Properties

Label 80.22.a.d.1.2
Level $80$
Weight $22$
Character 80.1
Self dual yes
Analytic conductor $223.582$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [80,22,Mod(1,80)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("80.1"); S:= CuspForms(chi, 22); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(80, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 22, names="a")
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,126692] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(223.581875430\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{157921}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 39480 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 5\cdot 7 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-198.196\) of defining polynomial
Character \(\chi\) \(=\) 80.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+174616. q^{3} -9.76562e6 q^{5} +9.60462e8 q^{7} +2.00304e10 q^{9} -8.54661e10 q^{11} +9.74302e11 q^{13} -1.70523e12 q^{15} -1.17045e13 q^{17} -1.41128e13 q^{19} +1.67712e14 q^{21} +2.65862e13 q^{23} +9.53674e13 q^{25} +1.67108e15 q^{27} +1.45075e15 q^{29} +7.63253e15 q^{31} -1.49237e16 q^{33} -9.37951e15 q^{35} +1.09912e16 q^{37} +1.70129e17 q^{39} +7.93639e16 q^{41} +8.36751e16 q^{43} -1.95609e17 q^{45} -3.57127e17 q^{47} +3.63941e17 q^{49} -2.04379e18 q^{51} -8.17016e17 q^{53} +8.34630e17 q^{55} -2.46432e18 q^{57} -8.21011e17 q^{59} +4.53683e18 q^{61} +1.92384e19 q^{63} -9.51466e18 q^{65} -8.02826e18 q^{67} +4.64238e18 q^{69} +5.25728e19 q^{71} +9.28698e18 q^{73} +1.66527e19 q^{75} -8.20869e19 q^{77} -1.08861e19 q^{79} +8.22724e19 q^{81} +4.79994e19 q^{83} +1.14302e20 q^{85} +2.53325e20 q^{87} +2.35270e20 q^{89} +9.35779e20 q^{91} +1.33276e21 q^{93} +1.37820e20 q^{95} +7.25967e20 q^{97} -1.71192e21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 126692 q^{3} - 19531250 q^{5} + 292598684 q^{7} + 11866737826 q^{9} + 41326831776 q^{11} + 1887051472228 q^{13} - 1237226562500 q^{15} - 3100413932364 q^{17} - 7175794652440 q^{19} + 199718603894264 q^{21}+ \cdots - 27\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 174616. 1.70730 0.853652 0.520844i \(-0.174383\pi\)
0.853652 + 0.520844i \(0.174383\pi\)
\(4\) 0 0
\(5\) −9.76562e6 −0.447214
\(6\) 0 0
\(7\) 9.60462e8 1.28514 0.642570 0.766227i \(-0.277868\pi\)
0.642570 + 0.766227i \(0.277868\pi\)
\(8\) 0 0
\(9\) 2.00304e10 1.91489
\(10\) 0 0
\(11\) −8.54661e10 −0.993507 −0.496753 0.867892i \(-0.665475\pi\)
−0.496753 + 0.867892i \(0.665475\pi\)
\(12\) 0 0
\(13\) 9.74302e11 1.96015 0.980073 0.198640i \(-0.0636523\pi\)
0.980073 + 0.198640i \(0.0636523\pi\)
\(14\) 0 0
\(15\) −1.70523e12 −0.763529
\(16\) 0 0
\(17\) −1.17045e13 −1.40812 −0.704058 0.710143i \(-0.748630\pi\)
−0.704058 + 0.710143i \(0.748630\pi\)
\(18\) 0 0
\(19\) −1.41128e13 −0.528081 −0.264041 0.964512i \(-0.585055\pi\)
−0.264041 + 0.964512i \(0.585055\pi\)
\(20\) 0 0
\(21\) 1.67712e14 2.19413
\(22\) 0 0
\(23\) 2.65862e13 0.133818 0.0669090 0.997759i \(-0.478686\pi\)
0.0669090 + 0.997759i \(0.478686\pi\)
\(24\) 0 0
\(25\) 9.53674e13 0.200000
\(26\) 0 0
\(27\) 1.67108e15 1.56199
\(28\) 0 0
\(29\) 1.45075e15 0.640346 0.320173 0.947359i \(-0.396259\pi\)
0.320173 + 0.947359i \(0.396259\pi\)
\(30\) 0 0
\(31\) 7.63253e15 1.67252 0.836259 0.548335i \(-0.184738\pi\)
0.836259 + 0.548335i \(0.184738\pi\)
\(32\) 0 0
\(33\) −1.49237e16 −1.69622
\(34\) 0 0
\(35\) −9.37951e15 −0.574732
\(36\) 0 0
\(37\) 1.09912e16 0.375773 0.187886 0.982191i \(-0.439836\pi\)
0.187886 + 0.982191i \(0.439836\pi\)
\(38\) 0 0
\(39\) 1.70129e17 3.34656
\(40\) 0 0
\(41\) 7.93639e16 0.923406 0.461703 0.887035i \(-0.347239\pi\)
0.461703 + 0.887035i \(0.347239\pi\)
\(42\) 0 0
\(43\) 8.36751e16 0.590442 0.295221 0.955429i \(-0.404607\pi\)
0.295221 + 0.955429i \(0.404607\pi\)
\(44\) 0 0
\(45\) −1.95609e17 −0.856363
\(46\) 0 0
\(47\) −3.57127e17 −0.990365 −0.495183 0.868789i \(-0.664899\pi\)
−0.495183 + 0.868789i \(0.664899\pi\)
\(48\) 0 0
\(49\) 3.63941e17 0.651586
\(50\) 0 0
\(51\) −2.04379e18 −2.40408
\(52\) 0 0
\(53\) −8.17016e17 −0.641702 −0.320851 0.947130i \(-0.603969\pi\)
−0.320851 + 0.947130i \(0.603969\pi\)
\(54\) 0 0
\(55\) 8.34630e17 0.444310
\(56\) 0 0
\(57\) −2.46432e18 −0.901595
\(58\) 0 0
\(59\) −8.21011e17 −0.209124 −0.104562 0.994518i \(-0.533344\pi\)
−0.104562 + 0.994518i \(0.533344\pi\)
\(60\) 0 0
\(61\) 4.53683e18 0.814310 0.407155 0.913359i \(-0.366521\pi\)
