Properties

Label 80.3.p.c
Level $80$
Weight $3$
Character orbit 80.p
Analytic conductor $2.180$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 80.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17984211488\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - 2 i ) q^{3} -5 i q^{5} + ( -2 - 2 i ) q^{7} + i q^{9} +O(q^{10})\) \( q + ( 2 - 2 i ) q^{3} -5 i q^{5} + ( -2 - 2 i ) q^{7} + i q^{9} + 8 q^{11} + ( 3 - 3 i ) q^{13} + ( -10 - 10 i ) q^{15} + ( 7 + 7 i ) q^{17} + 20 i q^{19} -8 q^{21} + ( 2 - 2 i ) q^{23} -25 q^{25} + ( 20 + 20 i ) q^{27} + 40 i q^{29} -52 q^{31} + ( 16 - 16 i ) q^{33} + ( -10 + 10 i ) q^{35} + ( -3 - 3 i ) q^{37} -12 i q^{39} -8 q^{41} + ( 42 - 42 i ) q^{43} + 5 q^{45} + ( 18 + 18 i ) q^{47} -41 i q^{49} + 28 q^{51} + ( 53 - 53 i ) q^{53} -40 i q^{55} + ( 40 + 40 i ) q^{57} + 20 i q^{59} -48 q^{61} + ( 2 - 2 i ) q^{63} + ( -15 - 15 i ) q^{65} + ( -62 - 62 i ) q^{67} -8 i q^{69} + 28 q^{71} + ( -47 + 47 i ) q^{73} + ( -50 + 50 i ) q^{75} + ( -16 - 16 i ) q^{77} + 71 q^{81} + ( -18 + 18 i ) q^{83} + ( 35 - 35 i ) q^{85} + ( 80 + 80 i ) q^{87} + 80 i q^{89} -12 q^{91} + ( -104 + 104 i ) q^{93} + 100 q^{95} + ( -63 - 63 i ) q^{97} + 8 i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{3} - 4q^{7} + O(q^{10}) \) \( 2q + 4q^{3} - 4q^{7} + 16q^{11} + 6q^{13} - 20q^{15} + 14q^{17} - 16q^{21} + 4q^{23} - 50q^{25} + 40q^{27} - 104q^{31} + 32q^{33} - 20q^{35} - 6q^{37} - 16q^{41} + 84q^{43} + 10q^{45} + 36q^{47} + 56q^{51} + 106q^{53} + 80q^{57} - 96q^{61} + 4q^{63} - 30q^{65} - 124q^{67} + 56q^{71} - 94q^{73} - 100q^{75} - 32q^{77} + 142q^{81} - 36q^{83} + 70q^{85} + 160q^{87} - 24q^{91} - 208q^{93} + 200q^{95} - 126q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(i\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
1.00000i
1.00000i
0 2.00000 2.00000i 0 5.00000i 0 −2.00000 2.00000i 0 1.00000i 0
33.1 0 2.00000 + 2.00000i 0 5.00000i 0 −2.00000 + 2.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 80.3.p.c 2
3.b odd 2 1 720.3.bh.c 2
4.b odd 2 1 10.3.c.a 2
5.b even 2 1 400.3.p.b 2
5.c odd 4 1 inner 80.3.p.c 2
5.c odd 4 1 400.3.p.b 2
8.b even 2 1 320.3.p.a 2
8.d odd 2 1 320.3.p.h 2
12.b even 2 1 90.3.g.b 2
15.e even 4 1 720.3.bh.c 2
20.d odd 2 1 50.3.c.c 2
20.e even 4 1 10.3.c.a 2
20.e even 4 1 50.3.c.c 2
28.d even 2 1 490.3.f.b 2
40.i odd 4 1 320.3.p.a 2
40.k even 4 1 320.3.p.h 2
60.h even 2 1 450.3.g.b 2
60.l odd 4 1 90.3.g.b 2
60.l odd 4 1 450.3.g.b 2
140.j odd 4 1 490.3.f.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.3.c.a 2 4.b odd 2 1
10.3.c.a 2 20.e even 4 1
50.3.c.c 2 20.d odd 2 1
50.3.c.c 2 20.e even 4 1
80.3.p.c 2 1.a even 1 1 trivial
80.3.p.c 2 5.c odd 4 1 inner
90.3.g.b 2 12.b even 2 1
90.3.g.b 2 60.l odd 4 1
320.3.p.a 2 8.b even 2 1
320.3.p.a 2 40.i odd 4 1
320.3.p.h 2 8.d odd 2 1
320.3.p.h 2 40.k even 4 1
400.3.p.b 2 5.b even 2 1
400.3.p.b 2 5.c odd 4 1
450.3.g.b 2 60.h even 2 1
450.3.g.b 2 60.l odd 4 1
490.3.f.b 2 28.d even 2 1
490.3.f.b 2 140.j odd 4 1
720.3.bh.c 2 3.b odd 2 1
720.3.bh.c 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(80, [\chi])\):

\( T_{3}^{2} - 4 T_{3} + 8 \)
\( T_{7}^{2} + 4 T_{7} + 8 \)