Properties

Label 80.2.s.b.3.4
Level $80$
Weight $2$
Character 80.3
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(3,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + \cdots + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 3.4
Root \(1.41323 - 0.0526497i\) of defining polynomial
Character \(\chi\) \(=\) 80.3
Dual form 80.2.s.b.27.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.516777 + 1.31641i) q^{2} +1.28110 q^{3} +(-1.46588 - 1.36058i) q^{4} +(2.07160 + 0.841703i) q^{5} +(-0.662041 + 1.68645i) q^{6} +(-1.13975 + 1.13975i) q^{7} +(2.54862 - 1.22659i) q^{8} -1.35879 q^{9} +O(q^{10})\) \(q+(-0.516777 + 1.31641i) q^{2} +1.28110 q^{3} +(-1.46588 - 1.36058i) q^{4} +(2.07160 + 0.841703i) q^{5} +(-0.662041 + 1.68645i) q^{6} +(-1.13975 + 1.13975i) q^{7} +(2.54862 - 1.22659i) q^{8} -1.35879 q^{9} +(-2.17858 + 2.29211i) q^{10} +(-2.32204 - 2.32204i) q^{11} +(-1.87794 - 1.74304i) q^{12} +1.36502i q^{13} +(-0.911384 - 2.08938i) q^{14} +(2.65392 + 1.07830i) q^{15} +(0.297625 + 3.98891i) q^{16} +(5.25380 - 5.25380i) q^{17} +(0.702192 - 1.78873i) q^{18} +(-3.69752 - 3.69752i) q^{19} +(-1.89152 - 4.05243i) q^{20} +(-1.46013 + 1.46013i) q^{21} +(4.25673 - 1.85678i) q^{22} +(-0.911118 - 0.911118i) q^{23} +(3.26503 - 1.57138i) q^{24} +(3.58307 + 3.48735i) q^{25} +(-1.79693 - 0.705412i) q^{26} -5.58403 q^{27} +(3.22146 - 0.120015i) q^{28} +(-2.37343 + 2.37343i) q^{29} +(-2.79098 + 2.93641i) q^{30} -0.242577i q^{31} +(-5.40486 - 1.66958i) q^{32} +(-2.97475 - 2.97475i) q^{33} +(4.20112 + 9.63121i) q^{34} +(-3.32044 + 1.40178i) q^{35} +(1.99183 + 1.84875i) q^{36} +3.34494i q^{37} +(6.77825 - 2.95666i) q^{38} +1.74872i q^{39} +(6.31216 - 0.395820i) q^{40} -2.66956i q^{41} +(-1.16757 - 2.67669i) q^{42} +9.04874i q^{43} +(0.244509 + 6.56316i) q^{44} +(-2.81488 - 1.14370i) q^{45} +(1.67025 - 0.728562i) q^{46} +(7.87820 + 7.87820i) q^{47} +(0.381287 + 5.11018i) q^{48} +4.40194i q^{49} +(-6.44244 + 2.91462i) q^{50} +(6.73063 - 6.73063i) q^{51} +(1.85723 - 2.00096i) q^{52} -5.80113 q^{53} +(2.88570 - 7.35089i) q^{54} +(-2.85587 - 6.76480i) q^{55} +(-1.50679 + 4.30279i) q^{56} +(-4.73688 - 4.73688i) q^{57} +(-1.89788 - 4.35095i) q^{58} +(5.91474 - 5.91474i) q^{59} +(-2.42322 - 5.19155i) q^{60} +(-6.67404 - 6.67404i) q^{61} +(0.319332 + 0.125358i) q^{62} +(1.54868 - 1.54868i) q^{63} +(4.99096 - 6.25222i) q^{64} +(-1.14894 + 2.82778i) q^{65} +(5.45328 - 2.37872i) q^{66} +4.54673i q^{67} +(-14.8497 + 0.553222i) q^{68} +(-1.16723 - 1.16723i) q^{69} +(-0.129391 - 5.09547i) q^{70} +15.4389 q^{71} +(-3.46305 + 1.66668i) q^{72} +(-1.49307 + 1.49307i) q^{73} +(-4.40332 - 1.72859i) q^{74} +(4.59026 + 4.46763i) q^{75} +(0.389347 + 10.4509i) q^{76} +5.29308 q^{77} +(-2.30204 - 0.903701i) q^{78} -10.3024 q^{79} +(-2.74092 + 