Properties

Label 80.4.a
Level $80$
Weight $4$
Character orbit 80.a
Rep. character $\chi_{80}(1,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $6$
Sturm bound $48$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(48\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(80))\).

Total New Old
Modular forms 42 6 36
Cusp forms 30 6 24
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(2\)

Trace form

\( 6 q - 6 q^{3} + 50 q^{7} + 74 q^{9} + O(q^{10}) \) \( 6 q - 6 q^{3} + 50 q^{7} + 74 q^{9} - 20 q^{11} + 30 q^{15} - 76 q^{17} + 192 q^{19} + 68 q^{21} - 26 q^{23} + 150 q^{25} - 84 q^{27} - 228 q^{29} - 372 q^{31} - 384 q^{33} - 210 q^{35} - 8 q^{37} - 156 q^{39} + 128 q^{41} - 326 q^{43} - 220 q^{45} + 98 q^{47} - 14 q^{49} + 484 q^{51} + 768 q^{53} + 220 q^{55} - 552 q^{57} - 616 q^{59} - 256 q^{61} + 1906 q^{63} - 140 q^{65} + 1374 q^{67} + 268 q^{69} - 468 q^{71} + 1044 q^{73} - 150 q^{75} + 1424 q^{77} + 120 q^{79} + 1178 q^{81} - 2942 q^{83} + 120 q^{85} - 3540 q^{87} - 900 q^{89} + 3908 q^{91} - 2248 q^{93} + 760 q^{95} + 1244 q^{97} + 1052 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(80))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
80.4.a.a 80.a 1.a $1$ $4.720$ \(\Q\) None 40.4.a.c \(0\) \(-10\) \(-5\) \(18\) $+$ $+$ $\mathrm{SU}(2)$ \(q-10q^{3}-5q^{5}+18q^{7}+73q^{9}+2^{4}q^{11}+\cdots\)
80.4.a.b 80.a 1.a $1$ $4.720$ \(\Q\) None 40.4.a.b \(0\) \(-4\) \(5\) \(-16\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}+5q^{5}-2^{4}q^{7}-11q^{9}-6^{2}q^{11}+\cdots\)
80.4.a.c 80.a 1.a $1$ $4.720$ \(\Q\) None 20.4.a.a \(0\) \(-4\) \(5\) \(16\) $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{3}+5q^{5}+2^{4}q^{7}-11q^{9}+60q^{11}+\cdots\)
80.4.a.d 80.a 1.a $1$ $4.720$ \(\Q\) None 5.4.a.a \(0\) \(-2\) \(-5\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-5q^{5}-6q^{7}-23q^{9}-2^{5}q^{11}+\cdots\)
80.4.a.e 80.a 1.a $1$ $4.720$ \(\Q\) None 40.4.a.a \(0\) \(6\) \(-5\) \(34\) $+$ $+$ $\mathrm{SU}(2)$ \(q+6q^{3}-5q^{5}+34q^{7}+9q^{9}-2^{4}q^{11}+\cdots\)
80.4.a.f 80.a 1.a $1$ $4.720$ \(\Q\) None 10.4.a.a \(0\) \(8\) \(5\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{3}+5q^{5}+4q^{7}+37q^{9}-12q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(80))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(80)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)