# Properties

 Label 80.4.a.d Level $80$ Weight $4$ Character orbit 80.a Self dual yes Analytic conductor $4.720$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [80,4,Mod(1,80)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(80, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("80.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$80 = 2^{4} \cdot 5$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 80.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.72015280046$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 5) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{3} - 5 q^{5} - 6 q^{7} - 23 q^{9}+O(q^{10})$$ q - 2 * q^3 - 5 * q^5 - 6 * q^7 - 23 * q^9 $$q - 2 q^{3} - 5 q^{5} - 6 q^{7} - 23 q^{9} - 32 q^{11} - 38 q^{13} + 10 q^{15} + 26 q^{17} - 100 q^{19} + 12 q^{21} + 78 q^{23} + 25 q^{25} + 100 q^{27} - 50 q^{29} + 108 q^{31} + 64 q^{33} + 30 q^{35} + 266 q^{37} + 76 q^{39} + 22 q^{41} - 442 q^{43} + 115 q^{45} + 514 q^{47} - 307 q^{49} - 52 q^{51} + 2 q^{53} + 160 q^{55} + 200 q^{57} - 500 q^{59} - 518 q^{61} + 138 q^{63} + 190 q^{65} - 126 q^{67} - 156 q^{69} - 412 q^{71} - 878 q^{73} - 50 q^{75} + 192 q^{77} - 600 q^{79} + 421 q^{81} - 282 q^{83} - 130 q^{85} + 100 q^{87} - 150 q^{89} + 228 q^{91} - 216 q^{93} + 500 q^{95} + 386 q^{97} + 736 q^{99}+O(q^{100})$$ q - 2 * q^3 - 5 * q^5 - 6 * q^7 - 23 * q^9 - 32 * q^11 - 38 * q^13 + 10 * q^15 + 26 * q^17 - 100 * q^19 + 12 * q^21 + 78 * q^23 + 25 * q^25 + 100 * q^27 - 50 * q^29 + 108 * q^31 + 64 * q^33 + 30 * q^35 + 266 * q^37 + 76 * q^39 + 22 * q^41 - 442 * q^43 + 115 * q^45 + 514 * q^47 - 307 * q^49 - 52 * q^51 + 2 * q^53 + 160 * q^55 + 200 * q^57 - 500 * q^59 - 518 * q^61 + 138 * q^63 + 190 * q^65 - 126 * q^67 - 156 * q^69 - 412 * q^71 - 878 * q^73 - 50 * q^75 + 192 * q^77 - 600 * q^79 + 421 * q^81 - 282 * q^83 - 130 * q^85 + 100 * q^87 - 150 * q^89 + 228 * q^91 - 216 * q^93 + 500 * q^95 + 386 * q^97 + 736 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −2.00000 0 −5.00000 0 −6.00000 0 −23.0000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.4.a.d 1
3.b odd 2 1 720.4.a.u 1
4.b odd 2 1 5.4.a.a 1
5.b even 2 1 400.4.a.m 1
5.c odd 4 2 400.4.c.k 2
8.b even 2 1 320.4.a.h 1
8.d odd 2 1 320.4.a.g 1
12.b even 2 1 45.4.a.d 1
16.e even 4 2 1280.4.d.l 2
16.f odd 4 2 1280.4.d.e 2
20.d odd 2 1 25.4.a.c 1
20.e even 4 2 25.4.b.a 2
28.d even 2 1 245.4.a.a 1
28.f even 6 2 245.4.e.g 2
28.g odd 6 2 245.4.e.f 2
36.f odd 6 2 405.4.e.l 2
36.h even 6 2 405.4.e.c 2
40.e odd 2 1 1600.4.a.bi 1
40.f even 2 1 1600.4.a.s 1
44.c even 2 1 605.4.a.d 1
52.b odd 2 1 845.4.a.b 1
60.h even 2 1 225.4.a.b 1
60.l odd 4 2 225.4.b.c 2
68.d odd 2 1 1445.4.a.a 1
76.d even 2 1 1805.4.a.h 1
84.h odd 2 1 2205.4.a.q 1
140.c even 2 1 1225.4.a.k 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.4.a.a 1 4.b odd 2 1
25.4.a.c 1 20.d odd 2 1
25.4.b.a 2 20.e even 4 2
45.4.a.d 1 12.b even 2 1
80.4.a.d 1 1.a even 1 1 trivial
225.4.a.b 1 60.h even 2 1
225.4.b.c 2 60.l odd 4 2
245.4.a.a 1 28.d even 2 1
245.4.e.f 2 28.g odd 6 2
245.4.e.g 2 28.f even 6 2
320.4.a.g 1 8.d odd 2 1
320.4.a.h 1 8.b even 2 1
400.4.a.m 1 5.b even 2 1
400.4.c.k 2 5.c odd 4 2
405.4.e.c 2 36.h even 6 2
405.4.e.l 2 36.f odd 6 2
605.4.a.d 1 44.c even 2 1
720.4.a.u 1 3.b odd 2 1
845.4.a.b 1 52.b odd 2 1
1225.4.a.k 1 140.c even 2 1
1280.4.d.e 2 16.f odd 4 2
1280.4.d.l 2 16.e even 4 2
1445.4.a.a 1 68.d odd 2 1
1600.4.a.s 1 40.f even 2 1
1600.4.a.bi 1 40.e odd 2 1
1805.4.a.h 1 76.d even 2 1
2205.4.a.q 1 84.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(80))$$:

 $$T_{3} + 2$$ T3 + 2 $$T_{7} + 6$$ T7 + 6

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 2$$
$5$ $$T + 5$$
$7$ $$T + 6$$
$11$ $$T + 32$$
$13$ $$T + 38$$
$17$ $$T - 26$$
$19$ $$T + 100$$
$23$ $$T - 78$$
$29$ $$T + 50$$
$31$ $$T - 108$$
$37$ $$T - 266$$
$41$ $$T - 22$$
$43$ $$T + 442$$
$47$ $$T - 514$$
$53$ $$T - 2$$
$59$ $$T + 500$$
$61$ $$T + 518$$
$67$ $$T + 126$$
$71$ $$T + 412$$
$73$ $$T + 878$$
$79$ $$T + 600$$
$83$ $$T + 282$$
$89$ $$T + 150$$
$97$ $$T - 386$$