 + 0.918947i \(0.370959\pi\)
\(32\) 0 0
\(33\) 202.000 202.000i 0.185491 0.185491i
\(34\) 0 0
\(35\) 95.0000 665.000i 0.0775510 0.542857i
\(36\) 0 0
\(37\) 141.000 + 141.000i 0.102995 + 0.102995i 0.756726 0.653732i \(-0.226797\pi\)
−0.653732 + 0.756726i \(0.726797\pi\)
\(38\) 0 0
\(39\) 198.000i 0.130178i
\(40\) 0 0
\(41\) 1042.00 0.619869 0.309935 0.950758i \(-0.399693\pi\)
0.309935 + 0.950758i \(0.399693\pi\)
\(42\) 0 0
\(43\) 759.000 759.000i 0.410492 0.410492i −0.471418 0.881910i \(-0.656258\pi\)
0.881910 + 0.471418i \(0.156258\pi\)
\(44\) 0 0
\(45\) 1580.00 1185.00i 0.780247 0.585185i
\(46\) 0 0
\(47\) 459.000 + 459.000i 0.207786 + 0.207786i 0.803326 0.595540i \(-0.203062\pi\)
−0.595540 + 0.803326i \(0.703062\pi\)
\(48\) 0 0
\(49\) 1679.00i 0.699292i
\(50\) 0 0
\(51\) 478.000 0.183775
\(52\) 0 0
\(53\) −1819.00 + 1819.00i −0.647561 + 0.647561i −0.952403 0.304842i \(-0.901396\pi\)
0.304842 + 0.952403i \(0.401396\pi\)
\(54\) 0 0
\(55\) 3030.00 + 4040.00i 1.00165 + 1.33554i
\(56\) 0 0
\(57\) 40.0000 + 40.0000i 0.0123115 + 0.0123115i
\(58\) 0 0
\(59\) 4600.00i 1.32146i −0.750624 0.660730i \(-0.770247\pi\)
0.750624 0.660730i \(-0.229753\pi\)
\(60\) 0 0
\(61\) 2082.00 0.559527 0.279764 0.960069i \(-0.409744\pi\)
0.279764 + 0.960069i \(0.409744\pi\)
\(62\) 0 0
\(63\) −1501.00 + 1501.00i −0.378181 + 0.378181i
\(64\) 0 0
\(65\) 3465.00 + 495.000i 0.820118 + 0.117160i
\(66\) 0 0
\(67\) −5081.00 5081.00i −1.13188 1.13188i −0.989865 0.142013i \(-0.954642\pi\)
−0.142013 0.989865i \(-0.545358\pi\)
\(68\) 0 0
\(69\) 1082.00i 0.227263i
\(70\) 0 0
\(71\) 3478.00 0.689942 0.344971 0.938613i \(-0.387889\pi\)
0.344971 + 0.938613i \(0.387889\pi\)
\(72\) 0 0
\(73\) −3479.00 + 3479.00i −0.652843 + 0.652843i −0.953677 0.300834i \(-0.902735\pi\)
0.300834 + 0.953677i \(0.402735\pi\)
\(74\) 0 0
\(75\) −425.000 775.000i −0.0755556 0.137778i
\(76\) 0 0
\(77\) −3838.00 3838.00i −0.647327 0.647327i
\(78\) 0 0
\(79\) 7680.00i 1.23057i 0.788304 + 0.615286i \(0.210959\pi\)
−0.788304 + 0.615286i \(0.789041\pi\)
\(80\) 0 0
\(81\) −6079.00 −0.926536
\(82\) 0 0
\(83\) −6081.00 + 6081.00i −0.882712 + 0.882712i −0.993809 0.111098i \(-0.964563\pi\)
0.111098 + 0.993809i \(0.464563\pi\)
\(84\) 0 0
\(85\) −1195.00 + 8365.00i −0.165398 + 1.15779i
\(86\) 0 0
\(87\) 200.000 + 200.000i 0.0264236 + 0.0264236i
\(88\) 0 0
\(89\) 5680.00i 0.717081i −0.933514 0.358541i \(-0.883274\pi\)
0.933514 0.358541i \(-0.116726\pi\)
\(90\) 0 0
\(91\) −3762.00 −0.454293
\(92\) 0 0
\(93\) −758.000 + 758.000i −0.0876402 + 0.0876402i
\(94\) 0 0
\(95\) −800.000 + 600.000i −0.0886427 + 0.0664820i
\(96\) 0 0
\(97\) 561.000 + 561.000i 0.0596238 + 0.0596238i 0.736290 0.676666i \(-0.236576\pi\)
−0.676666 + 0.736290i \(0.736576\pi\)
\(98\) 0 0
\(99\) 15958.0i 1.62820i
\(100\) 0 0
\(101\) 1682.00 0.164886 0.0824429 0.996596i \(-0.473728\pi\)
0.0824429 + 0.996596i \(0.473728\pi\)
\(102\) 0 0
\(103\) −7021.00 + 7021.00i −0.661797 + 0.661797i −0.955803 0.294007i \(-0.905011\pi\)
0.294007 + 0.955803i \(0.405011\pi\)
\(104\) 0 0
\(105\) 570.000 + 760.000i 0.0517007 + 0.0689342i
\(106\) 0 0
\(107\) 2159.00 + 2159.00i 0.188575 + 0.188575i 0.795080 0.606505i \(-0.207429\pi\)
−0.606505 + 0.795080i \(0.707429\pi\)
\(108\) 0 0
\(109\) 280.000i 0.0235670i −0.999931 0.0117835i \(-0.996249\pi\)
0.999931 0.0117835i \(-0.00375090\pi\)
\(110\) 0 0
\(111\) −282.000 −0.0228878
\(112\) 0 0
\(113\) −8479.00 + 8479.00i −0.664030 + 0.664030i −0.956327 0.292297i \(-0.905580\pi\)
0.292297 + 0.956327i \(0.405580\pi\)
\(114\) 0 0
\(115\) 18935.0 + 2705.00i 1.43176 + 0.204537i
\(116\) 0 0
\(117\) −7821.00 7821.00i −0.571335 0.571335i
\(118\) 0 0
\(119\) 9082.00i 0.641339i
\(120\) 0 0
\(121\) 26163.0 1.78697
\(122\) 0 0
\(123\) −1042.00 + 1042.00i −0.0688743 + 0.0688743i
\(124\) 0 0
\(125\) 14625.0 5500.00i 0.936000 0.352000i
\(126\) 0 0
\(127\) −821.000 821.000i −0.0509021 0.0509021i 0.681198 0.732100i \(-0.261459\pi\)
−0.732100 + 0.681198i \(0.761459\pi\)
\(128\) 0 0
\(129\) 1518.00i 0.0912205i
\(130\) 0 0
\(131\) 2198.00 0.128081 0.0640406 0.997947i \(-0.479601\pi\)
0.0640406 + 0.997947i \(0.479601\pi\)
\(132\) 0 0
\(133\) 760.000 760.000i 0.0429646 0.0429646i
\(134\) 0 0
\(135\) −800.000 + 5600.00i −0.0438957 + 0.307270i
\(136\) 0 0
\(137\) −9399.00 9399.00i −0.500773 0.500773i 0.410905 0.911678i \(-0.365213\pi\)
−0.911678 + 0.410905i \(0.865213\pi\)
\(138\) 0 0
\(139\) 13960.0i 0.722530i 0.932463 + 0.361265i \(0.117655\pi\)
−0.932463 + 0.361265i \(0.882345\pi\)
\(140\) 0 0
\(141\) −918.000 −0.0461747
\(142\) 0 0
\(143\) 19998.0 19998.0i 0.977945 0.977945i
\(144\) 0 0
\(145\) −4000.00 + 3000.00i −0.190250 + 0.142687i
\(146\) 0 0
\(147\) 1679.00 + 1679.00i 0.0776991 + 0.0776991i
\(148\) 0 0