8.51395i) q^{80} -3.07731 q^{81} +(3.51424 + 1.37957i) q^{82} +3.26589 q^{83} +(4.12701 - 0.153751i) q^{84} +(15.3059 - 6.46165i) q^{85} +(-11.9119 - 4.67618i) q^{86} +(-3.04060 + 3.04060i) q^{87} +(-8.76618 - 3.06981i) q^{88} +9.77206 q^{89} +(2.96024 - 3.11450i) q^{90} +(-1.55578 - 1.55578i) q^{91} +(0.0959403 + 2.57524i) q^{92} -0.310765i q^{93} +(-14.4422 + 6.29969i) q^{94} +(-4.54758 - 10.7720i) q^{95} +(-6.92415 - 2.13889i) q^{96} +(-1.63587 + 1.63587i) q^{97} +(-5.79477 - 2.27482i) q^{98} +(3.15516 + 3.15516i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{4} + 2 q^{5} - 8 q^{6} + 2 q^{7} - 12 q^{8} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + 4 q^{4} + 2 q^{5} - 8 q^{6} + 2 q^{7} - 12 q^{8} + 10 q^{9} - 2 q^{11} - 12 q^{14} - 20 q^{15} - 6 q^{17} - 24 q^{18} - 2 q^{19} - 12 q^{20} - 16 q^{21} + 12 q^{22} - 2 q^{23} - 4 q^{24} - 6 q^{25} - 16 q^{26} - 24 q^{27} + 40 q^{28} + 14 q^{29} + 40 q^{30} + 20 q^{32} - 8 q^{33} + 28 q^{34} + 2 q^{35} - 4 q^{36} + 24 q^{38} + 44 q^{40} + 8 q^{42} - 44 q^{44} - 14 q^{45} + 12 q^{46} + 38 q^{47} + 4 q^{48} - 8 q^{50} + 8 q^{51} + 8 q^{52} + 12 q^{53} + 4 q^{54} - 6 q^{55} + 20 q^{56} - 24 q^{57} + 20 q^{58} + 10 q^{59} + 8 q^{60} + 14 q^{61} - 40 q^{62} - 6 q^{63} + 16 q^{64} + 4 q^{66} - 60 q^{68} - 32 q^{69} - 28 q^{70} + 24 q^{71} - 68 q^{72} - 14 q^{73} - 48 q^{74} + 16 q^{75} - 16 q^{76} - 44 q^{77} - 36 q^{78} - 16 q^{79} - 92 q^{80} + 2 q^{81} + 48 q^{82} + 40 q^{83} + 24 q^{84} + 14 q^{85} - 36 q^{86} + 24 q^{87} - 8 q^{88} + 12 q^{89} - 8 q^{90} - 8 q^{92} - 28 q^{94} + 34 q^{95} - 40 q^{96} + 18 q^{97} - 56 q^{98} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.516777 + 1.31641i −0.365417 + 0.930844i
\(3\) 1.28110 0.739642 0.369821 0.929103i \(-0.379419\pi\)
0.369821 + 0.929103i \(0.379419\pi\)
\(4\) −1.46588 1.36058i −0.732941 0.680292i
\(5\) 2.07160 + 0.841703i 0.926449 + 0.376421i
\(6\) −0.662041 + 1.68645i −0.270277 + 0.688491i
\(7\) −1.13975 + 1.13975i −0.430785 + 0.430785i −0.888895 0.458111i \(-0.848526\pi\)
0.458111 + 0.888895i \(0.348526\pi\)
\(8\) 2.54862 1.22659i 0.901074 0.433664i
\(9\) −1.35879 −0.452930
\(10\) −2.17858 + 2.29211i −0.688929 + 0.724829i
\(11\) −2.32204 2.32204i −0.700120 0.700120i 0.264316 0.964436i \(-0.414854\pi\)
−0.964436 + 0.264316i \(0.914854\pi\)
\(12\) −1.87794 1.74304i −0.542114 0.503172i
\(13\) 1.36502i 0.378589i 0.981920 + 0.189294i \(0.0606201\pi\)
−0.981920 + 0.189294i \(0.939380\pi\)
\(14\) −0.911384 2.08938i −0.243578 0.558409i
\(15\) 2.65392 + 1.07830i 0.685240 + 0.278416i
\(16\) 0.297625 + 3.98891i 0.0744064 + 0.997228i
\(17\) 5.25380 5.25380i 1.27423 1.27423i 0.330389 0.943845i \(-0.392820\pi\)
0.943845 0.330389i \(-0.107180\pi\)
\(18\) 0.702192 1.78873i 0.165508 0.421608i
