Defining parameters
Level: | \( N \) | = | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 7 \) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(1536\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(80))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 632 | 310 | 322 |
Cusp forms | 520 | 284 | 236 |
Eisenstein series | 112 | 26 | 86 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(80))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
80.4.a | \(\chi_{80}(1, \cdot)\) | 80.4.a.a | 1 | 1 |
80.4.a.b | 1 | |||
80.4.a.c | 1 | |||
80.4.a.d | 1 | |||
80.4.a.e | 1 | |||
80.4.a.f | 1 | |||
80.4.c | \(\chi_{80}(49, \cdot)\) | 80.4.c.a | 2 | 1 |
80.4.c.b | 2 | |||
80.4.c.c | 4 | |||
80.4.d | \(\chi_{80}(41, \cdot)\) | None | 0 | 1 |
80.4.f | \(\chi_{80}(9, \cdot)\) | None | 0 | 1 |
80.4.j | \(\chi_{80}(43, \cdot)\) | 80.4.j.a | 68 | 2 |
80.4.l | \(\chi_{80}(21, \cdot)\) | 80.4.l.a | 48 | 2 |
80.4.n | \(\chi_{80}(47, \cdot)\) | 80.4.n.a | 2 | 2 |
80.4.n.b | 4 | |||
80.4.n.c | 12 | |||
80.4.o | \(\chi_{80}(7, \cdot)\) | None | 0 | 2 |
80.4.q | \(\chi_{80}(29, \cdot)\) | 80.4.q.a | 68 | 2 |
80.4.s | \(\chi_{80}(3, \cdot)\) | 80.4.s.a | 68 | 2 |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)