\(149\) 9000.00i 0.405387i −0.979242 0.202694i \(-0.935030\pi\)
0.979242 0.202694i \(-0.0649695\pi\)
\(150\) 0 0
\(151\) 23798.0 1.04373 0.521863 0.853029i \(-0.325237\pi\)
0.521863 + 0.853029i \(0.325237\pi\)
\(152\) 0 0
\(153\) 18881.0 18881.0i 0.806570 0.806570i
\(154\) 0 0
\(155\) −11370.0 15160.0i −0.473257 0.631009i
\(156\) 0 0
\(157\) 29781.0 + 29781.0i 1.20820 + 1.20820i 0.971608 + 0.236595i \(0.0760314\pi\)
0.236595 + 0.971608i \(0.423969\pi\)
\(158\) 0 0
\(159\) 3638.00i 0.143903i
\(160\) 0 0
\(161\) −20558.0 −0.793102
\(162\) 0 0
\(163\) −12641.0 + 12641.0i −0.475780 + 0.475780i −0.903779 0.427999i \(-0.859219\pi\)
0.427999 + 0.903779i \(0.359219\pi\)
\(164\) 0 0
\(165\) −7070.00 1010.00i −0.259688 0.0370983i
\(166\) 0 0
\(167\) −29981.0 29981.0i −1.07501 1.07501i −0.996948 0.0780632i \(-0.975126\pi\)
−0.0780632 0.996948i \(-0.524874\pi\)
\(168\) 0 0
\(169\) 8959.00i 0.313679i
\(170\) 0 0
\(171\) 3160.00 0.108067
\(172\) 0 0
\(173\) −4739.00 + 4739.00i −0.158341 + 0.158341i −0.781831 0.623490i \(-0.785714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(174\) 0 0
\(175\) −14725.0 + 8075.00i −0.480816 + 0.263673i
\(176\) 0 0
\(177\) 4600.00 + 4600.00i 0.146829 + 0.146829i
\(178\) 0 0
\(179\) 32920.0i 1.02743i 0.857960 + 0.513717i \(0.171732\pi\)
−0.857960 + 0.513717i \(0.828268\pi\)
\(180\) 0 0
\(181\) −40558.0 −1.23800 −0.618998 0.785392i \(-0.712461\pi\)
−0.618998 + 0.785392i \(0.712461\pi\)
\(182\) 0 0
\(183\) −2082.00 + 2082.00i −0.0621697 + 0.0621697i
\(184\) 0 0
\(185\) 705.000 4935.00i 0.0205990 0.144193i
\(186\) 0 0
\(187\) 48278.0 + 48278.0i 1.38059 + 1.38059i
\(188\) 0 0
\(189\) 6080.00i 0.170208i
\(190\) 0 0
\(191\) −33002.0 −0.904635 −0.452318 0.891857i \(-0.649403\pi\)
−0.452318 + 0.891857i \(0.649403\pi\)
\(192\) 0 0
\(193\) −23199.0 + 23199.0i −0.622809 + 0.622809i −0.946249 0.323440i \(-0.895161\pi\)
0.323440 + 0.946249i \(0.395161\pi\)
\(194\) 0 0
\(195\) −3960.00 + 2970.00i −0.104142 + 0.0781065i
\(196\) 0 0
\(197\) −16899.0 16899.0i −0.435440 0.435440i 0.455034 0.890474i \(-0.349627\pi\)
−0.890474 + 0.455034i \(0.849627\pi\)
\(198\) 0 0
\(199\) 14160.0i 0.357567i −0.983888 0.178783i \(-0.942784\pi\)
0.983888 0.178783i \(-0.0572161\pi\)
\(200\) 0 0
\(201\) 10162.0 0.251528
\(202\) 0 0
\(203\) 3800.00 3800.00i 0.0922129 0.0922129i
\(204\) 0 0
\(205\) −15630.0 20840.0i −0.371921 0.495895i
\(206\) 0 0
\(207\) −42739.0 42739.0i −0.997433 0.997433i
\(208\) 0 0
\(209\) 8080.00i 0.184977i
\(210\) 0 0
\(211\) −48842.0 −1.09706 −0.548528 0.836132i \(-0.684811\pi\)
−0.548528 + 0.836132i \(0.684811\pi\)
\(212\) 0 0
\(213\) −3478.00 + 3478.00i −0.0766603 + 0.0766603i
\(214\) 0 0
\(215\) −26565.0 3795.00i −0.574689 0.0820984i
\(216\) 0 0
\(217\) 14402.0 + 14402.0i 0.305846 + 0.305846i
\(218\) 0 0
\(219\) 6958.00i 0.145076i
\(220\) 0 0
\(221\) 47322.0 0.968899
\(222\) 0 0
\(223\) 35019.0 35019.0i 0.704197 0.704197i −0.261112 0.965309i \(-0.584089\pi\)
0.965309 + 0.261112i \(0.0840891\pi\)
\(224\) 0 0
\(225\) −47400.0 13825.0i −0.936296 0.273086i
\(226\) 0 0
\(227\) 68599.0 + 68599.0i 1.33127 + 1.33127i 0.904235 + 0.427034i \(0.140442\pi\)
0.427034 + 0.904235i \(0.359558\pi\)
\(228\) 0 0
\(229\) 98760.0i 1.88326i 0.336651 + 0.941630i \(0.390706\pi\)
−0.336651 + 0.941630i \(0.609294\pi\)
\(230\) 0 0
\(231\) 7676.00 0.143850
\(232\) 0 0
\(233\) 53721.0 53721.0i 0.989537 0.989537i −0.0104084 0.999946i \(-0.503313\pi\)
0.999946 + 0.0104084i \(0.00331314\pi\)
\(234\) 0 0
\(235\) 2295.00 16065.0i 0.0415573 0.290901i
\(236\) 0 0
\(237\) −7680.00 7680.00i −0.136730 0.136730i
\(238\) 0 0
\(239\) 45600.0i 0.798305i 0.916884 + 0.399153i \(0.130696\pi\)
−0.916884 + 0.399153i \(0.869304\pi\)
\(240\) 0 0
\(241\) −57038.0 −0.982042 −0.491021 0.871148i \(-0.663376\pi\)
−0.491021 + 0.871148i \(0.663376\pi\)
\(242\) 0 0
\(243\) 19039.0 19039.0i 0.322427 0.322427i
\(244\) 0 0
\(245\) −33580.0 + 25185.0i −0.559434 + 0.419575i
\(246\) 0 0
\(247\) 3960.00 + 3960.00i 0.0649085 + 0.0649085i
\(248\) 0 0
\(249\) 12162.0i 0.196158i
\(250\) 0 0
\(251\) −39402.0 −0.625419 −0.312709 0.949849i \(-0.601237\pi\)
−0.312709 + 0.949849i \(0.601237\pi\)
\(252\) 0 0
\(253\) 109282. 109282.i 1.70729 1.70729i
\(254\) 0 0
\(255\) −7170.00 9560.00i −0.110265 0.147020i
\(256\) 0 0
\(257\) 31121.0 + 31121.0i 0.471180 + 0.471180i 0.902297 0.431116i \(-0.141880\pi\)
−0.431116 + 0.902297i \(0.641880\pi\)
\(258\) 0 0
\(259\) 5358.00i 0.0798736i
\(260\) 0 0
\(261\) 15800.0 0.231940
\(262\) 0 0
\(263\) 60739.0 60739.0i 0.878125 0.878125i −0.115216 0.993340i \(-0.536756\pi\)
0.993340 + 0.115216i \(0.0367560\pi\)
\(264\) 0 0
\(265\) 63665.0 + 9095.00i 0.906586 + 0.129512i
\(266\) 0 0
\(267\) 5680.00 + 5680.00i 0.0796757 + 0.0796757i
