Properties

Label 80.3.p.a.33.1
Level $80$
Weight $3$
Character 80.33
Analytic conductor $2.180$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,3,Mod(17,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.17");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 80.p (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17984211488\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 33.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 80.33
Dual form 80.3.p.a.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{3} +(-3.00000 - 4.00000i) q^{5} +(7.00000 - 7.00000i) q^{7} -7.00000i q^{9} -10.0000 q^{11} +(9.00000 + 9.00000i) q^{13} +(-1.00000 + 7.00000i) q^{15} +(1.00000 - 1.00000i) q^{17} -8.00000i q^{19} -14.0000 q^{21} +(23.0000 + 23.0000i) q^{23} +(-7.00000 + 24.0000i) q^{25} +(-16.0000 + 16.0000i) q^{27} +8.00000i q^{29} +14.0000 q^{31} +(10.0000 + 10.0000i) q^{33} +(-49.0000 - 7.00000i) q^{35} +(33.0000 - 33.0000i) q^{37} -18.0000i q^{39} -14.0000 q^{41} +(15.0000 + 15.0000i) q^{43} +(-28.0000 + 21.0000i) q^{45} +(39.0000 - 39.0000i) q^{47} -49.0000i q^{49} -2.00000 q^{51} +(-7.00000 - 7.00000i) q^{53} +(30.0000 + 40.0000i) q^{55} +(-8.00000 + 8.00000i) q^{57} -56.0000i q^{59} +42.0000 q^{61} +(-49.0000 - 49.0000i) q^{63} +(9.00000 - 63.0000i) q^{65} +(7.00000 - 7.00000i) q^{67} -46.0000i q^{69} -98.0000 q^{71} +(49.0000 + 49.0000i) q^{73} +(31.0000 - 17.0000i) q^{75} +(-70.0000 + 70.0000i) q^{77} +96.0000i q^{79} -31.0000 q^{81} +(63.0000 + 63.0000i) q^{83} +(-7.00000 - 1.00000i) q^{85} +(8.00000 - 8.00000i) q^{87} +112.000i q^{89} +126.000 q^{91} +(-14.0000 - 14.0000i) q^{93} +(-32.0000 + 24.0000i) q^{95} +(33.0000 - 33.0000i) q^{97} +70.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 6 q^{5} + 14 q^{7} - 20 q^{11} + 18 q^{13} - 2 q^{15} + 2 q^{17} - 28 q^{21} + 46 q^{23} - 14 q^{25} - 32 q^{27} + 28 q^{31} + 20 q^{33} - 98 q^{35} + 66 q^{37} - 28 q^{41} + 30 q^{43} - 56 q^{45}+ \cdots + 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 1.00000i −0.333333 0.333333i 0.520518 0.853851i \(-0.325739\pi\)
−0.853851 + 0.520518i \(0.825739\pi\)
\(4\) 0 0
\(5\) −3.00000 4.00000i −0.600000 0.800000i
\(6\) 0 0
\(7\) 7.00000 7.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(8\) 0 0
\(9\) 7.00000i 0.777778i
\(10\) 0 0
\(11\) −10.0000 −0.909091 −0.454545 0.890724i \(-0.650198\pi\)
−0.454545 + 0.890724i \(0.650198\pi\)
\(12\) 0 0
\(13\) 9.00000 + 9.00000i 0.692308 + 0.692308i 0.962739 0.270432i \(-0.0871664\pi\)
−0.270432 + 0.962739i \(0.587166\pi\)
\(14\) 0 0
\(15\) −1.00000 + 7.00000i −0.0666667 + 0.466667i
\(16\) 0 0
\(17\) 1.00000 1.00000i 0.0588235 0.0588235i −0.677083 0.735907i \(-0.736756\pi\)
0.735907 + 0.677083i \(0.236756\pi\)
\(18\) 0 0
\(19\) 8.00000i 0.421053i −0.977588 0.210526i \(-0.932482\pi\)
0.977588 0.210526i \(-0.0675178\pi\)
\(20\) 0 0
\(21\) −14.0000 −0.666667
\(22\) 0 0
\(23\) 23.0000 + 23.0000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(26\) 0 0
\(27\) −16.0000 + 16.0000i −0.592593 + 0.592593i
\(28\) 0 0
\(29\) 8.00000i 0.275862i 0.990442 + 0.137931i \(0.0440452\pi\)
−0.990442 + 0.137931i \(0.955955\pi\)
\(30\) 0 0
\(31\) 14.0000 0.451613 0.225806 0.974172i \(-0.427498\pi\)
0.225806 + 0.974172i \(0.427498\pi\)
\(32\) 0 0
\(33\) 10.0000 + 10.0000i 0.303030 + 0.303030i
\(34\) 0 0
\(35\) −49.0000 7.00000i −1.40000 0.200000i
\(36\) 0 0
\(37\) 33.0000 33.0000i 0.891892 0.891892i −0.102809 0.994701i \(-0.532783\pi\)
0.994701 + 0.102809i \(0.0327831\pi\)
\(38\) 0 0
\(39\) 18.0000i 0.461538i
\(40\) 0 0
\(41\) −14.0000 −0.341463 −0.170732 0.985318i \(-0.554613\pi\)
−0.170732 + 0.985318i \(0.554613\pi\)
\(42\) 0 0
\(43\) 15.0000 + 15.0000i 0.348837 + 0.348837i 0.859676 0.510839i \(-0.170665\pi\)
−0.510839 + 0.859676i \(0.670665\pi\)
\(44\) 0 0
\(45\) −28.0000 + 21.0000i −0.622222 + 0.466667i
\(46\) 0 0
\(47\) 39.0000 39.0000i 0.829787 0.829787i −0.157700 0.987487i \(-0.550408\pi\)
0.987487 + 0.157700i \(0.0504078\pi\)
\(48\) 0 0
\(49\) 49.0000i 1.00000i
\(50\) 0 0
\(51\) −2.00000 −0.0392157
\(52\) 0 0
\(53\) −7.00000 7.00000i −0.132075 0.132075i 0.637979 0.770054i \(-0.279771\pi\)
−0.770054 + 0.637979i \(0.779771\pi\)
\(54\) 0 0
\(55\) 30.0000 + 40.0000i 0.545455 + 0.727273i
\(56\) 0 0
\(57\) −8.00000 + 8.00000i −0.140351 + 0.140351i
\(58\) 0 0
\(59\) 56.0000i 0.949153i −0.880214 0.474576i \(-0.842601\pi\)
0.880214 0.474576i \(-0.157399\pi\)
\(60\) 0 0
\(61\) 42.0000 0.688525 0.344262 0.938874i \(-0.388129\pi\)
0.344262 + 0.938874i \(0.388129\pi\)
\(62\) 0 0
\(63\) −49.0000 49.0000i −0.777778 0.777778i
\(64\) 0 0
\(65\) 9.00000 63.0000i 0.138462 0.969231i
\(66\) 0 0
\(67\) 7.00000 7.00000i 0.104478 0.104478i −0.652936 0.757413i \(-0.726463\pi\)
0.757413 + 0.652936i \(0.226463\pi\)
\(68\) 0 0
\(69\) 46.0000i 0.666667i
\(70\) 0 0
\(71\) −98.0000 −1.38028 −0.690141 0.723675i \(-0.742451\pi\)
−0.690141 + 0.723675i \(0.742451\pi\)
\(72\) 0 0
\(73\) 49.0000 + 49.0000i 0.671233 + 0.671233i 0.958000 0.286767i \(-0.0925807\pi\)
−0.286767 + 0.958000i \(0.592581\pi\)
\(74\) 0 0
\(75\) 31.0000 17.0000i 0.413333 0.226667i
\(76\) 0 0
\(77\) −70.0000 + 70.0000i −0.909091 + 0.909091i