0.407155 + 0.913359i \(0.366521\pi\)
\(62\) 0 0
\(63\) 1.92384e19 2.46090
\(64\) 0 0
\(65\) −9.51466e18 −0.876604
\(66\) 0 0
\(67\) −8.02826e18 −0.538066 −0.269033 0.963131i \(-0.586704\pi\)
−0.269033 + 0.963131i \(0.586704\pi\)
\(68\) 0 0
\(69\) 4.64238e18 0.228468
\(70\) 0 0
\(71\) 5.25728e19 1.91668 0.958338 0.285638i \(-0.0922056\pi\)
0.958338 + 0.285638i \(0.0922056\pi\)
\(72\) 0 0
\(73\) 9.28698e18 0.252921 0.126460 0.991972i \(-0.459638\pi\)
0.126460 + 0.991972i \(0.459638\pi\)
\(74\) 0 0
\(75\) 1.66527e19 0.341461
\(76\) 0 0
\(77\) −8.20869e19 −1.27680
\(78\) 0 0
\(79\) −1.08861e19 −0.129356 −0.0646781 0.997906i \(-0.520602\pi\)
−0.0646781 + 0.997906i \(0.520602\pi\)
\(80\) 0 0
\(81\) 8.22724e19 0.751902
\(82\) 0 0
\(83\) 4.79994e19 0.339560 0.169780 0.985482i \(-0.445694\pi\)
0.169780 + 0.985482i \(0.445694\pi\)
\(84\) 0 0
\(85\) 1.14302e20 0.629728
\(86\) 0 0
\(87\) 2.53325e20 1.09327
\(88\) 0 0
\(89\) 2.35270e20 0.799783 0.399891 0.916563i \(-0.369048\pi\)
0.399891 + 0.916563i \(0.369048\pi\)
\(90\) 0 0
\(91\) 9.35779e20 2.51906
\(92\) 0 0
\(93\) 1.33276e21 2.85549
\(94\) 0 0
\(95\) 1.37820e20 0.236165
\(96\) 0 0
\(97\) 7.25967e20 0.999571 0.499786 0.866149i \(-0.333412\pi\)
0.499786 + 0.866149i \(0.333412\pi\)
\(98\) 0 0
\(99\) −1.71192e21 −1.90245
\(100\) 0 0
\(101\) 3.23940e20 0.291803 0.145902 0.989299i \(-0.453392\pi\)
0.145902 + 0.989299i \(0.453392\pi\)
\(102\) 0 0
\(103\) −5.76074e20 −0.422364 −0.211182 0.977447i \(-0.567731\pi\)
−0.211182 + 0.977447i \(0.567731\pi\)
\(104\) 0 0
\(105\) −1.63781e21 −0.981243
\(106\) 0 0
\(107\) 3.09648e21 1.52174 0.760868 0.648907i \(-0.224774\pi\)
0.760868 + 0.648907i \(0.224774\pi\)
\(108\) 0 0
\(109\) −2.84500e21 −1.15108 −0.575539 0.817775i \(-0.695208\pi\)
−0.575539 + 0.817775i \(0.695208\pi\)
\(110\) 0 0
\(111\) 1.91923e21 0.641558
\(112\) 0 0
\(113\) −5.61097e21 −1.55494 −0.777471 0.628919i \(-0.783498\pi\)
−0.777471 + 0.628919i \(0.783498\pi\)
\(114\) 0 0
\(115\) −2.59631e20 −0.0598452
\(116\) 0 0
\(117\) 1.95156e22 3.75345
\(118\) 0 0
\(119\) −1.12417e22 −1.80963
\(120\) 0 0
\(121\) −9.57949e19 −0.0129448
\(122\) 0 0
\(123\) 1.38582e22 1.57653
\(124\) 0 0
\(125\) −9.31323e20 −0.0894427
\(126\) 0 0
\(127\) −1.60366e22 −1.30368 −0.651842 0.758355i \(-0.726003\pi\)
−0.651842 + 0.758355i \(0.726003\pi\)
\(128\) 0 0
\(129\) 1.46110e22 1.00806
\(130\) 0 0
\(131\) 1.39854e22 0.820969 0.410485 0.911868i \(-0.365360\pi\)
0.410485 + 0.911868i \(0.365360\pi\)
\(132\) 0 0
\(133\) −1.35548e22 −0.678659
\(134\) 0 0
\(135\) −1.63191e22 −0.698542
\(136\) 0 0
\(137\) −3.49305e22 −1.28127 −0.640633 0.767847i \(-0.721328\pi\)
−0.640633 + 0.767847i \(0.721328\pi\)
\(138\) 0 0
\(139\) 1.16733e22 0.367737 0.183868 0.982951i \(-0.441138\pi\)
0.183868 + 0.982951i \(0.441138\pi\)
\(140\) 0 0
\(141\) −6.23601e22 −1.69085
\(142\) 0 0
\(143\) −8.32698e22 −1.94742
\(144\) 0 0
\(145\) −1.41675e22 −0.286371
\(146\) 0 0
\(147\) 6.35499e22 1.11246
\(148\) 0 0
\(149\) −2.99897e22 −0.455530 −0.227765 0.973716i \(-0.573142\pi\)
−0.227765 + 0.973716i \(0.573142\pi\)
\(150\) 0 0
\(151\) 8.80845e22 1.16317 0.581583 0.813487i \(-0.302434\pi\)
0.581583 + 0.813487i \(0.302434\pi\)
\(152\) 0 0
\(153\) −2.34445e23 −2.69638
\(154\) 0 0
\(155\) −7.45364e22 −0.747972
\(156\) 0 0
\(157\) 1.76504e23 1.54813 0.774067 0.633104i \(-0.218219\pi\)
0.774067 + 0.633104i \(0.218219\pi\)
\(158\) 0 0
\(159\) −1.42664e23 −1.09558
\(160\) 0 0
\(161\) 2.55351e22 0.171975
\(162\) 0 0
\(163\) −9.36633e22 −0.554115 −0.277057 0.960853i \(-0.589359\pi\)
−0.277057 + 0.960853i \(0.589359\pi\)
\(164\) 0 0
\(165\) 1.45740e23 0.758571
\(166\) 0 0
\(167\) 2.77263e23 1.27166 0.635828 0.771831i \(-0.280659\pi\)
0.635828 + 0.771831i \(0.280659\pi\)
\(168\) 0 0
\(169\) 7.02199e23 2.84217
\(170\) 0 0
\(171\) −2.82685e23 −1.01122
\(172\) 0 0
\(173\) −3.84494e23 −1.21732 −0.608661 0.793431i \(-0.708293\pi\)
−0.608661 + 0.793431i \(0.708293\pi\)
\(174\) 0 0
\(175\) 9.15968e22 0.257028
\(176\) 0 0
\(177\) −1.43362e23 −0.357037
\(178\) 0 0
\(179\) −4.54367e22 −0.100566 −0.0502828 0.998735i \(-0.516012\pi\)
−0.0502828 + 0.998735i \(0.516012\pi\)
\(180\) 0 0
\(181\) 8.61960e23 1.69770 0.848852 0.528630i \(-0.177294\pi\)
0.848852 + 0.528630i \(0.177294\pi\)
\(182\) 0 0
\(183\) 7.92204e23 1.39027
\(184\) 0 0
\(185\) −1.07336e23 −0.168051
\(186\) 0 0
\(187\) 1.00034e24 1.39897
\(188\) 0 0