\(268\) 0 0
\(269\) 63800.0i 0.881690i −0.897583 0.440845i \(-0.854679\pi\)
0.897583 0.440845i \(-0.145321\pi\)
\(270\) 0 0
\(271\) 113238. 1.54189 0.770945 0.636901i \(-0.219784\pi\)
0.770945 + 0.636901i \(0.219784\pi\)
\(272\) 0 0
\(273\) 3762.00 3762.00i 0.0504770 0.0504770i
\(274\) 0 0
\(275\) 35350.0 121200.i 0.467438 1.60264i
\(276\) 0 0
\(277\) −14739.0 14739.0i −0.192092 0.192092i 0.604508 0.796599i \(-0.293370\pi\)
−0.796599 + 0.604508i \(0.793370\pi\)
\(278\) 0 0
\(279\) 59882.0i 0.769286i
\(280\) 0 0
\(281\) −7278.00 −0.0921721 −0.0460860 0.998937i \(-0.514675\pi\)
−0.0460860 + 0.998937i \(0.514675\pi\)
\(282\) 0 0
\(283\) −58601.0 + 58601.0i −0.731698 + 0.731698i −0.970956 0.239258i \(-0.923096\pi\)
0.239258 + 0.970956i \(0.423096\pi\)
\(284\) 0 0
\(285\) 200.000 1400.00i 0.00246230 0.0172361i
\(286\) 0 0
\(287\) 19798.0 + 19798.0i 0.240357 + 0.240357i
\(288\) 0 0
\(289\) 30721.0i 0.367824i
\(290\) 0 0
\(291\) −1122.00 −0.0132497
\(292\) 0 0
\(293\) −95499.0 + 95499.0i −1.11241 + 1.11241i −0.119582 + 0.992824i \(0.538156\pi\)
−0.992824 + 0.119582i \(0.961844\pi\)
\(294\) 0 0
\(295\) −92000.0 + 69000.0i −1.05717 + 0.792876i
\(296\) 0 0
\(297\) 32320.0 + 32320.0i 0.366403 + 0.366403i
\(298\) 0 0
\(299\) 107118.i 1.19817i
\(300\) 0 0
\(301\) 28842.0 0.318341
\(302\) 0 0
\(303\) −1682.00 + 1682.00i −0.0183206 + 0.0183206i
\(304\) 0 0
\(305\) −31230.0 41640.0i −0.335716 0.447622i
\(306\) 0 0
\(307\) −38601.0 38601.0i −0.409564 0.409564i 0.472022 0.881587i \(-0.343524\pi\)
−0.881587 + 0.472022i \(0.843524\pi\)
\(308\) 0 0
\(309\) 14042.0i 0.147066i
\(310\) 0 0
\(311\) −29162.0 −0.301506 −0.150753 0.988571i \(-0.548170\pi\)
−0.150753 + 0.988571i \(0.548170\pi\)
\(312\) 0 0
\(313\) 1881.00 1881.00i 0.0192000 0.0192000i −0.697442 0.716642i \(-0.745678\pi\)
0.716642 + 0.697442i \(0.245678\pi\)
\(314\) 0 0
\(315\) 52535.0 + 7505.00i 0.529453 + 0.0756362i
\(316\) 0 0
\(317\) 83781.0 + 83781.0i 0.833733 + 0.833733i 0.988025 0.154292i \(-0.0493097\pi\)
−0.154292 + 0.988025i \(0.549310\pi\)
\(318\) 0 0
\(319\) 40400.0i 0.397009i
\(320\) 0 0
\(321\) −4318.00 −0.0419056
\(322\) 0 0
\(323\) −9560.00 + 9560.00i −0.0916332 + 0.0916332i
\(324\) 0 0
\(325\) −42075.0 76725.0i −0.398343 0.726391i
\(326\) 0 0
\(327\) 280.000 + 280.000i 0.00261856 + 0.00261856i
\(328\) 0 0
\(329\) 17442.0i 0.161140i
\(330\) 0 0
\(331\) −106282. −0.970071 −0.485036 0.874494i \(-0.661193\pi\)
−0.485036 + 0.874494i \(0.661193\pi\)
\(332\) 0 0
\(333\) −11139.0 + 11139.0i −0.100452 + 0.100452i
\(334\) 0 0
\(335\) −25405.0 + 177835.i −0.226376 + 1.58463i
\(336\) 0 0
\(337\) −142479. 142479.i −1.25456 1.25456i −0.953654 0.300905i \(-0.902711\pi\)
−0.300905 0.953654i \(-0.597289\pi\)
\(338\) 0 0
\(339\) 16958.0i 0.147562i
\(340\) 0 0
\(341\) −153116. −1.31678
\(342\) 0 0
\(343\) 77520.0 77520.0i 0.658909 0.658909i
\(344\) 0 0
\(345\) −21640.0 + 16230.0i −0.181811 + 0.136358i
\(346\) 0 0
\(347\) 6479.00 + 6479.00i 0.0538083 + 0.0538083i 0.733499 0.679691i \(-0.237886\pi\)
−0.679691 + 0.733499i \(0.737886\pi\)
\(348\) 0 0
\(349\) 32920.0i 0.270277i 0.990827 + 0.135138i \(0.0431479\pi\)
−0.990827 + 0.135138i \(0.956852\pi\)
\(350\) 0 0
\(351\) 31680.0 0.257141
\(352\) 0 0
\(353\) −53919.0 + 53919.0i −0.432706 + 0.432706i −0.889548 0.456842i \(-0.848980\pi\)
0.456842 + 0.889548i \(0.348980\pi\)
\(354\) 0 0
\(355\) −52170.0 69560.0i −0.413965 0.551954i
\(356\) 0 0
\(357\) 9082.00 + 9082.00i 0.0712599 + 0.0712599i
\(358\) 0 0
\(359\) 171760.i 1.33270i 0.745638 + 0.666351i \(0.232145\pi\)
−0.745638 + 0.666351i \(0.767855\pi\)
\(360\) 0 0
\(361\) 128721. 0.987723
\(362\) 0 0
\(363\) −26163.0 + 26163.0i −0.198552 + 0.198552i
\(364\) 0 0
\(365\) 121765. + 17395.0i 0.913980 + 0.130569i
\(366\) 0 0
\(367\) −152261. 152261.i −1.13046 1.13046i −0.990100 0.140363i \(-0.955173\pi\)
−0.140363 0.990100i \(-0.544827\pi\)
\(368\) 0 0
\(369\) 82318.0i 0.604564i
\(370\) 0 0
\(371\) −69122.0 −0.502190
\(372\) 0 0
\(373\) −71339.0 + 71339.0i −0.512754 + 0.512754i −0.915369 0.402615i \(-0.868101\pi\)
0.402615 + 0.915369i \(0.368101\pi\)
\(374\) 0 0
\(375\) −9125.00 + 20125.0i −0.0648889 + 0.143111i
\(376\) 0 0
\(377\) 19800.0 + 19800.0i 0.139310 + 0.139310i
\(378\) 0 0
\(379\) 172600.i 1.20161i −0.799397 0.600803i \(-0.794847\pi\)
0.799397 0.600803i \(-0.205153\pi\)
\(380\) 0 0
\(381\) 1642.00 0.0113116
\(382\) 0 0
\(383\) −158421. + 158421.i −1.07998 + 1.07998i −0.0834683 + 0.996510i \(0.526600\pi\)
−0.996510 + 0.0834683i \(0.973400\pi\)
\(384\) 0 0
\(385\) −19190.0 + 134330.i −0.129465 + 0.906257i
\(386\) 0 0
\(387\) 59961.0 + 59961.0i 0.400357 + 0.400357i
\(388\) 0 0
\(389\) 146760.i 0.969859i −0.874553 0.484929i \(-0.838845\pi\)
0.874553 0.484929i \(-0.161155\pi\)