\(78\) 0 0
\(79\) 96.0000i 1.21519i 0.794247 + 0.607595i \(0.207866\pi\)
−0.794247 + 0.607595i \(0.792134\pi\)
\(80\) 0 0
\(81\) −31.0000 −0.382716
\(82\) 0 0
\(83\) 63.0000 + 63.0000i 0.759036 + 0.759036i 0.976147 0.217111i \(-0.0696633\pi\)
−0.217111 + 0.976147i \(0.569663\pi\)
\(84\) 0 0
\(85\) −7.00000 1.00000i −0.0823529 0.0117647i
\(86\) 0 0
\(87\) 8.00000 8.00000i 0.0919540 0.0919540i
\(88\) 0 0
\(89\) 112.000i 1.25843i 0.777233 + 0.629213i \(0.216623\pi\)
−0.777233 + 0.629213i \(0.783377\pi\)
\(90\) 0 0
\(91\) 126.000 1.38462
\(92\) 0 0
\(93\) −14.0000 14.0000i −0.150538 0.150538i
\(94\) 0 0
\(95\) −32.0000 + 24.0000i −0.336842 + 0.252632i
\(96\) 0 0
\(97\) 33.0000 33.0000i 0.340206 0.340206i −0.516239 0.856445i \(-0.672668\pi\)
0.856445 + 0.516239i \(0.172668\pi\)
\(98\) 0 0
\(99\) 70.0000i 0.707071i
\(100\) 0 0
\(101\) 26.0000 0.257426 0.128713 0.991682i \(-0.458915\pi\)
0.128713 + 0.991682i \(0.458915\pi\)
\(102\) 0 0
\(103\) −73.0000 73.0000i −0.708738 0.708738i 0.257532 0.966270i \(-0.417091\pi\)
−0.966270 + 0.257532i \(0.917091\pi\)
\(104\) 0 0
\(105\) 42.0000 + 56.0000i 0.400000 + 0.533333i
\(106\) 0 0
\(107\) −121.000 + 121.000i −1.13084 + 1.13084i −0.140804 + 0.990038i \(0.544969\pi\)
−0.990038 + 0.140804i \(0.955031\pi\)
\(108\) 0 0
\(109\) 136.000i 1.24771i 0.781542 + 0.623853i \(0.214434\pi\)
−0.781542 + 0.623853i \(0.785566\pi\)
\(110\) 0 0
\(111\) −66.0000 −0.594595
\(112\) 0 0
\(113\) −127.000 127.000i −1.12389 1.12389i −0.991150 0.132743i \(-0.957621\pi\)
−0.132743 0.991150i \(-0.542379\pi\)
\(114\) 0 0
\(115\) 23.0000 161.000i 0.200000 1.40000i
\(116\) 0 0
\(117\) 63.0000 63.0000i 0.538462 0.538462i
\(118\) 0 0
\(119\) 14.0000i 0.117647i
\(120\) 0 0
\(121\) −21.0000 −0.173554
\(122\) 0 0
\(123\) 14.0000 + 14.0000i 0.113821 + 0.113821i
\(124\) 0 0
\(125\) 117.000 44.0000i 0.936000 0.352000i
\(126\) 0 0
\(127\) 7.00000 7.00000i 0.0551181 0.0551181i −0.679010 0.734129i \(-0.737591\pi\)
0.734129 + 0.679010i \(0.237591\pi\)
\(128\) 0 0
\(129\) 30.0000i 0.232558i
\(130\) 0 0
\(131\) 230.000 1.75573 0.877863 0.478913i \(-0.158969\pi\)
0.877863 + 0.478913i \(0.158969\pi\)
\(132\) 0 0
\(133\) −56.0000 56.0000i −0.421053 0.421053i
\(134\) 0 0
\(135\) 112.000 + 16.0000i 0.829630 + 0.118519i
\(136\) 0 0
\(137\) −63.0000 + 63.0000i −0.459854 + 0.459854i −0.898607 0.438753i \(-0.855420\pi\)
0.438753 + 0.898607i \(0.355420\pi\)
\(138\) 0 0
\(139\) 88.0000i 0.633094i −0.948577 0.316547i \(-0.897477\pi\)
0.948577 0.316547i \(-0.102523\pi\)
\(140\) 0 0
\(141\) −78.0000 −0.553191
\(142\) 0 0
\(143\) −90.0000 90.0000i −0.629371 0.629371i
\(144\) 0 0
\(145\) 32.0000 24.0000i 0.220690 0.165517i
\(146\) 0 0
\(147\) −49.0000 + 49.0000i −0.333333 + 0.333333i
\(148\) 0 0
\(149\) 168.000i 1.12752i −0.825940 0.563758i \(-0.809355\pi\)
0.825940 0.563758i \(-0.190645\pi\)
\(150\) 0 0
\(151\) −130.000 −0.860927 −0.430464 0.902608i \(-0.641650\pi\)
−0.430464 + 0.902608i \(0.641650\pi\)
\(152\) 0 0
\(153\) −7.00000 7.00000i −0.0457516 0.0457516i
\(154\) 0 0
\(155\) −42.0000 56.0000i −0.270968 0.361290i
\(156\) 0 0
\(157\) −63.0000 + 63.0000i −0.401274 + 0.401274i −0.878682 0.477408i \(-0.841576\pi\)
0.477408 + 0.878682i \(0.341576\pi\)
\(158\) 0 0
\(159\) 14.0000i 0.0880503i
\(160\) 0 0
\(161\) 322.000 2.00000
\(162\) 0 0
\(163\) −65.0000 65.0000i −0.398773 0.398773i 0.479027 0.877800i \(-0.340990\pi\)
−0.877800 + 0.479027i \(0.840990\pi\)
\(164\) 0 0
\(165\) 10.0000 70.0000i 0.0606061 0.424242i
\(166\) 0 0
\(167\) 103.000 103.000i 0.616766 0.616766i −0.327934 0.944701i \(-0.606352\pi\)
0.944701 + 0.327934i \(0.106352\pi\)
\(168\) 0 0
\(169\) 7.00000i 0.0414201i
\(170\) 0 0
\(171\) −56.0000 −0.327485
\(172\) 0 0
\(173\) 73.0000 + 73.0000i 0.421965 + 0.421965i 0.885880 0.463915i \(-0.153556\pi\)
−0.463915 + 0.885880i \(0.653556\pi\)
\(174\) 0 0
\(175\) 119.000 + 217.000i 0.680000 + 1.24000i
\(176\) 0 0
\(177\) −56.0000 + 56.0000i −0.316384 + 0.316384i
\(178\) 0 0
\(179\) 56.0000i 0.312849i 0.987690 + 0.156425i \(0.0499968\pi\)
−0.987690 + 0.156425i \(0.950003\pi\)
\(180\) 0 0
\(181\) −70.0000 −0.386740 −0.193370 0.981126i \(-0.561942\pi\)
−0.193370 + 0.981126i \(0.561942\pi\)
\(182\) 0 0
\(183\) −42.0000 42.0000i −0.229508 0.229508i
\(184\) 0 0
\(185\) −231.000 33.0000i −1.24865 0.178378i
\(186\) 0 0
\(187\) −10.0000 + 10.0000i −0.0534759 + 0.0534759i
\(188\) 0 0
\(189\) 224.000i 1.18519i
\(190\) 0 0
\(191\) 142.000 0.743455 0.371728 0.928342i \(-0.378765\pi\)
0.371728 + 0.928342i \(0.378765\pi\)
\(192\) 0 0
\(193\) −63.0000 63.0000i −0.326425 0.326425i 0.524800 0.851225i \(-0.324140\pi\)
−0.851225 + 0.524800i \(0.824140\pi\)
\(194\) 0 0
\(195\) −72.0000 + 54.0000i −0.369231 + 0.276923i
\(196\) 0 0
\(197\) −63.0000 + 63.0000i −0.319797 + 0.319797i −0.848689 0.528892i \(-0.822608\pi\)
0.528892 + 0.848689i \(0.322608\pi\)
\(198\) 0 0
\(199\) 336.000i 1.68844i 0.535995 + 0.844221i \(0.319937\pi\)
−0.535995 + 0.844221i \(0.680063\pi\)
\(200\) 0 0
\(201\) −14.0000 −0.0696517
\(202\) 0 0
\(203\) 56.0000 + 56.0000i 0.275862 + 0.275862i
\(204\) 0 0
\(205\) 42.0000 + 56.0000i 0.204878 + 0.273171i