\(19\) −3.69752 3.69752i −0.848269 0.848269i 0.141648 0.989917i \(-0.454760\pi\)
−0.989917 + 0.141648i \(0.954760\pi\)
\(20\) −1.89152 4.05243i −0.422957 0.906150i
\(21\) −1.46013 + 1.46013i −0.318626 + 0.318626i
\(22\) 4.25673 1.85678i 0.907538 0.395867i
\(23\) −0.911118 0.911118i −0.189981 0.189981i 0.605707 0.795688i \(-0.292890\pi\)
−0.795688 + 0.605707i \(0.792890\pi\)
\(24\) 3.26503 1.57138i 0.666472 0.320756i
\(25\) 3.58307 + 3.48735i 0.716615 + 0.697469i
\(26\) −1.79693 0.705412i −0.352407 0.138343i
\(27\) −5.58403 −1.07465
\(28\) 3.22146 0.120015i 0.608799 0.0226807i
\(29\) −2.37343 + 2.37343i −0.440736 + 0.440736i −0.892259 0.451524i \(-0.850881\pi\)
0.451524 + 0.892259i \(0.350881\pi\)
\(30\) −2.79098 + 2.93641i −0.509560 + 0.536114i
\(31\) 0.242577i 0.0435681i −0.999763 0.0217841i \(-0.993065\pi\)
0.999763 0.0217841i \(-0.00693463\pi\)
\(32\) −5.40486 1.66958i −0.955453 0.295143i
\(33\) −2.97475 2.97475i −0.517838 0.517838i
\(34\) 4.20112 + 9.63121i 0.720487 + 1.65174i
\(35\) −3.32044 + 1.40178i −0.561256 + 0.236944i
\(36\) 1.99183 + 1.84875i 0.331971 + 0.308125i
\(37\) 3.34494i 0.549905i 0.961458 + 0.274953i \(0.0886621\pi\)
−0.961458 + 0.274953i \(0.911338\pi\)
\(38\) 6.77825 2.95666i 1.09958 0.479634i
\(39\) 1.74872i 0.280020i
\(40\) 6.31216 0.395820i 0.998040 0.0625846i
\(41\) 2.66956i 0.416915i −0.978031 0.208457i \(-0.933156\pi\)
0.978031 0.208457i \(-0.0668442\pi\)
\(42\) −1.16757 2.67669i −0.180160 0.413023i
\(43\) 9.04874i 1.37992i 0.723847 + 0.689960i \(0.242372\pi\)
−0.723847 + 0.689960i \(0.757628\pi\)
\(44\) 0.244509 + 6.56316i 0.0368611 + 0.989433i
\(45\) −2.81488 1.14370i −0.419617 0.170492i
\(46\) 1.67025 0.728562i 0.246265 0.107421i
\(47\) 7.87820 + 7.87820i 1.14915 + 1.14915i 0.986719 + 0.162435i \(0.0519348\pi\)
0.162435 + 0.986719i \(0.448065\pi\)
\(48\) 0.381287 + 5.11018i 0.0550340 + 0.737591i
\(49\) 4.40194i 0.628849i
\(50\) −6.44244 + 2.91462i −0.911098 + 0.412190i
\(51\) 6.73063 6.73063i 0.942476 0.942476i
\(52\) 1.85723 2.00096i 0.257551 0.277483i
\(53\) −5.80113 −0.796846 −0.398423 0.917202i \(-0.630442\pi\)
−0.398423 + 0.917202i \(0.630442\pi\)
\(54\) 2.88570 7.35089i 0.392694 1.00033i
\(55\) −2.85587 6.76480i −0.385086 0.912165i
\(56\) −1.50679 + 4.30279i −0.201353 + 0.574985i
\(57\) −4.73688 4.73688i −0.627415 0.627415i
\(58\) −1.89788 4.35095i −0.249204 0.571308i
\(59\) 5.91474 5.91474i 0.770033 0.770033i −0.208079 0.978112i \(-0.566721\pi\)
0.978112 + 0.208079i \(0.0667210\pi\)
\(60\) −2.42322 5.19155i −0.312836 0.670226i
\(61\) −6.67404 6.67404i −0.854523 0.854523i 0.136163 0.990686i \(-0.456523\pi\)
−0.990686 + 0.136163i \(0.956523\pi\)
\(62\) 0.319332 + 0.125358i 0.0405551 + 0.0159205i
\(63\) 1.54868 1.54868i 0.195116 0.195116i
\(64\) 4.99096 6.25222i 0.623870 0.781528i
\(65\) −1.14894 + 2.82778i −0.142509 + 0.350743i