\(390\) 0 0
\(391\) 258598. 1.69150
\(392\) 0 0
\(393\) −2198.00 + 2198.00i −0.0142312 + 0.0142312i
\(394\) 0 0
\(395\) 153600. 115200.i 0.984458 0.738343i
\(396\) 0 0
\(397\) −83579.0 83579.0i −0.530293 0.530293i 0.390366 0.920660i \(-0.372348\pi\)
−0.920660 + 0.390366i \(0.872348\pi\)
\(398\) 0 0
\(399\) 1520.00i 0.00954768i
\(400\) 0 0
\(401\) −42078.0 −0.261677 −0.130839 0.991404i \(-0.541767\pi\)
−0.130839 + 0.991404i \(0.541767\pi\)
\(402\) 0 0
\(403\) −75042.0 + 75042.0i −0.462056 + 0.462056i
\(404\) 0 0
\(405\) 91185.0 + 121580.i 0.555921 + 0.741228i
\(406\) 0 0
\(407\) −28482.0 28482.0i −0.171942 0.171942i
\(408\) 0 0
\(409\) 300960.i 1.79913i −0.436789 0.899564i \(-0.643884\pi\)
0.436789 0.899564i \(-0.356116\pi\)
\(410\) 0 0
\(411\) 18798.0 0.111283
\(412\) 0 0
\(413\) 87400.0 87400.0i 0.512403 0.512403i
\(414\) 0 0
\(415\) 212835. + 30405.0i 1.23580 + 0.176542i
\(416\) 0 0
\(417\) −13960.0 13960.0i −0.0802811 0.0802811i
\(418\) 0 0
\(419\) 208680.i 1.18865i −0.804226 0.594323i \(-0.797420\pi\)
0.804226 0.594323i \(-0.202580\pi\)
\(420\) 0 0
\(421\) 86882.0 0.490191 0.245096 0.969499i \(-0.421181\pi\)
0.245096 + 0.969499i \(0.421181\pi\)
\(422\) 0 0
\(423\) −36261.0 + 36261.0i −0.202656 + 0.202656i
\(424\) 0 0
\(425\) 185225. 101575.i 1.02547 0.562353i
\(426\) 0 0
\(427\) 39558.0 + 39558.0i 0.216959 + 0.216959i
\(428\) 0 0
\(429\) 39996.0i 0.217321i
\(430\) 0 0
\(431\) 125078. 0.673328 0.336664 0.941625i \(-0.390701\pi\)
0.336664 + 0.941625i \(0.390701\pi\)
\(432\) 0 0
\(433\) 5921.00 5921.00i 0.0315805 0.0315805i −0.691140 0.722721i \(-0.742891\pi\)
0.722721 + 0.691140i \(0.242891\pi\)
\(434\) 0 0
\(435\) 1000.00 7000.00i 0.00528471 0.0369930i
\(436\) 0 0
\(437\) 21640.0 + 21640.0i 0.113317 + 0.113317i
\(438\) 0 0
\(439\) 55280.0i 0.286840i −0.989662 0.143420i \(-0.954190\pi\)
0.989662 0.143420i \(-0.0458099\pi\)
\(440\) 0 0
\(441\) 132641. 0.682025
\(442\) 0 0
\(443\) −63561.0 + 63561.0i −0.323879 + 0.323879i −0.850253 0.526374i \(-0.823551\pi\)
0.526374 + 0.850253i \(0.323551\pi\)
\(444\) 0 0
\(445\) −113600. + 85200.0i −0.573665 + 0.430249i
\(446\) 0 0
\(447\) 9000.00 + 9000.00i 0.0450430 + 0.0450430i
\(448\) 0 0
\(449\) 204880.i 1.01626i 0.861279 + 0.508132i \(0.169664\pi\)
−0.861279 + 0.508132i \(0.830336\pi\)
\(450\) 0 0
\(451\) −210484. −1.03482
\(452\) 0 0
\(453\) −23798.0 + 23798.0i −0.115970 + 0.115970i
\(454\) 0 0
\(455\) 56430.0 + 75240.0i 0.272576 + 0.363434i
\(456\) 0 0
\(457\) −10599.0 10599.0i −0.0507496 0.0507496i 0.681277 0.732026i \(-0.261425\pi\)
−0.732026 + 0.681277i \(0.761425\pi\)
\(458\) 0 0
\(459\) 76480.0i 0.363013i
\(460\) 0 0
\(461\) 224242. 1.05515 0.527576 0.849508i \(-0.323101\pi\)
0.527576 + 0.849508i \(0.323101\pi\)
\(462\) 0 0
\(463\) 243499. 243499.i 1.13589 1.13589i 0.146707 0.989180i \(-0.453132\pi\)
0.989180 0.146707i \(-0.0468675\pi\)
\(464\) 0 0
\(465\) 26530.0 + 3790.00i 0.122696 + 0.0175280i
\(466\) 0 0
\(467\) 226919. + 226919.i 1.04049 + 1.04049i 0.999145 + 0.0413430i \(0.0131637\pi\)
0.0413430 + 0.999145i \(0.486836\pi\)
\(468\) 0 0
\(469\) 193078.i 0.877783i
\(470\) 0 0
\(471\) −59562.0 −0.268490
\(472\) 0 0
\(473\) −153318. + 153318.i −0.685284 + 0.685284i
\(474\) 0 0
\(475\) 24000.0 + 7000.00i 0.106371 + 0.0310249i
\(476\) 0 0
\(477\) −143701. 143701.i −0.631572 0.631572i
\(478\) 0 0
\(479\) 334240.i 1.45676i −0.685174 0.728379i \(-0.740274\pi\)
0.685174 0.728379i \(-0.259726\pi\)
\(480\) 0 0
\(481\) −27918.0 −0.120669
\(482\) 0 0
\(483\) 20558.0 20558.0i 0.0881225 0.0881225i
\(484\) 0 0
\(485\) 2805.00 19635.0i 0.0119248 0.0834733i
\(486\) 0 0
\(487\) −278541. 278541.i −1.17444 1.17444i −0.981139 0.193302i \(-0.938080\pi\)
−0.193302 0.981139i \(-0.561920\pi\)
\(488\) 0 0
\(489\) 25282.0i 0.105729i
\(490\) 0 0
\(491\) 84118.0 0.348920 0.174460 0.984664i \(-0.444182\pi\)
0.174460 + 0.984664i \(0.444182\pi\)
\(492\) 0 0
\(493\) −47800.0 + 47800.0i −0.196668 + 0.196668i
\(494\) 0 0
\(495\) −319160. + 239370.i −1.30256 + 0.976921i
\(496\) 0 0
\(497\) 66082.0 + 66082.0i 0.267529 + 0.267529i
\(498\) 0 0
\(499\) 166840.i 0.670037i 0.942211 + 0.335019i \(0.108743\pi\)
−0.942211 + 0.335019i \(0.891257\pi\)
\(500\) 0 0
\(501\) 59962.0 0.238891
\(502\) 0 0
\(503\) −190461. + 190461.i −0.752783 + 0.752783i −0.974998 0.222214i \(-0.928672\pi\)
0.222214 + 0.974998i \(0.428672\pi\)
\(504\) 0 0
\(505\) −25230.0 33640.0i −0.0989315 0.131909i
\(506\) 0 0
\(507\) −8959.00 8959.00i −0.0348533 0.0348533i
\(508\) 0 0
\(509\) 223960.i 0.864440i 0.901768 + 0.432220i \(0.142270\pi\)
−0.901768 + 0.432220i \(0.857730\pi\)
\(510\) 0 0
\(511\) −132202. −0.506286
\(512\) 0 0
\(513\) −6400.00 + 6400.00i −0.0243190 + 0.0243190i
\(514\) 0 0