\(189\) 1.60501e24 2.00737
\(190\) 0 0
\(191\) 2.31575e23 0.259323 0.129661 0.991558i \(-0.458611\pi\)
0.129661 + 0.991558i \(0.458611\pi\)
\(192\) 0 0
\(193\) −1.13487e24 −1.13919 −0.569595 0.821926i \(-0.692900\pi\)
−0.569595 + 0.821926i \(0.692900\pi\)
\(194\) 0 0
\(195\) −1.66141e24 −1.49663
\(196\) 0 0
\(197\) −6.29771e23 −0.509668 −0.254834 0.966985i \(-0.582021\pi\)
−0.254834 + 0.966985i \(0.582021\pi\)
\(198\) 0 0
\(199\) 7.13426e23 0.519268 0.259634 0.965707i \(-0.416398\pi\)
0.259634 + 0.965707i \(0.416398\pi\)
\(200\) 0 0
\(201\) −1.40186e24 −0.918642
\(202\) 0 0
\(203\) 1.39339e24 0.822935
\(204\) 0 0
\(205\) −7.75039e23 −0.412960
\(206\) 0 0
\(207\) 5.32532e23 0.256246
\(208\) 0 0
\(209\) 1.20617e24 0.524652
\(210\) 0 0
\(211\) 2.57567e24 1.01374 0.506868 0.862024i \(-0.330803\pi\)
0.506868 + 0.862024i \(0.330803\pi\)
\(212\) 0 0
\(213\) 9.18005e24 3.27235
\(214\) 0 0
\(215\) −8.17140e23 −0.264054
\(216\) 0 0
\(217\) 7.33075e24 2.14942
\(218\) 0 0
\(219\) 1.62165e24 0.431812
\(220\) 0 0
\(221\) −1.14037e25 −2.76011
\(222\) 0 0
\(223\) 7.24650e24 1.59561 0.797806 0.602914i \(-0.205994\pi\)
0.797806 + 0.602914i \(0.205994\pi\)
\(224\) 0 0
\(225\) 1.91025e24 0.382977
\(226\) 0 0
\(227\) 1.55126e24 0.283409 0.141704 0.989909i \(-0.454742\pi\)
0.141704 + 0.989909i \(0.454742\pi\)
\(228\) 0 0
\(229\) −9.95437e24 −1.65860 −0.829299 0.558805i \(-0.811260\pi\)
−0.829299 + 0.558805i \(0.811260\pi\)
\(230\) 0 0
\(231\) −1.43337e25 −2.17988
\(232\) 0 0
\(233\) −4.62738e23 −0.0642833 −0.0321417 0.999483i \(-0.510233\pi\)
−0.0321417 + 0.999483i \(0.510233\pi\)
\(234\) 0 0
\(235\) 3.48757e24 0.442905
\(236\) 0 0
\(237\) −1.90088e24 −0.220850
\(238\) 0 0
\(239\) −1.06208e25 −1.12975 −0.564873 0.825178i \(-0.691075\pi\)
−0.564873 + 0.825178i \(0.691075\pi\)
\(240\) 0 0
\(241\) 1.67701e24 0.163439 0.0817195 0.996655i \(-0.473959\pi\)
0.0817195 + 0.996655i \(0.473959\pi\)
\(242\) 0 0
\(243\) −3.11401e24 −0.278262
\(244\) 0 0
\(245\) −3.55411e24 −0.291398
\(246\) 0 0
\(247\) −1.37501e25 −1.03512
\(248\) 0 0
\(249\) 8.38147e24 0.579732
\(250\) 0 0
\(251\) 2.15807e25 1.37243 0.686216 0.727398i \(-0.259270\pi\)
0.686216 + 0.727398i \(0.259270\pi\)
\(252\) 0 0
\(253\) −2.27222e24 −0.132949
\(254\) 0 0
\(255\) 1.99589e25 1.07514
\(256\) 0 0
\(257\) 7.72467e24 0.383338 0.191669 0.981460i \(-0.438610\pi\)
0.191669 + 0.981460i \(0.438610\pi\)
\(258\) 0 0
\(259\) 1.05566e25 0.482921
\(260\) 0 0
\(261\) 2.90592e25 1.22619
\(262\) 0 0
\(263\) −1.35616e25 −0.528174 −0.264087 0.964499i \(-0.585071\pi\)
−0.264087 + 0.964499i \(0.585071\pi\)
\(264\) 0 0
\(265\) 7.97867e24 0.286978
\(266\) 0 0
\(267\) 4.10819e25 1.36547
\(268\) 0 0
\(269\) −2.23157e25 −0.685822 −0.342911 0.939368i \(-0.611413\pi\)
−0.342911 + 0.939368i \(0.611413\pi\)
\(270\) 0 0
\(271\) −8.79105e24 −0.249956 −0.124978 0.992160i \(-0.539886\pi\)
−0.124978 + 0.992160i \(0.539886\pi\)
\(272\) 0 0
\(273\) 1.63402e26 4.30080
\(274\) 0 0
\(275\) −8.15068e24 −0.198701
\(276\) 0 0
\(277\) 3.23947e25 0.731874 0.365937 0.930640i \(-0.380749\pi\)
0.365937 + 0.930640i \(0.380749\pi\)
\(278\) 0 0
\(279\) 1.52882e26 3.20268
\(280\) 0 0
\(281\) 1.62934e25 0.316662 0.158331 0.987386i \(-0.449389\pi\)
0.158331 + 0.987386i \(0.449389\pi\)
\(282\) 0 0
\(283\) −7.24900e25 −1.30774 −0.653869 0.756608i \(-0.726855\pi\)
−0.653869 + 0.756608i \(0.726855\pi\)
\(284\) 0 0
\(285\) 2.40656e25 0.403206
\(286\) 0 0
\(287\) 7.62260e25 1.18671
\(288\) 0 0
\(289\) 6.79028e25 0.982790
\(290\) 0 0
\(291\) 1.26765e26 1.70657
\(292\) 0 0
\(293\) −7.90881e25 −0.990835 −0.495418 0.868655i \(-0.664985\pi\)
−0.495418 + 0.868655i \(0.664985\pi\)
\(294\) 0 0
\(295\) 8.01769e24 0.0935229
\(296\) 0 0
\(297\) −1.42821e26 −1.55185
\(298\) 0 0
\(299\) 2.59030e25 0.262303
\(300\) 0 0
\(301\) 8.03667e25 0.758801
\(302\) 0 0
\(303\) 5.65651e25 0.498197
\(304\) 0 0
\(305\) −4.43050e25 −0.364170
\(306\) 0 0
\(307\) 1.19014e26 0.913363 0.456682 0.889630i \(-0.349038\pi\)
0.456682 + 0.889630i \(0.349038\pi\)
\(308\) 0 0
\(309\) −1.00592e26 −0.721104
\(310\) 0 0
\(311\) 1.66399e26 1.11472 0.557360 0.830271i \(-0.311814\pi\)
0.557360 + 0.830271i \(0.311814\pi\)
\(312\) 0 0
\(313\) 2.24533e25 0.140626 0.0703128 0.997525i \(-0.477600\pi\)
0.0703128 + 0.997525i \(0.477600\pi\)
\(314\) 0 0
\(315\) −1.87875e26 −1.10055
\(316\) 0 0
\(317\) 1.10755e26 0.607076 0.303538 0.952819i \(-0.401832\pi\)
0.303538 + 0.952819i \(0.401832\pi\)
