Properties

Label 80.4.c.a
Level $80$
Weight $4$
Character orbit 80.c
Analytic conductor $4.720$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 80.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.72015280046\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{3} + ( -5 - 10 i ) q^{5} -26 i q^{7} + 23 q^{9} +O(q^{10})\) \( q + 2 i q^{3} + ( -5 - 10 i ) q^{5} -26 i q^{7} + 23 q^{9} + 28 q^{11} -12 i q^{13} + ( 20 - 10 i ) q^{15} -64 i q^{17} -60 q^{19} + 52 q^{21} -58 i q^{23} + ( -75 + 100 i ) q^{25} + 100 i q^{27} -90 q^{29} + 128 q^{31} + 56 i q^{33} + ( -260 + 130 i ) q^{35} + 236 i q^{37} + 24 q^{39} + 242 q^{41} + 362 i q^{43} + ( -115 - 230 i ) q^{45} -226 i q^{47} -333 q^{49} + 128 q^{51} + 108 i q^{53} + ( -140 - 280 i ) q^{55} -120 i q^{57} -20 q^{59} + 542 q^{61} -598 i q^{63} + ( -120 + 60 i ) q^{65} + 434 i q^{67} + 116 q^{69} + 1128 q^{71} -632 i q^{73} + ( -200 - 150 i ) q^{75} -728 i q^{77} -720 q^{79} + 421 q^{81} -478 i q^{83} + ( -640 + 320 i ) q^{85} -180 i q^{87} + 490 q^{89} -312 q^{91} + 256 i q^{93} + ( 300 + 600 i ) q^{95} + 1456 i q^{97} + 644 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 10q^{5} + 46q^{9} + O(q^{10}) \) \( 2q - 10q^{5} + 46q^{9} + 56q^{11} + 40q^{15} - 120q^{19} + 104q^{21} - 150q^{25} - 180q^{29} + 256q^{31} - 520q^{35} + 48q^{39} + 484q^{41} - 230q^{45} - 666q^{49} + 256q^{51} - 280q^{55} - 40q^{59} + 1084q^{61} - 240q^{65} + 232q^{69} + 2256q^{71} - 400q^{75} - 1440q^{79} + 842q^{81} - 1280q^{85} + 980q^{89} - 624q^{91} + 600q^{95} + 1288q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 2.00000i 0 −5.00000 + 10.0000i 0 26.0000i 0 23.0000 0
49.2 0 2.00000i 0 −5.00000 10.0000i 0 26.0000i 0 23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.4.c.a 2
3.b odd 2 1 720.4.f.f 2
4.b odd 2 1 10.4.b.a 2
5.b even 2 1 inner 80.4.c.a 2
5.c odd 4 1 400.4.a.h 1
5.c odd 4 1 400.4.a.n 1
8.b even 2 1 320.4.c.c 2
8.d odd 2 1 320.4.c.d 2
12.b even 2 1 90.4.c.b 2
15.d odd 2 1 720.4.f.f 2
20.d odd 2 1 10.4.b.a 2
20.e even 4 1 50.4.a.b 1
20.e even 4 1 50.4.a.d 1
28.d even 2 1 490.4.c.b 2
40.e odd 2 1 320.4.c.d 2
40.f even 2 1 320.4.c.c 2
40.i odd 4 1 1600.4.a.t 1
40.i odd 4 1 1600.4.a.bg 1
40.k even 4 1 1600.4.a.u 1
40.k even 4 1 1600.4.a.bh 1
60.h even 2 1 90.4.c.b 2
60.l odd 4 1 450.4.a.j 1
60.l odd 4 1 450.4.a.k 1
140.c even 2 1 490.4.c.b 2
140.j odd 4 1 2450.4.a.o 1
140.j odd 4 1 2450.4.a.bb 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.b.a 2 4.b odd 2 1
10.4.b.a 2 20.d odd 2 1
50.4.a.b 1 20.e even 4 1
50.4.a.d 1 20.e even 4 1
80.4.c.a 2 1.a even 1 1 trivial
80.4.c.a 2 5.b even 2 1 inner
90.4.c.b 2 12.b even 2 1
90.4.c.b 2 60.h even 2 1
320.4.c.c 2 8.b even 2 1
320.4.c.c 2 40.f even 2 1
320.4.c.d 2 8.d odd 2 1
320.4.c.d 2 40.e odd 2 1
400.4.a.h 1 5.c odd 4 1
400.4.a.n 1 5.c odd 4 1
450.4.a.j 1 60.l odd 4 1
450.4.a.k 1 60.l odd 4 1
490.4.c.b 2 28.d even 2 1
490.4.c.b 2 140.c even 2 1
720.4.f.f 2 3.b odd 2 1
720.4.f.f 2 15.d odd 2 1
1600.4.a.t 1 40.i odd 4 1
1600.4.a.u 1 40.k even 4 1
1600.4.a.bg 1 40.i odd 4 1
1600.4.a.bh 1 40.k even 4 1
2450.4.a.o 1 140.j odd 4 1
2450.4.a.bb 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 4 \) acting on \(S_{4}^{\mathrm{new}}(80, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 4 + T^{2} \)
$5$ \( 125 + 10 T + T^{2} \)
$7$ \( 676 + T^{2} \)
$11$ \( ( -28 + T )^{2} \)
$13$ \( 144 + T^{2} \)
$17$ \( 4096 + T^{2} \)
$19$ \( ( 60 + T )^{2} \)
$23$ \( 3364 + T^{2} \)
$29$ \( ( 90 + T )^{2} \)
$31$ \( ( -128 + T )^{2} \)
$37$ \( 55696 + T^{2} \)
$41$ \( ( -242 + T )^{2} \)
$43$ \( 131044 + T^{2} \)
$47$ \( 51076 + T^{2} \)
$53$ \( 11664 + T^{2} \)
$59$ \( ( 20 + T )^{2} \)
$61$ \( ( -542 + T )^{2} \)
$67$ \( 188356 + T^{2} \)
$71$ \( ( -1128 + T )^{2} \)
$73$ \( 399424 + T^{2} \)
$79$ \( ( 720 + T )^{2} \)
$83$ \( 228484 + T^{2} \)
$89$ \( ( -490 + T )^{2} \)
$97$ \( 2119936 + T^{2} \)
show more
show less