# Properties

 Label 80.4.a.e Level $80$ Weight $4$ Character orbit 80.a Self dual yes Analytic conductor $4.720$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [80,4,Mod(1,80)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(80, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("80.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$80 = 2^{4} \cdot 5$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 80.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.72015280046$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 40) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 6 q^{3} - 5 q^{5} + 34 q^{7} + 9 q^{9}+O(q^{10})$$ q + 6 * q^3 - 5 * q^5 + 34 * q^7 + 9 * q^9 $$q + 6 q^{3} - 5 q^{5} + 34 q^{7} + 9 q^{9} - 16 q^{11} + 58 q^{13} - 30 q^{15} - 70 q^{17} - 4 q^{19} + 204 q^{21} + 134 q^{23} + 25 q^{25} - 108 q^{27} - 242 q^{29} - 100 q^{31} - 96 q^{33} - 170 q^{35} - 438 q^{37} + 348 q^{39} - 138 q^{41} - 178 q^{43} - 45 q^{45} - 22 q^{47} + 813 q^{49} - 420 q^{51} + 162 q^{53} + 80 q^{55} - 24 q^{57} + 268 q^{59} + 250 q^{61} + 306 q^{63} - 290 q^{65} - 422 q^{67} + 804 q^{69} + 852 q^{71} + 306 q^{73} + 150 q^{75} - 544 q^{77} + 456 q^{79} - 891 q^{81} - 434 q^{83} + 350 q^{85} - 1452 q^{87} - 726 q^{89} + 1972 q^{91} - 600 q^{93} + 20 q^{95} + 1378 q^{97} - 144 q^{99}+O(q^{100})$$ q + 6 * q^3 - 5 * q^5 + 34 * q^7 + 9 * q^9 - 16 * q^11 + 58 * q^13 - 30 * q^15 - 70 * q^17 - 4 * q^19 + 204 * q^21 + 134 * q^23 + 25 * q^25 - 108 * q^27 - 242 * q^29 - 100 * q^31 - 96 * q^33 - 170 * q^35 - 438 * q^37 + 348 * q^39 - 138 * q^41 - 178 * q^43 - 45 * q^45 - 22 * q^47 + 813 * q^49 - 420 * q^51 + 162 * q^53 + 80 * q^55 - 24 * q^57 + 268 * q^59 + 250 * q^61 + 306 * q^63 - 290 * q^65 - 422 * q^67 + 804 * q^69 + 852 * q^71 + 306 * q^73 + 150 * q^75 - 544 * q^77 + 456 * q^79 - 891 * q^81 - 434 * q^83 + 350 * q^85 - 1452 * q^87 - 726 * q^89 + 1972 * q^91 - 600 * q^93 + 20 * q^95 + 1378 * q^97 - 144 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 6.00000 0 −5.00000 0 34.0000 0 9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$5$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.4.a.e 1
3.b odd 2 1 720.4.a.bd 1
4.b odd 2 1 40.4.a.a 1
5.b even 2 1 400.4.a.e 1
5.c odd 4 2 400.4.c.f 2
8.b even 2 1 320.4.a.c 1
8.d odd 2 1 320.4.a.l 1
12.b even 2 1 360.4.a.h 1
16.e even 4 2 1280.4.d.a 2
16.f odd 4 2 1280.4.d.p 2
20.d odd 2 1 200.4.a.i 1
20.e even 4 2 200.4.c.c 2
28.d even 2 1 1960.4.a.h 1
40.e odd 2 1 1600.4.a.j 1
40.f even 2 1 1600.4.a.br 1
60.h even 2 1 1800.4.a.bi 1
60.l odd 4 2 1800.4.f.j 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.4.a.a 1 4.b odd 2 1
80.4.a.e 1 1.a even 1 1 trivial
200.4.a.i 1 20.d odd 2 1
200.4.c.c 2 20.e even 4 2
320.4.a.c 1 8.b even 2 1
320.4.a.l 1 8.d odd 2 1
360.4.a.h 1 12.b even 2 1
400.4.a.e 1 5.b even 2 1
400.4.c.f 2 5.c odd 4 2
720.4.a.bd 1 3.b odd 2 1
1280.4.d.a 2 16.e even 4 2
1280.4.d.p 2 16.f odd 4 2
1600.4.a.j 1 40.e odd 2 1
1600.4.a.br 1 40.f even 2 1
1800.4.a.bi 1 60.h even 2 1
1800.4.f.j 2 60.l odd 4 2
1960.4.a.h 1 28.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(80))$$:

 $$T_{3} - 6$$ T3 - 6 $$T_{7} - 34$$ T7 - 34

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 6$$
$5$ $$T + 5$$
$7$ $$T - 34$$
$11$ $$T + 16$$
$13$ $$T - 58$$
$17$ $$T + 70$$
$19$ $$T + 4$$
$23$ $$T - 134$$
$29$ $$T + 242$$
$31$ $$T + 100$$
$37$ $$T + 438$$
$41$ $$T + 138$$
$43$ $$T + 178$$
$47$ $$T + 22$$
$53$ $$T - 162$$
$59$ $$T - 268$$
$61$ $$T - 250$$
$67$ $$T + 422$$
$71$ $$T - 852$$
$73$ $$T - 306$$
$79$ $$T - 456$$
$83$ $$T + 434$$
$89$ $$T + 726$$
$97$ $$T - 1378$$