\(318\) 0 0
\(319\) −1.23990e26 −0.636188
\(320\) 0 0
\(321\) 5.40695e26 2.59806
\(322\) 0 0
\(323\) 1.65183e26 0.743599
\(324\) 0 0
\(325\) 9.29166e25 0.392029
\(326\) 0 0
\(327\) −4.96783e26 −1.96524
\(328\) 0 0
\(329\) −3.43007e26 −1.27276
\(330\) 0 0
\(331\) 2.18220e26 0.759803 0.379901 0.925027i \(-0.375958\pi\)
0.379901 + 0.925027i \(0.375958\pi\)
\(332\) 0 0
\(333\) 2.20157e26 0.719562
\(334\) 0 0
\(335\) 7.84009e25 0.240631
\(336\) 0 0
\(337\) 5.33804e26 1.53910 0.769551 0.638585i \(-0.220480\pi\)
0.769551 + 0.638585i \(0.220480\pi\)
\(338\) 0 0
\(339\) −9.79765e26 −2.65476
\(340\) 0 0
\(341\) −6.52322e26 −1.66166
\(342\) 0 0
\(343\) −1.86911e26 −0.447761
\(344\) 0 0
\(345\) −4.53357e25 −0.102174
\(346\) 0 0
\(347\) 4.09971e26 0.869548 0.434774 0.900540i \(-0.356828\pi\)
0.434774 + 0.900540i \(0.356828\pi\)
\(348\) 0 0
\(349\) 2.06527e26 0.412392 0.206196 0.978511i \(-0.433892\pi\)
0.206196 + 0.978511i \(0.433892\pi\)
\(350\) 0 0
\(351\) 1.62814e27 3.06172
\(352\) 0 0
\(353\) 2.63582e26 0.466961 0.233481 0.972361i \(-0.424988\pi\)
0.233481 + 0.972361i \(0.424988\pi\)
\(354\) 0 0
\(355\) −5.13406e26 −0.857163
\(356\) 0 0
\(357\) −1.96298e27 −3.08958
\(358\) 0 0
\(359\) −2.72697e26 −0.404751 −0.202376 0.979308i \(-0.564866\pi\)
−0.202376 + 0.979308i \(0.564866\pi\)
\(360\) 0 0
\(361\) −5.15038e26 −0.721130
\(362\) 0 0
\(363\) −1.67273e25 −0.0221007
\(364\) 0 0
\(365\) −9.06931e25 −0.113110
\(366\) 0 0
\(367\) 1.67539e26 0.197297 0.0986487 0.995122i \(-0.468548\pi\)
0.0986487 + 0.995122i \(0.468548\pi\)
\(368\) 0 0
\(369\) 1.58969e27 1.76822
\(370\) 0 0
\(371\) −7.84712e26 −0.824678
\(372\) 0 0
\(373\) 9.92406e26 0.985704 0.492852 0.870113i \(-0.335954\pi\)
0.492852 + 0.870113i \(0.335954\pi\)
\(374\) 0 0
\(375\) −1.62624e26 −0.152706
\(376\) 0 0
\(377\) 1.41347e27 1.25517
\(378\) 0 0
\(379\) −1.41427e25 −0.0118801 −0.00594007 0.999982i \(-0.501891\pi\)
−0.00594007 + 0.999982i \(0.501891\pi\)
\(380\) 0 0
\(381\) −2.80024e27 −2.22578
\(382\) 0 0
\(383\) −2.51013e26 −0.188847 −0.0944234 0.995532i \(-0.530101\pi\)
−0.0944234 + 0.995532i \(0.530101\pi\)
\(384\) 0 0
\(385\) 8.01630e26 0.571000
\(386\) 0 0
\(387\) 1.67604e27 1.13063
\(388\) 0 0
\(389\) −2.50259e27 −1.59926 −0.799629 0.600495i \(-0.794970\pi\)
−0.799629 + 0.600495i \(0.794970\pi\)
\(390\) 0 0
\(391\) −3.11178e26 −0.188431
\(392\) 0 0
\(393\) 2.44208e27 1.40164
\(394\) 0 0
\(395\) 1.06309e26 0.0578498
\(396\) 0 0
\(397\) 3.29042e26 0.169805 0.0849027 0.996389i \(-0.472942\pi\)
0.0849027 + 0.996389i \(0.472942\pi\)
\(398\) 0 0
\(399\) −2.36689e27 −1.15868
\(400\) 0 0
\(401\) 8.45309e26 0.392645 0.196322 0.980539i \(-0.437100\pi\)
0.196322 + 0.980539i \(0.437100\pi\)
\(402\) 0 0
\(403\) 7.43638e27 3.27838
\(404\) 0 0
\(405\) −8.03441e26 −0.336261
\(406\) 0 0
\(407\) −9.39371e26 −0.373333
\(408\) 0 0
\(409\) −1.58724e27 −0.599167 −0.299583 0.954070i \(-0.596848\pi\)
−0.299583 + 0.954070i \(0.596848\pi\)
\(410\) 0 0
\(411\) −6.09943e27 −2.18751
\(412\) 0 0
\(413\) −7.88550e26 −0.268753
\(414\) 0 0
\(415\) −4.68745e26 −0.151856
\(416\) 0 0
\(417\) 2.03834e27 0.627839
\(418\) 0 0
\(419\) 1.46560e25 0.00429308 0.00214654 0.999998i \(-0.499317\pi\)
0.00214654 + 0.999998i \(0.499317\pi\)
\(420\) 0 0
\(421\) −2.07639e27 −0.578559 −0.289280 0.957245i \(-0.593416\pi\)
−0.289280 + 0.957245i \(0.593416\pi\)
\(422\) 0 0
\(423\) −7.15340e27 −1.89644
\(424\) 0 0
\(425\) −1.11623e27 −0.281623
\(426\) 0 0
\(427\) 4.35746e27 1.04650
\(428\) 0 0
\(429\) −1.45402e28 −3.32483
\(430\) 0 0
\(431\) 2.88896e27 0.629115 0.314558 0.949238i \(-0.398144\pi\)
0.314558 + 0.949238i \(0.398144\pi\)
\(432\) 0 0
\(433\) 6.58569e27 1.36609 0.683044 0.730377i \(-0.260656\pi\)
0.683044 + 0.730377i \(0.260656\pi\)
\(434\) 0 0
\(435\) −2.47387e27 −0.488923
\(436\) 0 0
\(437\) −3.75206e26 −0.0706668
\(438\) 0 0
\(439\) 9.33293e26 0.167548 0.0837742 0.996485i \(-0.473303\pi\)
0.0837742 + 0.996485i \(0.473303\pi\)
\(440\) 0 0
\(441\) 7.28987e27 1.24771
\(442\) 0 0
\(443\) −9.69019e27 −1.58159 −0.790793 0.612083i \(-0.790332\pi\)
−0.790793 + 0.612083i \(0.790332\pi\)
\(444\) 0 0
\(445\) −2.29756e27 −0.357674
\(446\) 0 0
\(447\) −5.23669e27 −0.777728
\(448\) 0 0
\(449\) −9.90883e27 −1.40422 −0.702111 0.712067i \(-0.747759\pi\)
−0.702111 + 0.712067i \(0.747759\pi\)
\(450\) 0 0
\(451\) −6.78293e27 −0.917410
\(452\) 0 0
\(453\) 1.53810e28 1.98588
\(454\) 0 0