\(515\) 245735. + 35105.0i 0.926515 + 0.132359i
\(516\) 0 0
\(517\) −92718.0 92718.0i −0.346883 0.346883i
\(518\) 0 0
\(519\) 9478.00i 0.0351870i
\(520\) 0 0
\(521\) −297918. −1.09754 −0.548771 0.835973i \(-0.684904\pi\)
−0.548771 + 0.835973i \(0.684904\pi\)
\(522\) 0 0
\(523\) −200601. + 200601.i −0.733381 + 0.733381i −0.971288 0.237907i \(-0.923539\pi\)
0.237907 + 0.971288i \(0.423539\pi\)
\(524\) 0 0
\(525\) 6650.00 22800.0i 0.0241270 0.0827211i
\(526\) 0 0
\(527\) −181162. 181162.i −0.652298 0.652298i
\(528\) 0 0
\(529\) 305521.i 1.09177i
\(530\) 0 0
\(531\) 363400. 1.28883
\(532\) 0 0
\(533\) −103158. + 103158.i −0.363119 + 0.363119i
\(534\) 0 0
\(535\) 10795.0 75565.0i 0.0377151 0.264006i
\(536\) 0 0
\(537\) −32920.0 32920.0i −0.114159 0.114159i
\(538\) 0 0
\(539\) 339158.i 1.16741i
\(540\) 0 0
\(541\) −288398. −0.985366 −0.492683 0.870209i \(-0.663984\pi\)
−0.492683 + 0.870209i \(0.663984\pi\)
\(542\) 0 0
\(543\) 40558.0 40558.0i 0.137555 0.137555i
\(544\) 0 0
\(545\) −5600.00 + 4200.00i −0.0188536 + 0.0141402i
\(546\) 0 0
\(547\) −123081. 123081.i −0.411355 0.411355i 0.470856 0.882210i \(-0.343945\pi\)
−0.882210 + 0.470856i \(0.843945\pi\)
\(548\) 0 0
\(549\) 164478.i 0.545712i
\(550\) 0 0
\(551\) −8000.00 −0.0263504
\(552\) 0 0
\(553\) −145920. + 145920.i −0.477161 + 0.477161i
\(554\) 0 0
\(555\) 4230.00 + 5640.00i 0.0137327 + 0.0183102i
\(556\) 0 0
\(557\) 162261. + 162261.i 0.523002 + 0.523002i 0.918477 0.395474i \(-0.129420\pi\)
−0.395474 + 0.918477i \(0.629420\pi\)
\(558\) 0 0
\(559\) 150282.i 0.480932i
\(560\) 0 0
\(561\) −96556.0 −0.306799
\(562\) 0 0
\(563\) −264081. + 264081.i −0.833145 + 0.833145i −0.987946 0.154801i \(-0.950526\pi\)
0.154801 + 0.987946i \(0.450526\pi\)
\(564\) 0 0
\(565\) 296765. + 42395.0i 0.929642 + 0.132806i
\(566\) 0 0
\(567\) −115501. 115501.i −0.359269 0.359269i
\(568\) 0 0
\(569\) 8320.00i 0.0256980i −0.999917 0.0128490i \(-0.995910\pi\)
0.999917 0.0128490i \(-0.00409007\pi\)
\(570\) 0 0
\(571\) −283082. −0.868240 −0.434120 0.900855i \(-0.642941\pi\)
−0.434120 + 0.900855i \(0.642941\pi\)
\(572\) 0 0
\(573\) 33002.0 33002.0i 0.100515 0.100515i
\(574\) 0 0
\(575\) −229925. 419275.i −0.695425 1.26813i
\(576\) 0 0
\(577\) 260401. + 260401.i 0.782152 + 0.782152i 0.980194 0.198042i \(-0.0634582\pi\)
−0.198042 + 0.980194i \(0.563458\pi\)
\(578\) 0 0
\(579\) 46398.0i 0.138402i
\(580\) 0 0
\(581\) −231078. −0.684552
\(582\) 0 0
\(583\) 367438. 367438.i 1.08105 1.08105i
\(584\) 0 0
\(585\) −39105.0 + 273735.i −0.114267 + 0.799869i
\(586\) 0 0
\(587\) 281439. + 281439.i 0.816786 + 0.816786i 0.985641 0.168855i \(-0.0540070\pi\)
−0.168855 + 0.985641i \(0.554007\pi\)
\(588\) 0 0
\(589\) 30320.0i 0.0873974i
\(590\) 0 0
\(591\) 33798.0 0.0967645
\(592\) 0 0
\(593\) 419761. 419761.i 1.19369 1.19369i 0.217671 0.976022i \(-0.430154\pi\)
0.976022 0.217671i \(-0.0698460\pi\)
\(594\) 0 0
\(595\) −181640. + 136230.i −0.513071 + 0.384803i
\(596\) 0 0
\(597\) 14160.0 + 14160.0i 0.0397296 + 0.0397296i
\(598\) 0 0
\(599\) 136240.i 0.379709i −0.981812 0.189855i \(-0.939198\pi\)
0.981812 0.189855i \(-0.0608016\pi\)
\(600\) 0 0
\(601\) 234962. 0.650502 0.325251 0.945628i \(-0.394551\pi\)
0.325251 + 0.945628i \(0.394551\pi\)
\(602\) 0 0
\(603\) 401399. 401399.i 1.10393 1.10393i
\(604\) 0 0
\(605\) −392445. 523260.i −1.07218 1.42957i
\(606\) 0 0
\(607\) 406779. + 406779.i 1.10403 + 1.10403i 0.993919 + 0.110111i \(0.0351208\pi\)
0.110111 + 0.993919i \(0.464879\pi\)
\(608\) 0 0
\(609\) 7600.00i 0.0204917i
\(610\) 0 0
\(611\) −90882.0 −0.243442
\(612\) 0 0
\(613\) 135621. 135621.i 0.360916 0.360916i −0.503234 0.864150i \(-0.667857\pi\)
0.864150 + 0.503234i \(0.167857\pi\)
\(614\) 0 0
\(615\) 36470.0 + 5210.00i 0.0964241 + 0.0137749i
\(616\) 0 0
\(617\) −151959. 151959.i −0.399168 0.399168i 0.478771 0.877940i \(-0.341082\pi\)
−0.877940 + 0.478771i \(0.841082\pi\)
\(618\) 0 0
\(619\) 22440.0i 0.0585655i 0.999571 + 0.0292827i \(0.00932231\pi\)
−0.999571 + 0.0292827i \(0.990678\pi\)
\(620\) 0 0
\(621\) 173120. 0.448915
\(622\) 0 0
\(623\) 107920. 107920.i 0.278052 0.278052i
\(624\) 0 0
\(625\) −329375. 210000.i −0.843200 0.537600i
\(626\) 0 0
\(627\) −8080.00 8080.00i −0.0205531 0.0205531i
\(628\) 0 0
\(629\) 67398.0i 0.170351i
\(630\) 0 0
\(631\) 199958. 0.502204 0.251102 0.967961i \(-0.419207\pi\)
0.251102 + 0.967961i \(0.419207\pi\)
\(632\) 0 0
\(633\) 48842.0 48842.0i 0.121895 0.121895i
\(634\) 0 0
\(635\) −4105.00 + 28735.0i −0.0101804 + 0.0712629i
\(636\) 0 0
\(637\) 166221. + 166221.i 0.409644 + 0.409644i
\(638\) 0 0
\(639\) 274762.i 0.672907i
\(640\) 0 0
\(641\) 448562. 1.09171 0.545854 0.837880i \(-0.316205\pi\)
0.545854 + 0.837880i \(0.316205\pi\)
\(642\) 0 0