\(206\) 0 0
\(207\) 161.000 161.000i 0.777778 0.777778i
\(208\) 0 0
\(209\) 80.0000i 0.382775i
\(210\) 0 0
\(211\) −314.000 −1.48815 −0.744076 0.668095i \(-0.767110\pi\)
−0.744076 + 0.668095i \(0.767110\pi\)
\(212\) 0 0
\(213\) 98.0000 + 98.0000i 0.460094 + 0.460094i
\(214\) 0 0
\(215\) 15.0000 105.000i 0.0697674 0.488372i
\(216\) 0 0
\(217\) 98.0000 98.0000i 0.451613 0.451613i
\(218\) 0 0
\(219\) 98.0000i 0.447489i
\(220\) 0 0
\(221\) 18.0000 0.0814480
\(222\) 0 0
\(223\) 135.000 + 135.000i 0.605381 + 0.605381i 0.941736 0.336354i \(-0.109194\pi\)
−0.336354 + 0.941736i \(0.609194\pi\)
\(224\) 0 0
\(225\) 168.000 + 49.0000i 0.746667 + 0.217778i
\(226\) 0 0
\(227\) −281.000 + 281.000i −1.23789 + 1.23789i −0.277022 + 0.960864i \(0.589347\pi\)
−0.960864 + 0.277022i \(0.910653\pi\)
\(228\) 0 0
\(229\) 168.000i 0.733624i −0.930295 0.366812i \(-0.880449\pi\)
0.930295 0.366812i \(-0.119551\pi\)
\(230\) 0 0
\(231\) 140.000 0.606061
\(232\) 0 0
\(233\) 273.000 + 273.000i 1.17167 + 1.17167i 0.981811 + 0.189863i \(0.0608045\pi\)
0.189863 + 0.981811i \(0.439196\pi\)
\(234\) 0 0
\(235\) −273.000 39.0000i −1.16170 0.165957i
\(236\) 0 0
\(237\) 96.0000 96.0000i 0.405063 0.405063i
\(238\) 0 0
\(239\) 288.000i 1.20502i −0.798111 0.602510i \(-0.794167\pi\)
0.798111 0.602510i \(-0.205833\pi\)
\(240\) 0 0
\(241\) −446.000 −1.85062 −0.925311 0.379209i \(-0.876196\pi\)
−0.925311 + 0.379209i \(0.876196\pi\)
\(242\) 0 0
\(243\) 175.000 + 175.000i 0.720165 + 0.720165i
\(244\) 0 0
\(245\) −196.000 + 147.000i −0.800000 + 0.600000i
\(246\) 0 0
\(247\) 72.0000 72.0000i 0.291498 0.291498i
\(248\) 0 0
\(249\) 126.000i 0.506024i
\(250\) 0 0
\(251\) 150.000 0.597610 0.298805 0.954314i \(-0.403412\pi\)
0.298805 + 0.954314i \(0.403412\pi\)
\(252\) 0 0
\(253\) −230.000 230.000i −0.909091 0.909091i
\(254\) 0 0
\(255\) 6.00000 + 8.00000i 0.0235294 + 0.0313725i
\(256\) 0 0
\(257\) 161.000 161.000i 0.626459 0.626459i −0.320716 0.947175i \(-0.603924\pi\)
0.947175 + 0.320716i \(0.103924\pi\)
\(258\) 0 0
\(259\) 462.000i 1.78378i
\(260\) 0 0
\(261\) 56.0000 0.214559
\(262\) 0 0
\(263\) 151.000 + 151.000i 0.574144 + 0.574144i 0.933284 0.359139i \(-0.116930\pi\)
−0.359139 + 0.933284i \(0.616930\pi\)
\(264\) 0 0
\(265\) −7.00000 + 49.0000i −0.0264151 + 0.184906i
\(266\) 0 0
\(267\) 112.000 112.000i 0.419476 0.419476i
\(268\) 0 0
\(269\) 376.000i 1.39777i −0.715234 0.698885i \(-0.753680\pi\)
0.715234 0.698885i \(-0.246320\pi\)
\(270\) 0 0
\(271\) −210.000 −0.774908 −0.387454 0.921889i \(-0.626645\pi\)
−0.387454 + 0.921889i \(0.626645\pi\)
\(272\) 0 0
\(273\) −126.000 126.000i −0.461538 0.461538i
\(274\) 0 0
\(275\) 70.0000 240.000i 0.254545 0.872727i
\(276\) 0 0
\(277\) 129.000 129.000i 0.465704 0.465704i −0.434816 0.900520i \(-0.643186\pi\)
0.900520 + 0.434816i \(0.143186\pi\)
\(278\) 0 0
\(279\) 98.0000i 0.351254i
\(280\) 0 0
\(281\) −174.000 −0.619217 −0.309609 0.950864i \(-0.600198\pi\)
−0.309609 + 0.950864i \(0.600198\pi\)
\(282\) 0 0
\(283\) −113.000 113.000i −0.399293 0.399293i 0.478690 0.877984i \(-0.341112\pi\)
−0.877984 + 0.478690i \(0.841112\pi\)
\(284\) 0 0
\(285\) 56.0000 + 8.00000i 0.196491 + 0.0280702i
\(286\) 0 0
\(287\) −98.0000 + 98.0000i −0.341463 + 0.341463i
\(288\) 0 0
\(289\) 287.000i 0.993080i
\(290\) 0 0
\(291\) −66.0000 −0.226804
\(292\) 0 0
\(293\) 345.000 + 345.000i 1.17747 + 1.17747i 0.980386 + 0.197089i \(0.0631487\pi\)
0.197089 + 0.980386i \(0.436851\pi\)
\(294\) 0 0
\(295\) −224.000 + 168.000i −0.759322 + 0.569492i
\(296\) 0 0
\(297\) 160.000 160.000i 0.538721 0.538721i
\(298\) 0 0
\(299\) 414.000i 1.38462i
\(300\) 0 0
\(301\) 210.000 0.697674
\(302\) 0 0
\(303\) −26.0000 26.0000i −0.0858086 0.0858086i
\(304\) 0 0
\(305\) −126.000 168.000i −0.413115 0.550820i
\(306\) 0 0
\(307\) 327.000 327.000i 1.06515 1.06515i 0.0674220 0.997725i \(-0.478523\pi\)
0.997725 0.0674220i \(-0.0214774\pi\)
\(308\) 0 0
\(309\) 146.000i 0.472492i
\(310\) 0 0
\(311\) −2.00000 −0.00643087 −0.00321543 0.999995i \(-0.501024\pi\)
−0.00321543 + 0.999995i \(0.501024\pi\)
\(312\) 0 0
\(313\) 81.0000 + 81.0000i 0.258786 + 0.258786i 0.824560 0.565774i \(-0.191423\pi\)
−0.565774 + 0.824560i \(0.691423\pi\)
\(314\) 0 0
\(315\) −49.0000 + 343.000i −0.155556 + 1.08889i
\(316\) 0 0
\(317\) −159.000 + 159.000i −0.501577 + 0.501577i −0.911928 0.410351i \(-0.865406\pi\)
0.410351 + 0.911928i \(0.365406\pi\)
\(318\) 0 0
\(319\) 80.0000i 0.250784i
\(320\) 0 0
\(321\) 242.000 0.753894
\(322\) 0 0
\(323\) −8.00000 8.00000i −0.0247678 0.0247678i
\(324\) 0 0
\(325\) −279.000 + 153.000i −0.858462 + 0.470769i
\(326\) 0 0
\(327\) 136.000 136.000i 0.415902 0.415902i
\(328\) 0 0
\(329\) 546.000i 1.65957i
\(330\) 0 0
\(331\) 182.000 0.549849 0.274924 0.961466i \(-0.411347\pi\)
0.274924 + 0.961466i \(0.411347\pi\)
\(332\) 0 0
\(333\) −231.000 231.000i −0.693694 0.693694i
\(334\) 0 0
\(335\) −49.0000 7.00000i −0.146269 0.0208955i
\(336\) 0 0
\(337\) −447.000 + 447.000i −1.32641 + 1.32641i −0.417930 + 0.908479i \(0.637244\pi\)
−0.908479 + 0.417930i \(0.862756\pi\)
\(338\) 0 0
\(339\) 254.000i 0.749263i
\(340\) 0 0
\(341\) −140.000 −0.410557