\(455\) −9.13847e27 −1.12656
\(456\) 0 0
\(457\) −1.41062e28 −1.66069 −0.830346 0.557248i \(-0.811857\pi\)
−0.830346 + 0.557248i \(0.811857\pi\)
\(458\) 0 0
\(459\) −1.95591e28 −2.19946
\(460\) 0 0
\(461\) 1.40343e26 0.0150776 0.00753880 0.999972i \(-0.497600\pi\)
0.00753880 + 0.999972i \(0.497600\pi\)
\(462\) 0 0
\(463\) 1.54202e28 1.58303 0.791514 0.611150i \(-0.209293\pi\)
0.791514 + 0.611150i \(0.209293\pi\)
\(464\) 0 0
\(465\) −1.30152e28 −1.27702
\(466\) 0 0
\(467\) −1.42166e28 −1.33343 −0.666713 0.745314i \(-0.732299\pi\)
−0.666713 + 0.745314i \(0.732299\pi\)
\(468\) 0 0
\(469\) −7.71083e27 −0.691491
\(470\) 0 0
\(471\) 3.08204e28 2.64313
\(472\) 0 0
\(473\) −7.15138e27 −0.586608
\(474\) 0 0
\(475\) −1.34590e27 −0.105616
\(476\) 0 0
\(477\) −1.63651e28 −1.22879
\(478\) 0 0
\(479\) −1.82659e28 −1.31256 −0.656280 0.754518i \(-0.727871\pi\)
−0.656280 + 0.754518i \(0.727871\pi\)
\(480\) 0 0
\(481\) 1.07087e28 0.736569
\(482\) 0 0
\(483\) 4.45883e27 0.293613
\(484\) 0 0
\(485\) −7.08952e27 −0.447022
\(486\) 0 0
\(487\) −3.19696e28 −1.93056 −0.965280 0.261218i \(-0.915876\pi\)
−0.965280 + 0.261218i \(0.915876\pi\)
\(488\) 0 0
\(489\) −1.63551e28 −0.946042
\(490\) 0 0
\(491\) 1.06661e28 0.591086 0.295543 0.955329i \(-0.404499\pi\)
0.295543 + 0.955329i \(0.404499\pi\)
\(492\) 0 0
\(493\) −1.69803e28 −0.901681
\(494\) 0 0
\(495\) 1.67180e28 0.850802
\(496\) 0 0
\(497\) 5.04942e28 2.46320
\(498\) 0 0
\(499\) 1.19664e28 0.559638 0.279819 0.960053i \(-0.409725\pi\)
0.279819 + 0.960053i \(0.409725\pi\)
\(500\) 0 0
\(501\) 4.84146e28 2.17110
\(502\) 0 0
\(503\) 3.75074e28 1.61307 0.806534 0.591188i \(-0.201341\pi\)
0.806534 + 0.591188i \(0.201341\pi\)
\(504\) 0 0
\(505\) −3.16348e27 −0.130498
\(506\) 0 0
\(507\) 1.22615e29 4.85245
\(508\) 0 0
\(509\) 3.27640e28 1.24411 0.622057 0.782972i \(-0.286297\pi\)
0.622057 + 0.782972i \(0.286297\pi\)
\(510\) 0 0
\(511\) 8.91979e27 0.325039
\(512\) 0 0
\(513\) −2.35836e28 −0.824857
\(514\) 0 0
\(515\) 5.62572e27 0.188887
\(516\) 0 0
\(517\) 3.05223e28 0.983934
\(518\) 0 0
\(519\) −6.71388e28 −2.07834
\(520\) 0 0
\(521\) −5.49377e27 −0.163333 −0.0816667 0.996660i \(-0.526024\pi\)
−0.0816667 + 0.996660i \(0.526024\pi\)
\(522\) 0 0
\(523\) −9.60628e27 −0.274339 −0.137170 0.990548i \(-0.543801\pi\)
−0.137170 + 0.990548i \(0.543801\pi\)
\(524\) 0 0
\(525\) 1.59943e28 0.438825
\(526\) 0 0
\(527\) −8.93347e28 −2.35510
\(528\) 0 0
\(529\) −3.87648e28 −0.982093
\(530\) 0 0
\(531\) −1.64452e28 −0.400448
\(532\) 0 0
\(533\) 7.73244e28 1.81001
\(534\) 0 0
\(535\) −3.02391e28 −0.680541
\(536\) 0 0
\(537\) −7.93397e27 −0.171696
\(538\) 0 0
\(539\) −3.11046e28 −0.647355
\(540\) 0 0
\(541\) −7.34453e28 −1.47026 −0.735128 0.677929i \(-0.762878\pi\)
−0.735128 + 0.677929i \(0.762878\pi\)
\(542\) 0 0
\(543\) 1.50512e29 2.89850
\(544\) 0 0
\(545\) 2.77832e28 0.514777
\(546\) 0 0
\(547\) −4.12363e28 −0.735212 −0.367606 0.929982i \(-0.619822\pi\)
−0.367606 + 0.929982i \(0.619822\pi\)
\(548\) 0 0
\(549\) 9.08745e28 1.55931
\(550\) 0 0
\(551\) −2.04742e28 −0.338155
\(552\) 0 0
\(553\) −1.04557e28 −0.166241
\(554\) 0 0
\(555\) −1.87425e28 −0.286914
\(556\) 0 0
\(557\) −8.83426e27 −0.130224 −0.0651119 0.997878i \(-0.520740\pi\)
−0.0651119 + 0.997878i \(0.520740\pi\)
\(558\) 0 0
\(559\) 8.15248e28 1.15735
\(560\) 0 0
\(561\) 1.74675e29 2.38847
\(562\) 0 0
\(563\) 1.06900e29 1.40811 0.704057 0.710143i \(-0.251370\pi\)
0.704057 + 0.710143i \(0.251370\pi\)
\(564\) 0 0
\(565\) 5.47946e28 0.695391
\(566\) 0 0
\(567\) 7.90195e28 0.966300
\(568\) 0 0
\(569\) −1.27688e29 −1.50477 −0.752386 0.658723i \(-0.771097\pi\)
−0.752386 + 0.658723i \(0.771097\pi\)
\(570\) 0 0
\(571\) 8.59333e28 0.976073 0.488037 0.872823i \(-0.337713\pi\)
0.488037 + 0.872823i \(0.337713\pi\)
\(572\) 0 0
\(573\) 4.04366e28 0.442743
\(574\) 0 0
\(575\) 2.53546e27 0.0267636
\(576\) 0 0
\(577\) −1.28637e29 −1.30925 −0.654623 0.755956i \(-0.727172\pi\)
−0.654623 + 0.755956i \(0.727172\pi\)
\(578\) 0 0
\(579\) −1.98167e29 −1.94494
\(580\) 0 0
\(581\) 4.61016e28 0.436382
\(582\) 0 0
\(583\) 6.98271e28 0.637536
\(584\) 0 0
\(585\) −1.90582e29 −1.67860
\(586\) 0 0
\(587\) 3.48294e28 0.295969 0.147985 0.988990i \(-0.452721\pi\)
0.147985 + 0.988990i \(0.452721\pi\)
\(588\) 0 0
\(589\) −1.07716e29 −0.883225
\(590\) 0 0
\(591\) −1.09968e29 −0.870158
\(592\) 0 0
\(593\) −8.77330e28 −0.670021 −0.335011 0.942214i \(-0.608740\pi\)