\(643\) −73041.0 + 73041.0i −0.176663 + 0.176663i −0.789899 0.613237i \(-0.789867\pi\)
0.613237 + 0.789899i \(0.289867\pi\)
\(644\) 0 0
\(645\) 30360.0 22770.0i 0.0729764 0.0547323i
\(646\) 0 0
\(647\) 90259.0 + 90259.0i 0.215616 + 0.215616i 0.806648 0.591032i \(-0.201279\pi\)
−0.591032 + 0.806648i \(0.701279\pi\)
\(648\) 0 0
\(649\) 929200.i 2.20607i
\(650\) 0 0
\(651\) −28804.0 −0.0679659
\(652\) 0 0
\(653\) −56019.0 + 56019.0i −0.131374 + 0.131374i −0.769736 0.638362i \(-0.779612\pi\)
0.638362 + 0.769736i \(0.279612\pi\)
\(654\) 0 0
\(655\) −32970.0 43960.0i −0.0768487 0.102465i
\(656\) 0 0
\(657\) −274841. 274841.i −0.636723 0.636723i
\(658\) 0 0
\(659\) 438920.i 1.01068i −0.862920 0.505341i \(-0.831367\pi\)
0.862920 0.505341i \(-0.168633\pi\)
\(660\) 0 0
\(661\) 593762. 1.35897 0.679484 0.733690i \(-0.262204\pi\)
0.679484 + 0.733690i \(0.262204\pi\)
\(662\) 0 0
\(663\) −47322.0 + 47322.0i −0.107655 + 0.107655i
\(664\) 0 0
\(665\) −26600.0 3800.00i −0.0601504 0.00859291i
\(666\) 0 0
\(667\) 108200. + 108200.i 0.243207 + 0.243207i
\(668\) 0 0
\(669\) 70038.0i 0.156488i
\(670\) 0 0
\(671\) −420564. −0.934086
\(672\) 0 0
\(673\) 424561. 424561.i 0.937368 0.937368i −0.0607833 0.998151i \(-0.519360\pi\)
0.998151 + 0.0607833i \(0.0193599\pi\)
\(674\) 0 0
\(675\) 124000. 68000.0i 0.272154 0.149246i
\(676\) 0 0
\(677\) 229021. + 229021.i 0.499687 + 0.499687i 0.911340 0.411654i \(-0.135049\pi\)
−0.411654 + 0.911340i \(0.635049\pi\)
\(678\) 0 0
\(679\) 21318.0i 0.0462388i
\(680\) 0 0
\(681\) −137198. −0.295838
\(682\) 0 0
\(683\) 450999. 450999.i 0.966795 0.966795i −0.0326716 0.999466i \(-0.510402\pi\)
0.999466 + 0.0326716i \(0.0104016\pi\)
\(684\) 0 0
\(685\) −46995.0 + 328965.i −0.100155 + 0.701082i
\(686\) 0 0
\(687\) −98760.0 98760.0i −0.209251 0.209251i
\(688\) 0 0
\(689\) 360162.i 0.758681i
\(690\) 0 0
\(691\) 432438. 0.905665 0.452833 0.891596i \(-0.350413\pi\)
0.452833 + 0.891596i \(0.350413\pi\)
\(692\) 0 0
\(693\) 303202. 303202.i 0.631343 0.631343i
\(694\) 0 0
\(695\) 279200. 209400.i 0.578024 0.433518i
\(696\) 0 0
\(697\) −249038. 249038.i −0.512625 0.512625i
\(698\) 0 0
\(699\) 107442.i 0.219897i
\(700\) 0 0
\(701\) −895838. −1.82303 −0.911514 0.411269i \(-0.865086\pi\)
−0.911514 + 0.411269i \(0.865086\pi\)
\(702\) 0 0
\(703\) 5640.00 5640.00i 0.0114122 0.0114122i
\(704\) 0 0
\(705\) 13770.0 + 18360.0i 0.0277048 + 0.0369398i
\(706\) 0 0
\(707\) 31958.0 + 31958.0i 0.0639353 + 0.0639353i
\(708\) 0 0
\(709\) 64360.0i 0.128033i 0.997949 + 0.0640167i \(0.0203911\pi\)
−0.997949 + 0.0640167i \(0.979609\pi\)
\(710\) 0 0
\(711\) −606720. −1.20019
\(712\) 0 0
\(713\) −410078. + 410078.i −0.806654 + 0.806654i
\(714\) 0 0
\(715\) −699930. 99990.0i −1.36912 0.195589i
\(716\) 0 0
\(717\) −45600.0 45600.0i −0.0887006 0.0887006i
\(718\) 0 0
\(719\) 239840.i 0.463942i 0.972723 + 0.231971i \(0.0745175\pi\)
−0.972723 + 0.231971i \(0.925483\pi\)
\(720\) 0 0
\(721\) −266798. −0.513230
\(722\) 0 0
\(723\) 57038.0 57038.0i 0.109116 0.109116i
\(724\) 0 0
\(725\) 120000. + 35000.0i 0.228300 + 0.0665874i
\(726\) 0 0
\(727\) 438339. + 438339.i 0.829357 + 0.829357i 0.987428 0.158071i \(-0.0505275\pi\)
−0.158071 + 0.987428i \(0.550528\pi\)
\(728\) 0 0
\(729\) 454321.i 0.854885i
\(730\) 0 0
\(731\) −362802. −0.678946
\(732\) 0 0
\(733\) 145261. 145261.i 0.270359 0.270359i −0.558886 0.829245i \(-0.688771\pi\)
0.829245 + 0.558886i \(0.188771\pi\)
\(734\) 0 0
\(735\) 8395.00 58765.0i 0.0155398 0.108779i
\(736\) 0 0
\(737\) 1.02636e6 + 1.02636e6i 1.88958 + 1.88958i
\(738\) 0 0
\(739\) 738040.i 1.35142i 0.737167 + 0.675711i \(0.236163\pi\)
−0.737167 + 0.675711i \(0.763837\pi\)
\(740\) 0 0
\(741\) −7920.00 −0.0144241
\(742\) 0 0
\(743\) −579101. + 579101.i −1.04900 + 1.04900i −0.0502671 + 0.998736i \(0.516007\pi\)
−0.998736 + 0.0502671i \(0.983993\pi\)
\(744\) 0 0
\(745\) −180000. + 135000.i −0.324310 + 0.243232i
\(746\) 0 0
\(747\) −480399. 480399.i −0.860916 0.860916i
\(748\) 0 0
\(749\) 82042.0i 0.146242i
\(750\) 0 0
\(751\) 495318. 0.878222 0.439111 0.898433i \(-0.355294\pi\)
0.439111 + 0.898433i \(0.355294\pi\)
\(752\) 0 0
\(753\) 39402.0 39402.0i 0.0694910 0.0694910i
\(754\) 0 0
\(755\) −356970. 475960.i −0.626236 0.834981i
\(756\) 0 0
\(757\) −536979. 536979.i −0.937056 0.937056i 0.0610771 0.998133i \(-0.480546\pi\)
−0.998133 + 0.0610771i \(0.980546\pi\)
\(758\) 0 0
\(759\) 218564.i 0.379398i
\(760\) 0 0
\(761\) −908798. −1.56927 −0.784636 0.619957i \(-0.787150\pi\)
−0.784636 + 0.619957i \(0.787150\pi\)
\(762\) 0 0
\(763\) 5320.00 5320.00i 0.00913824 0.00913824i
\(764\) 0 0
\(765\) −660835. 94405.0i −1.12920 0.161314i
\(766\) 0 0
\(767\) 455400. + 455400.i 0.774109 + 0.774109i
\(768\) 0 0
\(769\) 1.02704e6i 1.73674i 0.495917 + 0.868370i \(0.334832\pi\)