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −184.000 + 138.000i −0.533333 + 0.400000i
\(346\) 0 0
\(347\) −25.0000 + 25.0000i −0.0720461 + 0.0720461i −0.742212 0.670166i \(-0.766223\pi\)
0.670166 + 0.742212i \(0.266223\pi\)
\(348\) 0 0
\(349\) 200.000i 0.573066i 0.958070 + 0.286533i \(0.0925028\pi\)
−0.958070 + 0.286533i \(0.907497\pi\)
\(350\) 0 0
\(351\) −288.000 −0.820513
\(352\) 0 0
\(353\) 321.000 + 321.000i 0.909348 + 0.909348i 0.996220 0.0868711i \(-0.0276868\pi\)
−0.0868711 + 0.996220i \(0.527687\pi\)
\(354\) 0 0
\(355\) 294.000 + 392.000i 0.828169 + 1.10423i
\(356\) 0 0
\(357\) −14.0000 + 14.0000i −0.0392157 + 0.0392157i
\(358\) 0 0
\(359\) 112.000i 0.311978i −0.987759 0.155989i \(-0.950144\pi\)
0.987759 0.155989i \(-0.0498564\pi\)
\(360\) 0 0
\(361\) 297.000 0.822715
\(362\) 0 0
\(363\) 21.0000 + 21.0000i 0.0578512 + 0.0578512i
\(364\) 0 0
\(365\) 49.0000 343.000i 0.134247 0.939726i
\(366\) 0 0
\(367\) −377.000 + 377.000i −1.02725 + 1.02725i −0.0276297 + 0.999618i \(0.508796\pi\)
−0.999618 + 0.0276297i \(0.991204\pi\)
\(368\) 0 0
\(369\) 98.0000i 0.265583i
\(370\) 0 0
\(371\) −98.0000 −0.264151
\(372\) 0 0
\(373\) 217.000 + 217.000i 0.581769 + 0.581769i 0.935389 0.353620i \(-0.115049\pi\)
−0.353620 + 0.935389i \(0.615049\pi\)
\(374\) 0 0
\(375\) −161.000 73.0000i −0.429333 0.194667i
\(376\) 0 0
\(377\) −72.0000 + 72.0000i −0.190981 + 0.190981i
\(378\) 0 0
\(379\) 56.0000i 0.147757i −0.997267 0.0738786i \(-0.976462\pi\)
0.997267 0.0738786i \(-0.0235377\pi\)
\(380\) 0 0
\(381\) −14.0000 −0.0367454
\(382\) 0 0
\(383\) −57.0000 57.0000i −0.148825 0.148825i 0.628768 0.777593i \(-0.283560\pi\)
−0.777593 + 0.628768i \(0.783560\pi\)
\(384\) 0 0
\(385\) 490.000 + 70.0000i 1.27273 + 0.181818i
\(386\) 0 0
\(387\) 105.000 105.000i 0.271318 0.271318i
\(388\) 0 0
\(389\) 312.000i 0.802057i 0.916066 + 0.401028i \(0.131347\pi\)
−0.916066 + 0.401028i \(0.868653\pi\)
\(390\) 0 0
\(391\) 46.0000 0.117647
\(392\) 0 0
\(393\) −230.000 230.000i −0.585242 0.585242i
\(394\) 0 0
\(395\) 384.000 288.000i 0.972152 0.729114i
\(396\) 0 0
\(397\) 193.000 193.000i 0.486146 0.486146i −0.420942 0.907088i \(-0.638300\pi\)
0.907088 + 0.420942i \(0.138300\pi\)
\(398\) 0 0
\(399\) 112.000i 0.280702i
\(400\) 0 0
\(401\) −30.0000 −0.0748130 −0.0374065 0.999300i \(-0.511910\pi\)
−0.0374065 + 0.999300i \(0.511910\pi\)
\(402\) 0 0
\(403\) 126.000 + 126.000i 0.312655 + 0.312655i
\(404\) 0 0
\(405\) 93.0000 + 124.000i 0.229630 + 0.306173i
\(406\) 0 0
\(407\) −330.000 + 330.000i −0.810811 + 0.810811i
\(408\) 0 0
\(409\) 432.000i 1.05623i −0.849171 0.528117i \(-0.822898\pi\)
0.849171 0.528117i \(-0.177102\pi\)
\(410\) 0 0
\(411\) 126.000 0.306569
\(412\) 0 0
\(413\) −392.000 392.000i −0.949153 0.949153i
\(414\) 0 0
\(415\) 63.0000 441.000i 0.151807 1.06265i
\(416\) 0 0
\(417\) −88.0000 + 88.0000i −0.211031 + 0.211031i
\(418\) 0 0
\(419\) 168.000i 0.400955i −0.979698 0.200477i \(-0.935751\pi\)
0.979698 0.200477i \(-0.0642493\pi\)
\(420\) 0 0
\(421\) −454.000 −1.07838 −0.539192 0.842183i \(-0.681270\pi\)
−0.539192 + 0.842183i \(0.681270\pi\)
\(422\) 0 0
\(423\) −273.000 273.000i −0.645390 0.645390i
\(424\) 0 0
\(425\) 17.0000 + 31.0000i 0.0400000 + 0.0729412i
\(426\) 0 0
\(427\) 294.000 294.000i 0.688525 0.688525i
\(428\) 0 0
\(429\) 180.000i 0.419580i
\(430\) 0 0
\(431\) 494.000 1.14617 0.573086 0.819495i \(-0.305746\pi\)
0.573086 + 0.819495i \(0.305746\pi\)
\(432\) 0 0
\(433\) −511.000 511.000i −1.18014 1.18014i −0.979708 0.200431i \(-0.935766\pi\)
−0.200431 0.979708i \(-0.564234\pi\)
\(434\) 0 0
\(435\) −56.0000 8.00000i −0.128736 0.0183908i
\(436\) 0 0
\(437\) 184.000 184.000i 0.421053 0.421053i
\(438\) 0 0
\(439\) 176.000i 0.400911i 0.979703 + 0.200456i \(0.0642422\pi\)
−0.979703 + 0.200456i \(0.935758\pi\)
\(440\) 0 0
\(441\) −343.000 −0.777778
\(442\) 0 0
\(443\) −177.000 177.000i −0.399549 0.399549i 0.478525 0.878074i \(-0.341172\pi\)
−0.878074 + 0.478525i \(0.841172\pi\)
\(444\) 0 0
\(445\) 448.000 336.000i 1.00674 0.755056i
\(446\) 0 0
\(447\) −168.000 + 168.000i −0.375839 + 0.375839i
\(448\) 0 0
\(449\) 608.000i 1.35412i 0.735928 + 0.677060i \(0.236746\pi\)
−0.735928 + 0.677060i \(0.763254\pi\)
\(450\) 0 0
\(451\) 140.000 0.310421
\(452\) 0 0
\(453\) 130.000 + 130.000i 0.286976 + 0.286976i
\(454\) 0 0
\(455\) −378.000 504.000i −0.830769 1.10769i
\(456\) 0 0
\(457\) 609.000 609.000i 1.33260 1.33260i 0.429571 0.903033i \(-0.358665\pi\)
0.903033 0.429571i \(-0.141335\pi\)
\(458\) 0 0
\(459\) 32.0000i 0.0697168i
\(460\) 0 0
\(461\) 490.000 1.06291 0.531453 0.847088i \(-0.321646\pi\)
0.531453 + 0.847088i \(0.321646\pi\)
\(462\) 0 0
\(463\) 7.00000 + 7.00000i 0.0151188 + 0.0151188i 0.714626 0.699507i \(-0.246597\pi\)
−0.699507 + 0.714626i \(0.746597\pi\)
\(464\) 0 0
\(465\) −14.0000 + 98.0000i −0.0301075 + 0.210753i
\(466\) 0 0
\(467\) −25.0000 + 25.0000i −0.0535332 + 0.0535332i −0.733367 0.679833i \(-0.762052\pi\)
0.679833 + 0.733367i \(0.262052\pi\)
\(468\) 0 0
\(469\) 98.0000i 0.208955i
\(470\) 0 0
\(471\) 126.000 0.267516
\(472\) 0 0
\(473\) −150.000 150.000i −0.317125 0.317125i
\(474\) 0 0
\(475\) 192.000 + 56.0000i 0.404211 + 0.117895i
