# Properties

 Label 80.4.a.f Level $80$ Weight $4$ Character orbit 80.a Self dual yes Analytic conductor $4.720$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [80,4,Mod(1,80)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(80, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("80.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$80 = 2^{4} \cdot 5$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 80.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.72015280046$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 10) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 8 q^{3} + 5 q^{5} + 4 q^{7} + 37 q^{9}+O(q^{10})$$ q + 8 * q^3 + 5 * q^5 + 4 * q^7 + 37 * q^9 $$q + 8 q^{3} + 5 q^{5} + 4 q^{7} + 37 q^{9} - 12 q^{11} - 58 q^{13} + 40 q^{15} + 66 q^{17} + 100 q^{19} + 32 q^{21} - 132 q^{23} + 25 q^{25} + 80 q^{27} - 90 q^{29} - 152 q^{31} - 96 q^{33} + 20 q^{35} - 34 q^{37} - 464 q^{39} - 438 q^{41} - 32 q^{43} + 185 q^{45} + 204 q^{47} - 327 q^{49} + 528 q^{51} + 222 q^{53} - 60 q^{55} + 800 q^{57} - 420 q^{59} + 902 q^{61} + 148 q^{63} - 290 q^{65} + 1024 q^{67} - 1056 q^{69} - 432 q^{71} + 362 q^{73} + 200 q^{75} - 48 q^{77} + 160 q^{79} - 359 q^{81} - 72 q^{83} + 330 q^{85} - 720 q^{87} + 810 q^{89} - 232 q^{91} - 1216 q^{93} + 500 q^{95} + 1106 q^{97} - 444 q^{99}+O(q^{100})$$ q + 8 * q^3 + 5 * q^5 + 4 * q^7 + 37 * q^9 - 12 * q^11 - 58 * q^13 + 40 * q^15 + 66 * q^17 + 100 * q^19 + 32 * q^21 - 132 * q^23 + 25 * q^25 + 80 * q^27 - 90 * q^29 - 152 * q^31 - 96 * q^33 + 20 * q^35 - 34 * q^37 - 464 * q^39 - 438 * q^41 - 32 * q^43 + 185 * q^45 + 204 * q^47 - 327 * q^49 + 528 * q^51 + 222 * q^53 - 60 * q^55 + 800 * q^57 - 420 * q^59 + 902 * q^61 + 148 * q^63 - 290 * q^65 + 1024 * q^67 - 1056 * q^69 - 432 * q^71 + 362 * q^73 + 200 * q^75 - 48 * q^77 + 160 * q^79 - 359 * q^81 - 72 * q^83 + 330 * q^85 - 720 * q^87 + 810 * q^89 - 232 * q^91 - 1216 * q^93 + 500 * q^95 + 1106 * q^97 - 444 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 8.00000 0 5.00000 0 4.00000 0 37.0000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.4.a.f 1
3.b odd 2 1 720.4.a.j 1
4.b odd 2 1 10.4.a.a 1
5.b even 2 1 400.4.a.b 1
5.c odd 4 2 400.4.c.c 2
8.b even 2 1 320.4.a.b 1
8.d odd 2 1 320.4.a.m 1
12.b even 2 1 90.4.a.a 1
16.e even 4 2 1280.4.d.g 2
16.f odd 4 2 1280.4.d.j 2
20.d odd 2 1 50.4.a.c 1
20.e even 4 2 50.4.b.a 2
28.d even 2 1 490.4.a.o 1
28.f even 6 2 490.4.e.a 2
28.g odd 6 2 490.4.e.i 2
36.f odd 6 2 810.4.e.c 2
36.h even 6 2 810.4.e.w 2
40.e odd 2 1 1600.4.a.d 1
40.f even 2 1 1600.4.a.bx 1
44.c even 2 1 1210.4.a.b 1
52.b odd 2 1 1690.4.a.a 1
60.h even 2 1 450.4.a.q 1
60.l odd 4 2 450.4.c.d 2
140.c even 2 1 2450.4.a.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.a.a 1 4.b odd 2 1
50.4.a.c 1 20.d odd 2 1
50.4.b.a 2 20.e even 4 2
80.4.a.f 1 1.a even 1 1 trivial
90.4.a.a 1 12.b even 2 1
320.4.a.b 1 8.b even 2 1
320.4.a.m 1 8.d odd 2 1
400.4.a.b 1 5.b even 2 1
400.4.c.c 2 5.c odd 4 2
450.4.a.q 1 60.h even 2 1
450.4.c.d 2 60.l odd 4 2
490.4.a.o 1 28.d even 2 1
490.4.e.a 2 28.f even 6 2
490.4.e.i 2 28.g odd 6 2
720.4.a.j 1 3.b odd 2 1
810.4.e.c 2 36.f odd 6 2
810.4.e.w 2 36.h even 6 2
1210.4.a.b 1 44.c even 2 1
1280.4.d.g 2 16.e even 4 2
1280.4.d.j 2 16.f odd 4 2
1600.4.a.d 1 40.e odd 2 1
1600.4.a.bx 1 40.f even 2 1
1690.4.a.a 1 52.b odd 2 1
2450.4.a.b 1 140.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(80))$$:

 $$T_{3} - 8$$ T3 - 8 $$T_{7} - 4$$ T7 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 8$$
$5$ $$T - 5$$
$7$ $$T - 4$$
$11$ $$T + 12$$
$13$ $$T + 58$$
$17$ $$T - 66$$
$19$ $$T - 100$$
$23$ $$T + 132$$
$29$ $$T + 90$$
$31$ $$T + 152$$
$37$ $$T + 34$$
$41$ $$T + 438$$
$43$ $$T + 32$$
$47$ $$T - 204$$
$53$ $$T - 222$$
$59$ $$T + 420$$
$61$ $$T - 902$$
$67$ $$T - 1024$$
$71$ $$T + 432$$
$73$ $$T - 362$$
$79$ $$T - 160$$
$83$ $$T + 72$$
$89$ $$T - 810$$
$97$ $$T - 1106$$