−0.495917 + 0.868370i \(0.665168\pi\)
\(770\) 0 0
\(771\) −62242.0 −0.104707
\(772\) 0 0
\(773\) 161061. 161061.i 0.269545 0.269545i −0.559372 0.828917i \(-0.688958\pi\)
0.828917 + 0.559372i \(0.188958\pi\)
\(774\) 0 0
\(775\) −132650. + 454800.i −0.220853 + 0.757211i
\(776\) 0 0
\(777\) −5358.00 5358.00i −0.00887484 0.00887484i
\(778\) 0 0
\(779\) 41680.0i 0.0686836i
\(780\) 0 0
\(781\) −702556. −1.15180
\(782\) 0 0
\(783\) −32000.0 + 32000.0i −0.0521947 + 0.0521947i
\(784\) 0 0
\(785\) 148905. 1.04234e6i 0.241641 1.69148i
\(786\) 0 0
\(787\) −772201. 772201.i −1.24675 1.24675i −0.957145 0.289609i \(-0.906475\pi\)
−0.289609 0.957145i \(-0.593525\pi\)
\(788\) 0 0
\(789\) 121478.i 0.195139i
\(790\) 0 0
\(791\) −322202. −0.514962
\(792\) 0 0
\(793\) −206118. + 206118.i −0.327770 + 0.327770i
\(794\) 0 0
\(795\) −72760.0 + 54570.0i −0.115122 + 0.0863415i
\(796\) 0 0
\(797\) 299781. + 299781.i 0.471941 + 0.471941i 0.902542 0.430601i \(-0.141699\pi\)
−0.430601 + 0.902542i \(0.641699\pi\)
\(798\) 0 0
\(799\) 219402.i 0.343674i
\(800\) 0 0
\(801\) 448720. 0.699375
\(802\) 0 0
\(803\) 702758. 702758.i 1.08987 1.08987i
\(804\) 0 0
\(805\) 308370. + 411160.i 0.475861 + 0.634482i
\(806\) 0 0
\(807\) 63800.0 + 63800.0i 0.0979656 + 0.0979656i
\(808\) 0 0
\(809\) 897040.i 1.37061i −0.728255 0.685306i \(-0.759668\pi\)
0.728255 0.685306i \(-0.240332\pi\)
\(810\) 0 0
\(811\) 115798. 0.176059 0.0880297 0.996118i \(-0.471943\pi\)
0.0880297 + 0.996118i \(0.471943\pi\)
\(812\) 0 0
\(813\) −113238. + 113238.i −0.171321 + 0.171321i
\(814\) 0 0
\(815\) 442435. + 63205.0i 0.666092 + 0.0951560i
\(816\) 0 0
\(817\) −30360.0 30360.0i −0.0454839 0.0454839i
\(818\) 0 0
\(819\) 297198.i 0.443076i
\(820\) 0 0
\(821\) 1.24160e6 1.84203 0.921014 0.389530i \(-0.127363\pi\)
0.921014 + 0.389530i \(0.127363\pi\)
\(822\) 0 0
\(823\) 13219.0 13219.0i 0.0195164 0.0195164i −0.697281 0.716798i \(-0.745607\pi\)
0.716798 + 0.697281i \(0.245607\pi\)
\(824\) 0 0
\(825\) 85850.0 + 156550.i 0.126134 + 0.230009i
\(826\) 0 0
\(827\) −394641. 394641.i −0.577020 0.577020i 0.357061 0.934081i \(-0.383779\pi\)
−0.934081 + 0.357061i \(0.883779\pi\)
\(828\) 0 0
\(829\) 694760.i 1.01094i 0.862844 + 0.505470i \(0.168681\pi\)
−0.862844 + 0.505470i \(0.831319\pi\)
\(830\) 0 0
\(831\) 29478.0 0.0426870
\(832\) 0 0
\(833\) −401281. + 401281.i −0.578307 + 0.578307i
\(834\) 0 0
\(835\) −149905. + 1.04934e6i −0.215002 + 1.50502i
\(836\) 0 0
\(837\) −121280. 121280.i −0.173116 0.173116i
\(838\) 0 0
\(839\) 124400.i 0.176724i −0.996088 0.0883622i \(-0.971837\pi\)
0.996088 0.0883622i \(-0.0281633\pi\)
\(840\) 0 0
\(841\) 667281. 0.943445
\(842\) 0 0
\(843\) 7278.00 7278.00i 0.0102413 0.0102413i
\(844\) 0 0
\(845\) 179180. 134385.i 0.250944 0.188208i
\(846\) 0 0
\(847\) 497097. + 497097.i 0.692906 + 0.692906i
\(848\) 0 0
\(849\) 117202.i 0.162600i
\(850\) 0 0
\(851\) −152562. −0.210663
\(852\) 0 0
\(853\) −432299. + 432299.i −0.594136 + 0.594136i −0.938746 0.344610i \(-0.888011\pi\)
0.344610 + 0.938746i \(0.388011\pi\)
\(854\) 0 0
\(855\) −47400.0 63200.0i −0.0648405 0.0864540i
\(856\) 0 0
\(857\) −669159. 669159.i −0.911103 0.911103i 0.0852557 0.996359i \(-0.472829\pi\)
−0.996359 + 0.0852557i \(0.972829\pi\)
\(858\) 0 0
\(859\) 370040.i 0.501490i −0.968053 0.250745i \(-0.919324\pi\)
0.968053 0.250745i \(-0.0806756\pi\)
\(860\) 0 0
\(861\) −39596.0 −0.0534128
\(862\) 0 0
\(863\) −490981. + 490981.i −0.659239 + 0.659239i −0.955200 0.295961i \(-0.904360\pi\)
0.295961 + 0.955200i \(0.404360\pi\)
\(864\) 0 0
\(865\) 165865. + 23695.0i 0.221678 + 0.0316683i
\(866\) 0 0
\(867\) −30721.0 30721.0i −0.0408693 0.0408693i
\(868\) 0 0
\(869\) 1.55136e6i 2.05434i
\(870\) 0 0
\(871\) 1.00604e6 1.32611
\(872\) 0 0
\(873\) −44319.0 + 44319.0i −0.0581516 + 0.0581516i
\(874\) 0 0
\(875\) 382375. + 173375.i 0.499429 + 0.226449i
\(876\) 0 0
\(877\) 206181. + 206181.i 0.268071 + 0.268071i 0.828322 0.560252i \(-0.189296\pi\)
−0.560252 + 0.828322i \(0.689296\pi\)
\(878\) 0 0
\(879\) 190998.i 0.247201i
\(880\) 0 0
\(881\) −118478. −0.152646 −0.0763231 0.997083i \(-0.524318\pi\)
−0.0763231 + 0.997083i \(0.524318\pi\)
\(882\) 0 0
\(883\) 204719. 204719.i 0.262565 0.262565i −0.563530 0.826095i \(-0.690557\pi\)
0.826095 + 0.563530i \(0.190557\pi\)
\(884\) 0 0
\(885\) 23000.0 161000.i 0.0293658 0.205560i
\(886\) 0 0
\(887\) 562179. + 562179.i 0.714541 + 0.714541i 0.967482 0.252940i \(-0.0813977\pi\)
−0.252940 + 0.967482i \(0.581398\pi\)
\(888\) 0 0
\(889\) 31198.0i 0.0394751i
\(890\) 0 0
\(891\) 1.22796e6 1.54678
\(892\) 0 0
\(893\) 18360.0 18360.0i 0.0230234 0.0230234i
\(894\) 0 0
\(895\) 658400. 493800.i 0.821947 0.616460i
\(896\) 0 0
\(897\) 107118. + 107118.i 0.133131 + 0.133131i
\(898\) 0 0