\(476\) 0 0
\(477\) −49.0000 + 49.0000i −0.102725 + 0.102725i
\(478\) 0 0
\(479\) 128.000i 0.267223i −0.991034 0.133612i \(-0.957343\pi\)
0.991034 0.133612i \(-0.0426575\pi\)
\(480\) 0 0
\(481\) 594.000 1.23493
\(482\) 0 0
\(483\) −322.000 322.000i −0.666667 0.666667i
\(484\) 0 0
\(485\) −231.000 33.0000i −0.476289 0.0680412i
\(486\) 0 0
\(487\) −249.000 + 249.000i −0.511294 + 0.511294i −0.914923 0.403629i \(-0.867749\pi\)
0.403629 + 0.914923i \(0.367749\pi\)
\(488\) 0 0
\(489\) 130.000i 0.265849i
\(490\) 0 0
\(491\) −650.000 −1.32383 −0.661914 0.749579i \(-0.730256\pi\)
−0.661914 + 0.749579i \(0.730256\pi\)
\(492\) 0 0
\(493\) 8.00000 + 8.00000i 0.0162272 + 0.0162272i
\(494\) 0 0
\(495\) 280.000 210.000i 0.565657 0.424242i
\(496\) 0 0
\(497\) −686.000 + 686.000i −1.38028 + 1.38028i
\(498\) 0 0
\(499\) 632.000i 1.26653i 0.773934 + 0.633267i \(0.218286\pi\)
−0.773934 + 0.633267i \(0.781714\pi\)
\(500\) 0 0
\(501\) −206.000 −0.411178
\(502\) 0 0
\(503\) 471.000 + 471.000i 0.936382 + 0.936382i 0.998094 0.0617123i \(-0.0196561\pi\)
−0.0617123 + 0.998094i \(0.519656\pi\)
\(504\) 0 0
\(505\) −78.0000 104.000i −0.154455 0.205941i
\(506\) 0 0
\(507\) −7.00000 + 7.00000i −0.0138067 + 0.0138067i
\(508\) 0 0
\(509\) 8.00000i 0.0157171i 0.999969 + 0.00785855i \(0.00250148\pi\)
−0.999969 + 0.00785855i \(0.997499\pi\)
\(510\) 0 0
\(511\) 686.000 1.34247
\(512\) 0 0
\(513\) 128.000 + 128.000i 0.249513 + 0.249513i
\(514\) 0 0
\(515\) −73.0000 + 511.000i −0.141748 + 0.992233i
\(516\) 0 0
\(517\) −390.000 + 390.000i −0.754352 + 0.754352i
\(518\) 0 0
\(519\) 146.000i 0.281310i
\(520\) 0 0
\(521\) −366.000 −0.702495 −0.351248 0.936283i \(-0.614242\pi\)
−0.351248 + 0.936283i \(0.614242\pi\)
\(522\) 0 0
\(523\) −273.000 273.000i −0.521989 0.521989i 0.396183 0.918172i \(-0.370335\pi\)
−0.918172 + 0.396183i \(0.870335\pi\)
\(524\) 0 0
\(525\) 98.0000 336.000i 0.186667 0.640000i
\(526\) 0 0
\(527\) 14.0000 14.0000i 0.0265655 0.0265655i
\(528\) 0 0
\(529\) 529.000i 1.00000i
\(530\) 0 0
\(531\) −392.000 −0.738230
\(532\) 0 0
\(533\) −126.000 126.000i −0.236398 0.236398i
\(534\) 0 0
\(535\) 847.000 + 121.000i 1.58318 + 0.226168i
\(536\) 0 0
\(537\) 56.0000 56.0000i 0.104283 0.104283i
\(538\) 0 0
\(539\) 490.000i 0.909091i
\(540\) 0 0
\(541\) 394.000 0.728281 0.364140 0.931344i \(-0.381363\pi\)
0.364140 + 0.931344i \(0.381363\pi\)
\(542\) 0 0
\(543\) 70.0000 + 70.0000i 0.128913 + 0.128913i
\(544\) 0 0
\(545\) 544.000 408.000i 0.998165 0.748624i
\(546\) 0 0
\(547\) 231.000 231.000i 0.422303 0.422303i −0.463693 0.885996i \(-0.653476\pi\)
0.885996 + 0.463693i \(0.153476\pi\)
\(548\) 0 0
\(549\) 294.000i 0.535519i
\(550\) 0 0
\(551\) 64.0000 0.116152
\(552\) 0 0
\(553\) 672.000 + 672.000i 1.21519 + 1.21519i
\(554\) 0 0
\(555\) 198.000 + 264.000i 0.356757 + 0.475676i
\(556\) 0 0
\(557\) −735.000 + 735.000i −1.31957 + 1.31957i −0.405453 + 0.914116i \(0.632886\pi\)
−0.914116 + 0.405453i \(0.867114\pi\)
\(558\) 0 0
\(559\) 270.000i 0.483005i
\(560\) 0 0
\(561\) 20.0000 0.0356506
\(562\) 0 0
\(563\) −609.000 609.000i −1.08171 1.08171i −0.996351 0.0853545i \(-0.972798\pi\)
−0.0853545 0.996351i \(-0.527202\pi\)
\(564\) 0 0
\(565\) −127.000 + 889.000i −0.224779 + 1.57345i
\(566\) 0 0
\(567\) −217.000 + 217.000i −0.382716 + 0.382716i
\(568\) 0 0
\(569\) 560.000i 0.984183i −0.870544 0.492091i \(-0.836233\pi\)
0.870544 0.492091i \(-0.163767\pi\)
\(570\) 0 0
\(571\) −938.000 −1.64273 −0.821366 0.570401i \(-0.806788\pi\)
−0.821366 + 0.570401i \(0.806788\pi\)
\(572\) 0 0
\(573\) −142.000 142.000i −0.247818 0.247818i
\(574\) 0 0
\(575\) −713.000 + 391.000i −1.24000 + 0.680000i
\(576\) 0 0
\(577\) 97.0000 97.0000i 0.168111 0.168111i −0.618038 0.786149i \(-0.712072\pi\)
0.786149 + 0.618038i \(0.212072\pi\)
\(578\) 0 0
\(579\) 126.000i 0.217617i
\(580\) 0 0
\(581\) 882.000 1.51807
\(582\) 0 0
\(583\) 70.0000 + 70.0000i 0.120069 + 0.120069i
\(584\) 0 0
\(585\) −441.000 63.0000i −0.753846 0.107692i
\(586\) 0 0
\(587\) 39.0000 39.0000i 0.0664395 0.0664395i −0.673106 0.739546i \(-0.735040\pi\)
0.739546 + 0.673106i \(0.235040\pi\)
\(588\) 0 0
\(589\) 112.000i 0.190153i
\(590\) 0 0
\(591\) 126.000 0.213198
\(592\) 0 0
\(593\) −479.000 479.000i −0.807757 0.807757i 0.176537 0.984294i \(-0.443511\pi\)
−0.984294 + 0.176537i \(0.943511\pi\)
\(594\) 0 0
\(595\) −56.0000 + 42.0000i −0.0941176 + 0.0705882i
\(596\) 0 0
\(597\) 336.000 336.000i 0.562814 0.562814i
\(598\) 0 0
\(599\) 1040.00i 1.73623i −0.496366 0.868114i \(-0.665332\pi\)
0.496366 0.868114i \(-0.334668\pi\)
\(600\) 0 0
\(601\) −430.000 −0.715474 −0.357737 0.933822i \(-0.616452\pi\)
−0.357737 + 0.933822i \(0.616452\pi\)
\(602\) 0 0
\(603\) −49.0000 49.0000i −0.0812604 0.0812604i
\(604\) 0 0
\(605\) 63.0000 + 84.0000i 0.104132 + 0.138843i
\(606\) 0 0
\(607\) 423.000 423.000i 0.696870 0.696870i −0.266864 0.963734i \(-0.585988\pi\)
0.963734 + 0.266864i \(0.0859875\pi\)
\(608\) 0 0
\(609\) 112.000i 0.183908i
\(610\) 0 0
\(611\) 702.000 1.14894
\(612\) 0 0
\(613\) 249.000 + 249.000i 0.406199 + 0.406199i 0.880411 0.474212i \(-0.157267\pi\)
−0.474212 + 0.880411i \(0.657267\pi\)
\(614\) 0 0