−0.335011 + 0.942214i \(0.608740\pi\)
\(594\) 0 0
\(595\) 1.09782e29 0.809290
\(596\) 0 0
\(597\) 1.24576e29 0.886548
\(598\) 0 0
\(599\) 1.00705e29 0.691944 0.345972 0.938245i \(-0.387549\pi\)
0.345972 + 0.938245i \(0.387549\pi\)
\(600\) 0 0
\(601\) −1.06089e29 −0.703861 −0.351930 0.936026i \(-0.614475\pi\)
−0.351930 + 0.936026i \(0.614475\pi\)
\(602\) 0 0
\(603\) −1.60809e29 −1.03034
\(604\) 0 0
\(605\) 9.35497e26 0.00578910
\(606\) 0 0
\(607\) −5.05632e28 −0.302241 −0.151120 0.988515i \(-0.548288\pi\)
−0.151120 + 0.988515i \(0.548288\pi\)
\(608\) 0 0
\(609\) 2.43309e29 1.40500
\(610\) 0 0
\(611\) −3.47950e29 −1.94126
\(612\) 0 0
\(613\) 1.21126e29 0.652985 0.326493 0.945200i \(-0.394133\pi\)
0.326493 + 0.945200i \(0.394133\pi\)
\(614\) 0 0
\(615\) −1.35334e29 −0.705048
\(616\) 0 0
\(617\) 7.11151e28 0.358070 0.179035 0.983843i \(-0.442702\pi\)
0.179035 + 0.983843i \(0.442702\pi\)
\(618\) 0 0
\(619\) 1.87344e28 0.0911774 0.0455887 0.998960i \(-0.485484\pi\)
0.0455887 + 0.998960i \(0.485484\pi\)
\(620\) 0 0
\(621\) 4.44277e28 0.209022
\(622\) 0 0
\(623\) 2.25968e29 1.02783
\(624\) 0 0
\(625\) 9.09495e27 0.0400000
\(626\) 0 0
\(627\) 2.10616e29 0.895741
\(628\) 0 0
\(629\) −1.28646e29 −0.529131
\(630\) 0 0
\(631\) −1.18886e29 −0.472956 −0.236478 0.971637i \(-0.575993\pi\)
−0.236478 + 0.971637i \(0.575993\pi\)
\(632\) 0 0
\(633\) 4.49753e29 1.73075
\(634\) 0 0
\(635\) 1.56607e29 0.583025
\(636\) 0 0
\(637\) 3.54588e29 1.27720
\(638\) 0 0
\(639\) 1.05305e30 3.67021
\(640\) 0 0
\(641\) −4.05009e29 −1.36602 −0.683008 0.730411i \(-0.739329\pi\)
−0.683008 + 0.730411i \(0.739329\pi\)
\(642\) 0 0
\(643\) −2.92040e29 −0.953296 −0.476648 0.879094i \(-0.658148\pi\)
−0.476648 + 0.879094i \(0.658148\pi\)
\(644\) 0 0
\(645\) −1.42686e29 −0.450820
\(646\) 0 0
\(647\) 1.30263e29 0.398407 0.199203 0.979958i \(-0.436165\pi\)
0.199203 + 0.979958i \(0.436165\pi\)
\(648\) 0 0
\(649\) 7.01686e28 0.207766
\(650\) 0 0
\(651\) 1.28007e30 3.66971
\(652\) 0 0
\(653\) −1.49980e29 −0.416337 −0.208169 0.978093i \(-0.566750\pi\)
−0.208169 + 0.978093i \(0.566750\pi\)
\(654\) 0 0
\(655\) −1.36576e29 −0.367149
\(656\) 0 0
\(657\) 1.86022e29 0.484314
\(658\) 0 0
\(659\) −3.09551e29 −0.780613 −0.390307 0.920685i \(-0.627631\pi\)
−0.390307 + 0.920685i \(0.627631\pi\)
\(660\) 0 0
\(661\) −1.06593e29 −0.260383 −0.130191 0.991489i \(-0.541559\pi\)
−0.130191 + 0.991489i \(0.541559\pi\)
\(662\) 0 0
\(663\) −1.99127e30 −4.71235
\(664\) 0 0
\(665\) 1.32371e29 0.303505
\(666\) 0 0
\(667\) 3.85701e28 0.0856898
\(668\) 0 0
\(669\) 1.26535e30 2.72419
\(670\) 0 0
\(671\) −3.87746e29 −0.809022
\(672\) 0 0
\(673\) −7.90406e29 −1.59842 −0.799212 0.601049i \(-0.794750\pi\)
−0.799212 + 0.601049i \(0.794750\pi\)
\(674\) 0 0
\(675\) 1.59367e29 0.312398
\(676\) 0 0
\(677\) −3.48611e29 −0.662461 −0.331230 0.943550i \(-0.607464\pi\)
−0.331230 + 0.943550i \(0.607464\pi\)
\(678\) 0 0
\(679\) 6.97264e29 1.28459
\(680\) 0 0
\(681\) 2.70875e29 0.483865
\(682\) 0 0
\(683\) −3.87738e28 −0.0671617 −0.0335808 0.999436i \(-0.510691\pi\)
−0.0335808 + 0.999436i \(0.510691\pi\)
\(684\) 0 0
\(685\) 3.41118e29 0.572999
\(686\) 0 0
\(687\) −1.73819e30 −2.83173
\(688\) 0 0
\(689\) −7.96020e29 −1.25783
\(690\) 0 0
\(691\) −7.13503e29 −1.09364 −0.546822 0.837249i \(-0.684163\pi\)
−0.546822 + 0.837249i \(0.684163\pi\)
\(692\) 0 0
\(693\) −1.64423e30 −2.44492
\(694\) 0 0
\(695\) −1.13997e29 −0.164457
\(696\) 0 0
\(697\) −9.28913e29 −1.30026
\(698\) 0 0
\(699\) −8.08015e28 −0.109751
\(700\) 0 0
\(701\) −8.08128e28 −0.106522 −0.0532612 0.998581i \(-0.516962\pi\)
−0.0532612 + 0.998581i \(0.516962\pi\)
\(702\) 0 0
\(703\) −1.55116e29 −0.198439
\(704\) 0 0
\(705\) 6.08986e29 0.756173
\(706\) 0 0
\(707\) 3.11132e29 0.375008
\(708\) 0 0
\(709\) 7.67692e28 0.0898259 0.0449129 0.998991i \(-0.485699\pi\)
0.0449129 + 0.998991i \(0.485699\pi\)
\(710\) 0 0
\(711\) −2.18052e29 −0.247702
\(712\) 0 0
\(713\) 2.02920e29 0.223813
\(714\) 0 0
\(715\) 8.13181e29 0.870911
\(716\) 0 0
\(717\) −1.85457e30 −1.92882
\(718\) 0 0
\(719\) −4.77523e29 −0.482326 −0.241163 0.970485i \(-0.577529\pi\)
−0.241163 + 0.970485i \(0.577529\pi\)
\(720\) 0 0
\(721\) −5.53297e29 −0.542797
\(722\) 0 0
\(723\) 2.92832e29 0.279040
\(724\) 0 0
\(725\) 1.38355e29 0.128069
\(726\) 0 0
\(727\) 8.17519e29 0.735168 0.367584 0.929990i \(-0.380185\pi\)
0.367584 + 0.929990i \(0.380185\pi\)
\(728\) 0 0
\(729\) −1.40435e30 −1.22698