\(899\) 151600.i 0.187577i
\(900\) 0 0
\(901\) 869482. 1.07105
\(902\) 0 0
\(903\) −28842.0 + 28842.0i −0.0353712 + 0.0353712i
\(904\) 0 0
\(905\) 608370. + 811160.i 0.742798 + 0.990397i
\(906\) 0 0
\(907\) −492241. 492241.i −0.598361 0.598361i 0.341515 0.939876i \(-0.389060\pi\)
−0.939876 + 0.341515i \(0.889060\pi\)
\(908\) 0 0
\(909\) 132878.i 0.160815i
\(910\) 0 0
\(911\) −1.15284e6 −1.38910 −0.694549 0.719445i \(-0.744396\pi\)
−0.694549 + 0.719445i \(0.744396\pi\)
\(912\) 0 0
\(913\) 1.22836e6 1.22836e6i 1.47362 1.47362i
\(914\) 0 0
\(915\) 72870.0 + 10410.0i 0.0870375 + 0.0124339i
\(916\) 0 0
\(917\) 41762.0 + 41762.0i 0.0496641 + 0.0496641i
\(918\) 0 0
\(919\) 337520.i 0.399640i −0.979833 0.199820i \(-0.935964\pi\)
0.979833 0.199820i \(-0.0640357\pi\)
\(920\) 0 0
\(921\) 77202.0 0.0910142
\(922\) 0 0
\(923\) −344322. + 344322.i −0.404167 + 0.404167i
\(924\) 0 0
\(925\) −109275. + 59925.0i −0.127714 + 0.0700365i
\(926\) 0 0
\(927\) −554659. 554659.i −0.645456 0.645456i
\(928\) 0 0
\(929\) 760240.i 0.880885i 0.897781 + 0.440443i \(0.145178\pi\)
−0.897781 + 0.440443i \(0.854822\pi\)
\(930\) 0 0
\(931\) −67160.0 −0.0774839
\(932\) 0 0
\(933\) 29162.0 29162.0i 0.0335007 0.0335007i
\(934\) 0 0
\(935\) 241390. 1.68973e6i 0.276119 1.93283i
\(936\) 0 0
\(937\) 75721.0 + 75721.0i 0.0862456 + 0.0862456i 0.748913 0.662668i \(-0.230576\pi\)
−0.662668 + 0.748913i \(0.730576\pi\)
\(938\) 0 0
\(939\) 3762.00i 0.00426666i
\(940\) 0 0
\(941\) −1.16552e6 −1.31625 −0.658127 0.752907i \(-0.728651\pi\)
−0.658127 + 0.752907i \(0.728651\pi\)
\(942\) 0 0
\(943\) −563722. + 563722.i −0.633930 + 0.633930i
\(944\) 0 0
\(945\) −121600. + 91200.0i −0.136166 + 0.102125i
\(946\) 0 0
\(947\) 331639. + 331639.i 0.369799 + 0.369799i 0.867404 0.497605i \(-0.165787\pi\)
−0.497605 + 0.867404i \(0.665787\pi\)
\(948\) 0 0
\(949\) 688842.i 0.764869i
\(950\) 0 0
\(951\) −167562. −0.185274
\(952\) 0 0
\(953\) −573639. + 573639.i −0.631616 + 0.631616i −0.948473 0.316858i \(-0.897372\pi\)
0.316858 + 0.948473i \(0.397372\pi\)
\(954\) 0 0
\(955\) 495030. + 660040.i 0.542781 + 0.723708i
\(956\) 0 0
\(957\) −40400.0 40400.0i −0.0441121 0.0441121i
\(958\) 0 0
\(959\) 357162.i 0.388354i
\(960\) 0 0
\(961\) −348957. −0.377855
\(962\) 0 0
\(963\) −170561. + 170561.i −0.183919 + 0.183919i
\(964\) 0 0
\(965\) 811965. + 115995.i 0.871932 + 0.124562i
\(966\) 0 0
\(967\) 49859.0 + 49859.0i 0.0533201 + 0.0533201i 0.733264 0.679944i \(-0.237996\pi\)
−0.679944 + 0.733264i \(0.737996\pi\)
\(968\) 0 0
\(969\) 19120.0i 0.0203629i
\(970\) 0 0
\(971\) 1.41132e6 1.49688 0.748439 0.663204i \(-0.230804\pi\)
0.748439 + 0.663204i \(0.230804\pi\)
\(972\) 0 0
\(973\) −265240. + 265240.i −0.280165 + 0.280165i
\(974\) 0 0
\(975\) 118800. + 34650.0i 0.124970 + 0.0364497i
\(976\) 0 0
\(977\) −708639. 708639.i −0.742397 0.742397i 0.230642 0.973039i \(-0.425917\pi\)
−0.973039 + 0.230642i \(0.925917\pi\)
\(978\) 0 0
\(979\) 1.14736e6i 1.19711i
\(980\) 0 0
\(981\) 22120.0 0.0229851
\(982\) 0 0
\(983\) −234221. + 234221.i −0.242392 + 0.242392i −0.817839 0.575447i \(-0.804828\pi\)
0.575447 + 0.817839i \(0.304828\pi\)
\(984\) 0 0
\(985\) −84495.0 + 591465.i −0.0870880 + 0.609616i
\(986\) 0 0
\(987\) −17442.0 17442.0i −0.0179045 0.0179045i
\(988\) 0 0
\(989\) 821238.i 0.839608i
\(990\) 0 0
\(991\) −898762. −0.915161 −0.457580 0.889168i \(-0.651284\pi\)
−0.457580 + 0.889168i \(0.651284\pi\)
\(992\) 0 0
\(993\) 106282. 106282.i 0.107786 0.107786i
\(994\) 0 0
\(995\) −283200. + 212400.i −0.286053 + 0.214540i
\(996\) 0 0
\(997\) −223379. 223379.i −0.224725 0.224725i 0.585760 0.810485i \(-0.300796\pi\)
−0.810485 + 0.585760i \(0.800796\pi\)
\(998\) 0 0
\(999\) 45120.0i 0.0452104i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.5.p.c.17.1 2
4.3 odd 2 10.5.c.b.7.1 yes 2
5.2 odd 4 400.5.p.b.193.1 2
5.3 odd 4 inner 80.5.p.c.33.1 2
5.4 even 2 400.5.p.b.257.1 2
8.3 odd 2 320.5.p.d.257.1 2
8.5 even 2 320.5.p.g.257.1 2
12.11 even 2 90.5.g.a.37.1 2
20.3 even 4 10.5.c.b.3.1 2
20.7 even 4 50.5.c.a.43.1 2
20.19 odd 2 50.5.c.a.7.1 2
40.3 even 4 320.5.p.d.193.1 2
40.13 odd 4 320.5.p.g.193.1 2
60.23 odd 4 90.5.g.a.73.1 2
60.47 odd 4 450.5.g.b.343.1 2
60.59 even 2 450.5.g.b.307.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.5.c.b.3.1 2 20.3 even 4
10.5.c.b.7.1 yes 2 4.3 odd 2
50.5.c.a.7.1 2 20.19 odd 2
50.5.c.a.43.1 2 20.7 even 4
80.5.p.c.17.1 2 1.1 even 1 trivial
80.5.p.c.33.1 2 5.3 odd 4 inner
90.5.g.a.37.1 2 12.11 even 2
90.5.g.a.73.1 2 60.23 odd 4
320.5.p.d.193.1 2 40.3 even 4
320.5.p.d.257.1 2 8.3 odd 2
320.5.p.g.193.1 2 40.13 odd 4
320.5.p.g.257.1 2 8.5 even 2
400.5.p.b.193.1 2 5.2 odd 4
400.5.p.b.257.1 2 5.4 even 2
450.5.g.b.307.1 2 60.59 even 2
450.5.g.b.343.1 2 60.47 odd 4