\(615\) 14.0000 98.0000i 0.0227642 0.159350i
\(616\) 0 0
\(617\) 321.000 321.000i 0.520259 0.520259i −0.397390 0.917650i \(-0.630084\pi\)
0.917650 + 0.397390i \(0.130084\pi\)
\(618\) 0 0
\(619\) 600.000i 0.969305i −0.874707 0.484653i \(-0.838946\pi\)
0.874707 0.484653i \(-0.161054\pi\)
\(620\) 0 0
\(621\) −736.000 −1.18519
\(622\) 0 0
\(623\) 784.000 + 784.000i 1.25843 + 1.25843i
\(624\) 0 0
\(625\) −527.000 336.000i −0.843200 0.537600i
\(626\) 0 0
\(627\) 80.0000 80.0000i 0.127592 0.127592i
\(628\) 0 0
\(629\) 66.0000i 0.104928i
\(630\) 0 0
\(631\) 638.000 1.01109 0.505547 0.862799i \(-0.331291\pi\)
0.505547 + 0.862799i \(0.331291\pi\)
\(632\) 0 0
\(633\) 314.000 + 314.000i 0.496051 + 0.496051i
\(634\) 0 0
\(635\) −49.0000 7.00000i −0.0771654 0.0110236i
\(636\) 0 0
\(637\) 441.000 441.000i 0.692308 0.692308i
\(638\) 0 0
\(639\) 686.000i 1.07355i
\(640\) 0 0
\(641\) 482.000 0.751950 0.375975 0.926630i \(-0.377308\pi\)
0.375975 + 0.926630i \(0.377308\pi\)
\(642\) 0 0
\(643\) −33.0000 33.0000i −0.0513219 0.0513219i 0.680980 0.732302i \(-0.261554\pi\)
−0.732302 + 0.680980i \(0.761554\pi\)
\(644\) 0 0
\(645\) −120.000 + 90.0000i −0.186047 + 0.139535i
\(646\) 0 0
\(647\) 7.00000 7.00000i 0.0108192 0.0108192i −0.701677 0.712496i \(-0.747565\pi\)
0.712496 + 0.701677i \(0.247565\pi\)
\(648\) 0 0
\(649\) 560.000i 0.862866i
\(650\) 0 0
\(651\) −196.000 −0.301075
\(652\) 0 0
\(653\) −471.000 471.000i −0.721286 0.721286i 0.247581 0.968867i \(-0.420364\pi\)
−0.968867 + 0.247581i \(0.920364\pi\)
\(654\) 0 0
\(655\) −690.000 920.000i −1.05344 1.40458i
\(656\) 0 0
\(657\) 343.000 343.000i 0.522070 0.522070i
\(658\) 0 0
\(659\) 328.000i 0.497724i −0.968539 0.248862i \(-0.919943\pi\)
0.968539 0.248862i \(-0.0800565\pi\)
\(660\) 0 0
\(661\) −742.000 −1.12254 −0.561271 0.827632i \(-0.689687\pi\)
−0.561271 + 0.827632i \(0.689687\pi\)
\(662\) 0 0
\(663\) −18.0000 18.0000i −0.0271493 0.0271493i
\(664\) 0 0
\(665\) −56.0000 + 392.000i −0.0842105 + 0.589474i
\(666\) 0 0
\(667\) −184.000 + 184.000i −0.275862 + 0.275862i
\(668\) 0 0
\(669\) 270.000i 0.403587i
\(670\) 0 0
\(671\) −420.000 −0.625931
\(672\) 0 0
\(673\) −287.000 287.000i −0.426449 0.426449i 0.460968 0.887417i \(-0.347502\pi\)
−0.887417 + 0.460968i \(0.847502\pi\)
\(674\) 0 0
\(675\) −272.000 496.000i −0.402963 0.734815i
\(676\) 0 0
\(677\) 577.000 577.000i 0.852290 0.852290i −0.138125 0.990415i \(-0.544108\pi\)
0.990415 + 0.138125i \(0.0441077\pi\)
\(678\) 0 0
\(679\) 462.000i 0.680412i
\(680\) 0 0
\(681\) 562.000 0.825257
\(682\) 0 0
\(683\) 399.000 + 399.000i 0.584187 + 0.584187i 0.936051 0.351864i \(-0.114452\pi\)
−0.351864 + 0.936051i \(0.614452\pi\)
\(684\) 0 0
\(685\) 441.000 + 63.0000i 0.643796 + 0.0919708i
\(686\) 0 0
\(687\) −168.000 + 168.000i −0.244541 + 0.244541i
\(688\) 0 0
\(689\) 126.000i 0.182874i
\(690\) 0 0
\(691\) −378.000 −0.547033 −0.273517 0.961867i \(-0.588187\pi\)
−0.273517 + 0.961867i \(0.588187\pi\)
\(692\) 0 0
\(693\) 490.000 + 490.000i 0.707071 + 0.707071i
\(694\) 0 0
\(695\) −352.000 + 264.000i −0.506475 + 0.379856i
\(696\) 0 0
\(697\) −14.0000 + 14.0000i −0.0200861 + 0.0200861i
\(698\) 0 0
\(699\) 546.000i 0.781116i
\(700\) 0 0
\(701\) −470.000 −0.670471 −0.335235 0.942134i \(-0.608816\pi\)
−0.335235 + 0.942134i \(0.608816\pi\)
\(702\) 0 0
\(703\) −264.000 264.000i −0.375533 0.375533i
\(704\) 0 0
\(705\) 234.000 + 312.000i 0.331915 + 0.442553i
\(706\) 0 0
\(707\) 182.000 182.000i 0.257426 0.257426i
\(708\) 0 0
\(709\) 1192.00i 1.68124i −0.541624 0.840621i \(-0.682190\pi\)
0.541624 0.840621i \(-0.317810\pi\)
\(710\) 0 0
\(711\) 672.000 0.945148
\(712\) 0 0
\(713\) 322.000 + 322.000i 0.451613 + 0.451613i
\(714\) 0 0
\(715\) −90.0000 + 630.000i −0.125874 + 0.881119i
\(716\) 0 0
\(717\) −288.000 + 288.000i −0.401674 + 0.401674i
\(718\) 0 0
\(719\) 608.000i 0.845619i −0.906219 0.422809i \(-0.861044\pi\)
0.906219 0.422809i \(-0.138956\pi\)
\(720\) 0 0
\(721\) −1022.00 −1.41748
\(722\) 0 0
\(723\) 446.000 + 446.000i 0.616874 + 0.616874i
\(724\) 0 0
\(725\) −192.000 56.0000i −0.264828 0.0772414i
\(726\) 0 0
\(727\) −441.000 + 441.000i −0.606602 + 0.606602i −0.942057 0.335454i \(-0.891110\pi\)
0.335454 + 0.942057i \(0.391110\pi\)
\(728\) 0 0
\(729\) 71.0000i 0.0973937i
\(730\) 0 0
\(731\) 30.0000 0.0410397
\(732\) 0 0
\(733\) 361.000 + 361.000i 0.492497 + 0.492497i 0.909092 0.416595i \(-0.136777\pi\)
−0.416595 + 0.909092i \(0.636777\pi\)
\(734\) 0 0
\(735\) 343.000 + 49.0000i 0.466667 + 0.0666667i
\(736\) 0 0
\(737\) −70.0000 + 70.0000i −0.0949796 + 0.0949796i
\(738\) 0 0
\(739\) 920.000i 1.24493i 0.782649 + 0.622463i \(0.213868\pi\)
−0.782649 + 0.622463i \(0.786132\pi\)
\(740\) 0 0
\(741\) −144.000 −0.194332
\(742\) 0 0
\(743\) 343.000 + 343.000i 0.461642 + 0.461642i 0.899193 0.437551i \(-0.144154\pi\)
−0.437551 + 0.899193i \(0.644154\pi\)
\(744\) 0 0
\(745\) −672.000 + 504.000i −0.902013 + 0.676510i
\(746\) 0 0
\(747\) 441.000 441.000i 0.590361 0.590361i
\(748\) 0 0
\(749\) 1694.00i 2.26168i
\(750\) 0 0
\(751\) −786.000 −1.04660 −0.523302 0.852147i \(-0.675300\pi\)
−0.523302 + 0.852147i \(0.675300\pi\)
\(752\) 0 0
\(753\) −150.000 150.000i −0.199203 0.199203i