\(730\) 0 0
\(731\) −9.79373e29 −0.831411
\(732\) 0 0
\(733\) −1.25004e30 −1.03118 −0.515588 0.856837i \(-0.672426\pi\)
−0.515588 + 0.856837i \(0.672426\pi\)
\(734\) 0 0
\(735\) −6.20604e29 −0.497505
\(736\) 0 0
\(737\) 6.86144e29 0.534572
\(738\) 0 0
\(739\) −1.41926e30 −1.07472 −0.537359 0.843354i \(-0.680578\pi\)
−0.537359 + 0.843354i \(0.680578\pi\)
\(740\) 0 0
\(741\) −2.40099e30 −1.76726
\(742\) 0 0
\(743\) 4.94344e29 0.353709 0.176855 0.984237i \(-0.443408\pi\)
0.176855 + 0.984237i \(0.443408\pi\)
\(744\) 0 0
\(745\) 2.92869e29 0.203719
\(746\) 0 0
\(747\) 9.61447e29 0.650218
\(748\) 0 0
\(749\) 2.97405e30 1.95564
\(750\) 0 0
\(751\) 1.81607e30 1.16121 0.580607 0.814184i \(-0.302815\pi\)
0.580607 + 0.814184i \(0.302815\pi\)
\(752\) 0 0
\(753\) 3.76833e30 2.34316
\(754\) 0 0
\(755\) −8.60200e29 −0.520183
\(756\) 0 0
\(757\) −3.23429e30 −1.90227 −0.951136 0.308772i \(-0.900082\pi\)
−0.951136 + 0.308772i \(0.900082\pi\)
\(758\) 0 0
\(759\) −3.96766e29 −0.226984
\(760\) 0 0
\(761\) 5.91876e29 0.329376 0.164688 0.986346i \(-0.447338\pi\)
0.164688 + 0.986346i \(0.447338\pi\)
\(762\) 0 0
\(763\) −2.73252e30 −1.47930
\(764\) 0 0
\(765\) 2.28950e30 1.20586
\(766\) 0 0
\(767\) −7.99912e29 −0.409912
\(768\) 0 0
\(769\) 3.65919e30 1.82456 0.912281 0.409565i \(-0.134320\pi\)
0.912281 + 0.409565i \(0.134320\pi\)
\(770\) 0 0
\(771\) 1.34885e30 0.654475
\(772\) 0 0
\(773\) −3.12612e30 −1.47612 −0.738059 0.674736i \(-0.764257\pi\)
−0.738059 + 0.674736i \(0.764257\pi\)
\(774\) 0 0
\(775\) 7.27895e29 0.334503
\(776\) 0 0
\(777\) 1.84335e30 0.824492
\(778\) 0 0
\(779\) −1.12005e30 −0.487633
\(780\) 0 0
\(781\) −4.49319e30 −1.90423
\(782\) 0 0
\(783\) 2.42433e30 1.00021
\(784\) 0 0
\(785\) −1.72367e30 −0.692346
\(786\) 0 0
\(787\) −1.94010e30 −0.758735 −0.379368 0.925246i \(-0.623858\pi\)
−0.379368 + 0.925246i \(0.623858\pi\)
\(788\) 0 0
\(789\) −2.36808e30 −0.901753
\(790\) 0 0
\(791\) −5.38912e30 −1.99832
\(792\) 0 0
\(793\) 4.42024e30 1.59617
\(794\) 0 0
\(795\) 1.39320e30 0.489959
\(796\) 0 0
\(797\) 1.87837e30 0.643383 0.321691 0.946845i \(-0.395749\pi\)
0.321691 + 0.946845i \(0.395749\pi\)
\(798\) 0 0
\(799\) 4.17999e30 1.39455
\(800\) 0 0
\(801\) 4.71255e30 1.53149
\(802\) 0 0
\(803\) −7.93722e29 −0.251278
\(804\) 0 0
\(805\) −2.49366e29 −0.0769095
\(806\) 0 0
\(807\) −3.89668e30 −1.17091
\(808\) 0 0
\(809\) 3.76184e30 1.10139 0.550694 0.834707i \(-0.314363\pi\)
0.550694 + 0.834707i \(0.314363\pi\)
\(810\) 0 0
\(811\) 1.39769e30 0.398741 0.199370 0.979924i \(-0.436110\pi\)
0.199370 + 0.979924i \(0.436110\pi\)
\(812\) 0 0
\(813\) −1.53506e30 −0.426751
\(814\) 0 0
\(815\) 9.14681e29 0.247808
\(816\) 0 0
\(817\) −1.18089e30 −0.311801
\(818\) 0 0
\(819\) 1.87440e31 4.82372
\(820\) 0 0
\(821\) 3.06130e30 0.767897 0.383948 0.923355i \(-0.374564\pi\)
0.383948 + 0.923355i \(0.374564\pi\)
\(822\) 0 0
\(823\) 2.80656e30 0.686239 0.343120 0.939292i \(-0.388516\pi\)
0.343120 + 0.939292i \(0.388516\pi\)
\(824\) 0 0
\(825\) −1.42324e30 −0.339243
\(826\) 0 0
\(827\) 1.80807e30 0.420153 0.210077 0.977685i \(-0.432629\pi\)
0.210077 + 0.977685i \(0.432629\pi\)
\(828\) 0 0
\(829\) 6.48512e30 1.46925 0.734625 0.678473i \(-0.237358\pi\)
0.734625 + 0.678473i \(0.237358\pi\)
\(830\) 0 0
\(831\) 5.65663e30 1.24953
\(832\) 0 0
\(833\) −4.25974e30 −0.917509
\(834\) 0 0
\(835\) −2.70765e30 −0.568702
\(836\) 0 0
\(837\) 1.27546e31 2.61245
\(838\) 0 0
\(839\) −5.47358e30 −1.09338 −0.546690 0.837335i \(-0.684112\pi\)
−0.546690 + 0.837335i \(0.684112\pi\)
\(840\) 0 0
\(841\) −3.02816e30 −0.589957
\(842\) 0 0
\(843\) 2.84509e30 0.540639
\(844\) 0 0
\(845\) −6.85741e30 −1.27106
\(846\) 0 0
\(847\) −9.20073e28 −0.0166359
\(848\) 0 0
\(849\) −1.26579e31 −2.23271
\(850\) 0 0
\(851\) 2.92213e29 0.0502851
\(852\) 0 0
\(853\) −7.71396e30 −1.29513 −0.647564 0.762011i \(-0.724212\pi\)
−0.647564 + 0.762011i \(0.724212\pi\)
\(854\) 0 0
\(855\) 2.76060e30 0.452229
\(856\) 0 0
\(857\) 1.69666e29 0.0271205 0.0135602 0.999908i \(-0.495684\pi\)
0.0135602 + 0.999908i \(0.495684\pi\)
\(858\) 0 0
\(859\) −4.91435e30 −0.766545 −0.383273 0.923635i \(-0.625203\pi\)
−0.383273 + 0.923635i \(0.625203\pi\)
\(860\) 0 0
\(861\) 1.33103e31 2.02607
\(862\) 0 0
\(863\) −1.11211e31 −1.65209 −0.826047 0.563602i \(-0.809415\pi\)
−0.826047 + 0.563602i \(0.809415\pi\)
\(864\) 0 0
\(865\) 3.75482e30 0.544403
\(866\) 0 0
\(867\) 1.18569e31 1.67792
\(868\) 0 0