\(754\) 0 0
\(755\) 390.000 + 520.000i 0.516556 + 0.688742i
\(756\) 0 0
\(757\) −63.0000 + 63.0000i −0.0832232 + 0.0832232i −0.747493 0.664270i \(-0.768743\pi\)
0.664270 + 0.747493i \(0.268743\pi\)
\(758\) 0 0
\(759\) 460.000i 0.606061i
\(760\) 0 0
\(761\) −398.000 −0.522996 −0.261498 0.965204i \(-0.584216\pi\)
−0.261498 + 0.965204i \(0.584216\pi\)
\(762\) 0 0
\(763\) 952.000 + 952.000i 1.24771 + 1.24771i
\(764\) 0 0
\(765\) −7.00000 + 49.0000i −0.00915033 + 0.0640523i
\(766\) 0 0
\(767\) 504.000 504.000i 0.657106 0.657106i
\(768\) 0 0
\(769\) 704.000i 0.915475i −0.889087 0.457737i \(-0.848660\pi\)
0.889087 0.457737i \(-0.151340\pi\)
\(770\) 0 0
\(771\) −322.000 −0.417639
\(772\) 0 0
\(773\) 825.000 + 825.000i 1.06727 + 1.06727i 0.997568 + 0.0697026i \(0.0222050\pi\)
0.0697026 + 0.997568i \(0.477795\pi\)
\(774\) 0 0
\(775\) −98.0000 + 336.000i −0.126452 + 0.433548i
\(776\) 0 0
\(777\) −462.000 + 462.000i −0.594595 + 0.594595i
\(778\) 0 0
\(779\) 112.000i 0.143774i
\(780\) 0 0
\(781\) 980.000 1.25480
\(782\) 0 0
\(783\) −128.000 128.000i −0.163474 0.163474i
\(784\) 0 0
\(785\) 441.000 + 63.0000i 0.561783 + 0.0802548i
\(786\) 0 0
\(787\) 71.0000 71.0000i 0.0902160 0.0902160i −0.660559 0.750775i \(-0.729680\pi\)
0.750775 + 0.660559i \(0.229680\pi\)
\(788\) 0 0
\(789\) 302.000i 0.382763i
\(790\) 0 0
\(791\) −1778.00 −2.24779
\(792\) 0 0
\(793\) 378.000 + 378.000i 0.476671 + 0.476671i
\(794\) 0 0
\(795\) 56.0000 42.0000i 0.0704403 0.0528302i
\(796\) 0 0
\(797\) 33.0000 33.0000i 0.0414053 0.0414053i −0.686101 0.727506i \(-0.740679\pi\)
0.727506 + 0.686101i \(0.240679\pi\)
\(798\) 0 0
\(799\) 78.0000i 0.0976220i
\(800\) 0 0
\(801\) 784.000 0.978777
\(802\) 0 0
\(803\) −490.000 490.000i −0.610212 0.610212i
\(804\) 0 0
\(805\) −966.000 1288.00i −1.20000 1.60000i
\(806\) 0 0
\(807\) −376.000 + 376.000i −0.465923 + 0.465923i
\(808\) 0 0
\(809\) 368.000i 0.454883i −0.973792 0.227441i \(-0.926964\pi\)
0.973792 0.227441i \(-0.0730360\pi\)
\(810\) 0 0
\(811\) 886.000 1.09248 0.546239 0.837629i \(-0.316059\pi\)
0.546239 + 0.837629i \(0.316059\pi\)
\(812\) 0 0
\(813\) 210.000 + 210.000i 0.258303 + 0.258303i
\(814\) 0 0
\(815\) −65.0000 + 455.000i −0.0797546 + 0.558282i
\(816\) 0 0
\(817\) 120.000 120.000i 0.146879 0.146879i
\(818\) 0 0
\(819\) 882.000i 1.07692i
\(820\) 0 0
\(821\) −614.000 −0.747868 −0.373934 0.927455i \(-0.621991\pi\)
−0.373934 + 0.927455i \(0.621991\pi\)
\(822\) 0 0
\(823\) −1001.00 1001.00i −1.21628 1.21628i −0.968924 0.247358i \(-0.920438\pi\)
−0.247358 0.968924i \(-0.579562\pi\)
\(824\) 0 0
\(825\) −310.000 + 170.000i −0.375758 + 0.206061i
\(826\) 0 0
\(827\) 615.000 615.000i 0.743652 0.743652i −0.229627 0.973279i \(-0.573751\pi\)
0.973279 + 0.229627i \(0.0737506\pi\)
\(828\) 0 0
\(829\) 616.000i 0.743064i 0.928420 + 0.371532i \(0.121167\pi\)
−0.928420 + 0.371532i \(0.878833\pi\)
\(830\) 0 0
\(831\) −258.000 −0.310469
\(832\) 0 0
\(833\) −49.0000 49.0000i −0.0588235 0.0588235i
\(834\) 0 0
\(835\) −721.000 103.000i −0.863473 0.123353i
\(836\) 0 0
\(837\) −224.000 + 224.000i −0.267622 + 0.267622i
\(838\) 0 0
\(839\) 1424.00i 1.69726i 0.528988 + 0.848629i \(0.322572\pi\)
−0.528988 + 0.848629i \(0.677428\pi\)
\(840\) 0 0
\(841\) 777.000 0.923900
\(842\) 0 0
\(843\) 174.000 + 174.000i 0.206406 + 0.206406i
\(844\) 0 0
\(845\) −28.0000 + 21.0000i −0.0331361 + 0.0248521i
\(846\) 0 0
\(847\) −147.000 + 147.000i −0.173554 + 0.173554i
\(848\) 0 0
\(849\) 226.000i 0.266196i
\(850\) 0 0
\(851\) 1518.00 1.78378
\(852\) 0 0
\(853\) −935.000 935.000i −1.09613 1.09613i −0.994859 0.101273i \(-0.967709\pi\)
−0.101273 0.994859i \(-0.532291\pi\)
\(854\) 0 0
\(855\) 168.000 + 224.000i 0.196491 + 0.261988i
\(856\) 0 0
\(857\) −63.0000 + 63.0000i −0.0735123 + 0.0735123i −0.742907 0.669395i \(-0.766554\pi\)
0.669395 + 0.742907i \(0.266554\pi\)
\(858\) 0 0
\(859\) 392.000i 0.456345i 0.973621 + 0.228172i \(0.0732749\pi\)
−0.973621 + 0.228172i \(0.926725\pi\)
\(860\) 0 0
\(861\) 196.000 0.227642
\(862\) 0 0
\(863\) −217.000 217.000i −0.251448 0.251448i 0.570116 0.821564i \(-0.306898\pi\)
−0.821564 + 0.570116i \(0.806898\pi\)
\(864\) 0 0
\(865\) 73.0000 511.000i 0.0843931 0.590751i
\(866\) 0 0
\(867\) 287.000 287.000i 0.331027 0.331027i
\(868\) 0 0
\(869\) 960.000i 1.10472i
\(870\) 0 0
\(871\) 126.000 0.144661
\(872\) 0 0
\(873\) −231.000 231.000i −0.264605 0.264605i
\(874\) 0 0
\(875\) 511.000 1127.00i 0.584000 1.28800i
\(876\) 0 0
\(877\) −831.000 + 831.000i −0.947548 + 0.947548i −0.998691 0.0511429i \(-0.983714\pi\)
0.0511429 + 0.998691i \(0.483714\pi\)
\(878\) 0 0
\(879\) 690.000i 0.784983i
\(880\) 0 0
\(881\) 322.000 0.365494 0.182747 0.983160i \(-0.441501\pi\)
0.182747 + 0.983160i \(0.441501\pi\)
\(882\) 0 0
\(883\) 287.000 + 287.000i 0.325028 + 0.325028i 0.850692 0.525664i \(-0.176183\pi\)
−0.525664 + 0.850692i \(0.676183\pi\)
\(884\) 0 0
\(885\) 392.000 + 56.0000i 0.442938 + 0.0632768i
\(886\) 0 0
\(887\) 903.000 903.000i 1.01804 1.01804i 0.0182040 0.999834i \(-0.494205\pi\)
0.999834 0.0182040i \(-0.00579485\pi\)
\(888\) 0 0
\(889\) 98.0000i 0.110236i
\(890\) 0 0
\(891\) 310.000 0.347924
\(892\) 0 0
\(893\) −312.000 312.000i −0.349384 0.349384i
\(894\) 0 0
\(895\) 224.000 168.000i 0.250279 0.187709i
\(896\) 0 0
\(897\) 414.000 414.000i 0.461538 0.461538i
\(898\) 0 0
\(899\) 112.000i 0.124583i
\(900\) 0 0
\(901\) −14.0000 −0.0155383
\(902\) 0 0
\(903\) −210.000 210.000i −0.232558 0.232558i
\(904\) 0 0
\(905\) 210.000 + 280.000i 0.232044 + 0.309392i
\(906\) 0 0
\(907\) −1081.00 + 1081.00i −1.19184 + 1.19184i −0.215291 + 0.976550i \(0.569070\pi\)
−0.976550 + 0.215291i \(0.930930\pi\)
\(908\) 0 0
\(909\) 182.000i 0.200220i
\(910\) 0 0
\(911\) 238.000 0.261251 0.130626 0.991432i \(-0.458301\pi\)
0.130626 + 0.991432i \(0.458301\pi\)
\(912\) 0 0
\(913\) −630.000 630.000i −0.690033 0.690033i
\(914\) 0 0
\(915\) −42.0000 + 294.000i −0.0459016 + 0.321311i
\(916\) 0 0
\(917\) 1610.00 1610.00i 1.75573 1.75573i
\(918\) 0 0
\(919\) 1552.00i 1.68879i −0.535719 0.844396i \(-0.679960\pi\)
0.535719 0.844396i \(-0.320040\pi\)
\(920\) 0 0
\(921\) −654.000 −0.710098
\(922\) 0 0
\(923\) −882.000 882.000i −0.955580 0.955580i
\(924\) 0 0
\(925\) 561.000 + 1023.00i 0.606486 + 1.10595i
\(926\) 0 0
\(927\) −511.000 + 511.000i −0.551241 + 0.551241i
\(928\) 0 0
\(929\) 224.000i 0.241119i 0.992706 + 0.120560i \(0.0384689\pi\)
−0.992706 + 0.120560i \(0.961531\pi\)
\(930\) 0 0
\(931\) −392.000 −0.421053
\(932\) 0 0
\(933\) 2.00000 + 2.00000i 0.00214362 + 0.00214362i
\(934\) 0 0
\(935\) 70.0000 + 10.0000i 0.0748663 + 0.0106952i
\(936\) 0 0
\(937\) −383.000 + 383.000i −0.408751 + 0.408751i −0.881303 0.472552i \(-0.843333\pi\)
0.472552 + 0.881303i \(0.343333\pi\)
\(938\) 0 0
\(939\) 162.000i 0.172524i
\(940\) 0 0
\(941\) 42.0000 0.0446334 0.0223167 0.999751i \(-0.492896\pi\)
0.0223167 + 0.999751i \(0.492896\pi\)
\(942\) 0 0
\(943\) −322.000 322.000i −0.341463 0.341463i
\(944\) 0 0
\(945\) 896.000 672.000i 0.948148 0.711111i
\(946\) 0 0
\(947\) −1337.00 + 1337.00i −1.41183 + 1.41183i −0.664849 + 0.746977i \(0.731504\pi\)
−0.746977 + 0.664849i \(0.768496\pi\)
\(948\) 0 0
\(949\) 882.000i 0.929399i
\(950\) 0 0
\(951\) 318.000 0.334385
\(952\) 0 0
\(953\) 273.000 + 273.000i 0.286464 + 0.286464i 0.835680 0.549216i \(-0.185074\pi\)
−0.549216 + 0.835680i \(0.685074\pi\)
\(954\) 0 0
\(955\) −426.000 568.000i −0.446073 0.594764i
\(956\) 0 0
\(957\) −80.0000 + 80.0000i −0.0835946 + 0.0835946i
\(958\) 0 0
\(959\) 882.000i 0.919708i
\(960\) 0 0
\(961\) −765.000 −0.796046
\(962\) 0 0
\(963\) 847.000 + 847.000i 0.879543 + 0.879543i
\(964\) 0 0
\(965\) −63.0000 + 441.000i −0.0652850 + 0.456995i
\(966\) 0 0
\(967\) 743.000 743.000i 0.768356 0.768356i −0.209461 0.977817i \(-0.567171\pi\)
0.977817 + 0.209461i \(0.0671710\pi\)
\(968\) 0 0
\(969\) 16.0000i 0.0165119i
\(970\) 0 0
\(971\) −266.000 −0.273944 −0.136972 0.990575i \(-0.543737\pi\)
−0.136972 + 0.990575i \(0.543737\pi\)
\(972\) 0 0
\(973\) −616.000 616.000i −0.633094 0.633094i
\(974\) 0 0
\(975\) 432.000 + 126.000i 0.443077 + 0.129231i
\(976\) 0 0
\(977\) 417.000 417.000i 0.426817 0.426817i −0.460726 0.887543i \(-0.652411\pi\)
0.887543 + 0.460726i \(0.152411\pi\)
\(978\) 0 0
\(979\) 1120.00i 1.14402i
\(980\) 0 0
\(981\) 952.000 0.970438
\(982\) 0 0
\(983\) 631.000 + 631.000i 0.641913 + 0.641913i 0.951025 0.309113i \(-0.100032\pi\)
−0.309113 + 0.951025i \(0.600032\pi\)
\(984\) 0 0
\(985\) 441.000 + 63.0000i 0.447716 + 0.0639594i
\(986\) 0 0
\(987\) −546.000 + 546.000i −0.553191 + 0.553191i
\(988\) 0 0
\(989\) 690.000i 0.697674i
\(990\) 0 0
\(991\) 14.0000 0.0141271 0.00706357 0.999975i \(-0.497752\pi\)
0.00706357 + 0.999975i \(0.497752\pi\)
\(992\) 0 0
\(993\) −182.000 182.000i −0.183283 0.183283i
\(994\) 0 0
\(995\) 1344.00 1008.00i 1.35075 1.01307i
\(996\) 0 0
\(997\) −671.000 + 671.000i −0.673019 + 0.673019i −0.958411 0.285392i \(-0.907876\pi\)
0.285392 + 0.958411i \(0.407876\pi\)
\(998\) 0 0
\(999\) 1056.00i 1.05706i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.3.p.a.33.1 2
3.2 odd 2 720.3.bh.e.433.1 2
4.3 odd 2 20.3.f.a.13.1 2
5.2 odd 4 inner 80.3.p.a.17.1 2
5.3 odd 4 400.3.p.d.257.1 2
5.4 even 2 400.3.p.d.193.1 2
8.3 odd 2 320.3.p.c.193.1 2
8.5 even 2 320.3.p.g.193.1 2
12.11 even 2 180.3.l.a.73.1 2
15.2 even 4 720.3.bh.e.577.1 2
20.3 even 4 100.3.f.a.57.1 2
20.7 even 4 20.3.f.a.17.1 yes 2
20.19 odd 2 100.3.f.a.93.1 2
28.27 even 2 980.3.l.a.393.1 2
40.27 even 4 320.3.p.c.257.1 2
40.37 odd 4 320.3.p.g.257.1 2
60.23 odd 4 900.3.l.a.757.1 2
60.47 odd 4 180.3.l.a.37.1 2
60.59 even 2 900.3.l.a.793.1 2
140.27 odd 4 980.3.l.a.197.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.3.f.a.13.1 2 4.3 odd 2
20.3.f.a.17.1 yes 2 20.7 even 4
80.3.p.a.17.1 2 5.2 odd 4 inner
80.3.p.a.33.1 2 1.1 even 1 trivial
100.3.f.a.57.1 2 20.3 even 4
100.3.f.a.93.1 2 20.19 odd 2
180.3.l.a.37.1 2 60.47 odd 4
180.3.l.a.73.1 2 12.11 even 2
320.3.p.c.193.1 2 8.3 odd 2
320.3.p.c.257.1 2 40.27 even 4
320.3.p.g.193.1 2 8.5 even 2
320.3.p.g.257.1 2 40.37 odd 4
400.3.p.d.193.1 2 5.4 even 2
400.3.p.d.257.1 2 5.3 odd 4
720.3.bh.e.433.1 2 3.2 odd 2
720.3.bh.e.577.1 2 15.2 even 4
900.3.l.a.757.1 2 60.23 odd 4
900.3.l.a.793.1 2 60.59 even 2
980.3.l.a.197.1 2 140.27 odd 4
980.3.l.a.393.1 2 28.27 even 2