\(869\) 9.30391e29 0.128516
\(870\) 0 0
\(871\) −7.82194e30 −1.05469
\(872\) 0 0
\(873\) 1.45414e31 1.91406
\(874\) 0 0
\(875\) −8.94500e29 −0.114946
\(876\) 0 0
\(877\) −1.05245e31 −1.32041 −0.660203 0.751088i \(-0.729530\pi\)
−0.660203 + 0.751088i \(0.729530\pi\)
\(878\) 0 0
\(879\) −1.38101e31 −1.69166
\(880\) 0 0
\(881\) −8.70976e30 −1.04174 −0.520870 0.853636i \(-0.674392\pi\)
−0.520870 + 0.853636i \(0.674392\pi\)
\(882\) 0 0
\(883\) −7.95603e30 −0.929199 −0.464600 0.885521i \(-0.653802\pi\)
−0.464600 + 0.885521i \(0.653802\pi\)
\(884\) 0 0
\(885\) 1.40002e30 0.159672
\(886\) 0 0
\(887\) 1.08949e31 1.21346 0.606729 0.794909i \(-0.292481\pi\)
0.606729 + 0.794909i \(0.292481\pi\)
\(888\) 0 0
\(889\) −1.54025e31 −1.67542
\(890\) 0 0
\(891\) −7.03150e30 −0.747020
\(892\) 0 0
\(893\) 5.04007e30 0.522993
\(894\) 0 0
\(895\) 4.43718e29 0.0449743
\(896\) 0 0
\(897\) 4.52308e30 0.447830
\(898\) 0 0
\(899\) 1.10729e31 1.07099
\(900\) 0 0
\(901\) 9.56274e30 0.903591
\(902\) 0 0
\(903\) 1.40333e31 1.29550
\(904\) 0 0
\(905\) −8.41758e30 −0.759236
\(906\) 0 0
\(907\) −7.14477e30 −0.629668 −0.314834 0.949147i \(-0.601949\pi\)
−0.314834 + 0.949147i \(0.601949\pi\)
\(908\) 0 0
\(909\) 6.48864e30 0.558770
\(910\) 0 0
\(911\) 9.25953e30 0.779194 0.389597 0.920985i \(-0.372614\pi\)
0.389597 + 0.920985i \(0.372614\pi\)
\(912\) 0 0
\(913\) −4.10233e30 −0.337355
\(914\) 0 0
\(915\) −7.73636e30 −0.621749
\(916\) 0 0
\(917\) 1.34325e31 1.05506
\(918\) 0 0
\(919\) −2.16799e31 −1.66435 −0.832174 0.554515i \(-0.812904\pi\)
−0.832174 + 0.554515i \(0.812904\pi\)
\(920\) 0 0
\(921\) 2.07817e31 1.55939
\(922\) 0 0
\(923\) 5.12218e31 3.75696
\(924\) 0 0
\(925\) 1.04820e30 0.0751545
\(926\) 0 0
\(927\) −1.15390e31 −0.808779
\(928\) 0 0
\(929\) −1.54089e31 −1.05586 −0.527929 0.849289i \(-0.677031\pi\)
−0.527929 + 0.849289i \(0.677031\pi\)
\(930\) 0 0
\(931\) −5.13623e30 −0.344091
\(932\) 0 0
\(933\) 2.90558e31 1.90316
\(934\) 0 0
\(935\) −9.76891e30 −0.625639
\(936\) 0 0
\(937\) −2.18719e31 −1.36969 −0.684843 0.728691i \(-0.740129\pi\)
−0.684843 + 0.728691i \(0.740129\pi\)
\(938\) 0 0
\(939\) 3.92070e30 0.240091
\(940\) 0 0
\(941\) −5.71240e29 −0.0342080 −0.0171040 0.999854i \(-0.505445\pi\)
−0.0171040 + 0.999854i \(0.505445\pi\)
\(942\) 0 0
\(943\) 2.10999e30 0.123568
\(944\) 0 0
\(945\) −1.56739e31 −0.897725
\(946\) 0 0
\(947\) −6.38251e29 −0.0357534 −0.0178767 0.999840i \(-0.505691\pi\)
−0.0178767 + 0.999840i \(0.505691\pi\)
\(948\) 0 0
\(949\) 9.04832e30 0.495761
\(950\) 0 0
\(951\) 1.93397e31 1.03646
\(952\) 0 0
\(953\) −2.06863e31 −1.08444 −0.542222 0.840235i \(-0.682417\pi\)
−0.542222 + 0.840235i \(0.682417\pi\)
\(954\) 0 0
\(955\) −2.26147e30 −0.115973
\(956\) 0 0
\(957\) −2.16507e31 −1.08617
\(958\) 0 0
\(959\) −3.35494e31 −1.64661
\(960\) 0 0
\(961\) 3.74300e31 1.79731
\(962\) 0 0
\(963\) 6.20238e31 2.91395
\(964\) 0 0
\(965\) 1.10828e31 0.509461
\(966\) 0 0
\(967\) −2.49286e31 −1.12129 −0.560647 0.828055i \(-0.689448\pi\)
−0.560647 + 0.828055i \(0.689448\pi\)
\(968\) 0 0
\(969\) 2.88436e31 1.26955
\(970\) 0 0
\(971\) −4.80972e30 −0.207166 −0.103583 0.994621i \(-0.533031\pi\)
−0.103583 + 0.994621i \(0.533031\pi\)
\(972\) 0 0
\(973\) 1.12117e31 0.472594
\(974\) 0 0
\(975\) 1.62247e31 0.669313
\(976\) 0 0
\(977\) 1.25924e31 0.508411 0.254205 0.967150i \(-0.418186\pi\)
0.254205 + 0.967150i \(0.418186\pi\)
\(978\) 0 0
\(979\) −2.01076e31 −0.794589
\(980\) 0 0
\(981\) −5.69865e31 −2.20418
\(982\) 0 0
\(983\) −1.94974e31 −0.738185 −0.369093 0.929393i \(-0.620331\pi\)
−0.369093 + 0.929393i \(0.620331\pi\)
\(984\) 0 0
\(985\) 6.15011e30 0.227930
\(986\) 0 0
\(987\) −5.98945e31 −2.17299
\(988\) 0 0
\(989\) 2.22461e30 0.0790118
\(990\) 0 0
\(991\) 1.67935e31 0.583941 0.291971 0.956427i \(-0.405689\pi\)
0.291971 + 0.956427i \(0.405689\pi\)
\(992\) 0 0
\(993\) 3.81047e31 1.29721
\(994\) 0 0
\(995\) −6.96705e30 −0.232224
\(996\) 0 0
\(997\) 2.24576e31 0.732932 0.366466 0.930431i \(-0.380568\pi\)
0.366466 + 0.930431i \(0.380568\pi\)
\(998\) 0 0
\(999\) 1.83671e31 0.586953
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 80.22.a.d.1.2 2
4.3 odd 2 10.22.a.b.1.1 2
20.3 even 4 50.22.b.f.49.3 4
20.7 even 4 50.22.b.f.49.2 4
20.19 odd 2 50.22.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.22.a.b.1.1 2 4.3 odd 2
50.22.a.f.1.2 2 20.19 odd 2
50.22.b.f.49.2 4 20.7 even 4
50.22.b.f.49.3 4 20.3 even 4
80.22.a.d.1.2 2 1.1 even 1 trivial