\(66\) 5.45328 2.37872i 0.671253 0.292800i
\(67\) 4.54673i 0.555471i 0.960658 + 0.277736i \(0.0895839\pi\)
−0.960658 + 0.277736i \(0.910416\pi\)
\(68\) −14.8497 + 0.553222i −1.80079 + 0.0670881i
\(69\) −1.16723 1.16723i −0.140518 0.140518i
\(70\) −0.129391 5.09547i −0.0154652 0.609025i
\(71\) 15.4389 1.83226 0.916128 0.400885i \(-0.131297\pi\)
0.916128 + 0.400885i \(0.131297\pi\)
\(72\) −3.46305 + 1.66668i −0.408124 + 0.196420i
\(73\) −1.49307 + 1.49307i −0.174750 + 0.174750i −0.789063 0.614313i \(-0.789433\pi\)
0.614313 + 0.789063i \(0.289433\pi\)
\(74\) −4.40332 1.72859i −0.511876 0.200944i
\(75\) 4.59026 + 4.46763i 0.530038 + 0.515877i
\(76\) 0.389347 + 10.4509i 0.0446611 + 1.19880i
\(77\) 5.29308 0.603202
\(78\) −2.30204 0.903701i −0.260655 0.102324i
\(79\) −10.3024 −1.15911 −0.579556 0.814932i \(-0.696774\pi\)
−0.579556 + 0.814932i \(0.696774\pi\)
\(80\) −2.74092 + 8.51395i −0.306444 + 0.951889i
\(81\) −3.07731 −0.341924
\(82\) 3.51424 + 1.37957i 0.388083 + 0.152348i
\(83\) 3.26589 0.358478 0.179239 0.983806i \(-0.442636\pi\)
0.179239 + 0.983806i \(0.442636\pi\)
\(84\) 4.12701 0.153751i 0.450293 0.0167756i
\(85\) 15.3059 6.46165i 1.66016 0.700864i
\(86\) −11.9119 4.67618i −1.28449 0.504246i
\(87\) −3.04060 + 3.04060i −0.325986 + 0.325986i
\(88\) −8.76618 3.06981i −0.934477 0.327243i
\(89\) 9.77206 1.03584 0.517918 0.855430i \(-0.326707\pi\)
0.517918 + 0.855430i \(0.326707\pi\)
\(90\) 2.96024 3.11450i 0.312037 0.328297i
\(91\) −1.55578 1.55578i −0.163090 0.163090i
\(92\) 0.0959403 + 2.57524i 0.0100025 + 0.268488i
\(93\) 0.310765i 0.0322248i
\(94\) −14.4422 + 6.29969i −1.48960 + 0.649763i
\(95\) −4.54758 10.7720i −0.466571 1.10518i
\(96\) −6.92415 2.13889i −0.706693 0.218300i
\(97\) −1.63587 + 1.63587i −0.166097 + 0.166097i −0.785262 0.619164i \(-0.787472\pi\)
0.619164 + 0.785262i \(0.287472\pi\)
\(98\) −5.79477 2.27482i −0.585360 0.229792i
\(99\) 3.15516 + 3.15516i 0.317106 + 0.317106i
\(100\) −0.507540 9.98711i −0.0507540 0.998711i
\(101\) −6.63953 + 6.63953i −0.660658 + 0.660658i −0.955535 0.294877i \(-0.904721\pi\)
0.294877 + 0.955535i \(0.404721\pi\)
\(102\) 5.38205 + 12.3385i 0.532902 + 1.22170i
\(103\) 1.62219 + 1.62219i 0.159839 + 0.159839i 0.782496 0.622656i \(-0.213946\pi\)
−0.622656 + 0.782496i \(0.713946\pi\)
\(104\) 1.67432 + 3.47893i 0.164180 + 0.341137i
\(105\) −4.25380 + 1.79581i −0.415129 + 0.175253i
\(106\) 2.99789 7.63667i 0.291181 0.741739i
\(107\) 3.65206 0.353058 0.176529 0.984295i \(-0.443513\pi\)
0.176529 + 0.984295i \(0.443513\pi\)
\(108\) 8.18554 + 7.59754i 0.787654 + 0.731074i
\(109\) 5.20757 5.20757i 0.498795 0.498795i −0.412268 0.911063i \(-0.635263\pi\)
0.911063 + 0.412268i \(0.135263\pi\)
\(110\) 10.3811 0.263611i 0.989800 0.0251344i
\(111\) 4.28519i 0.406733i
\(112\) −4.88558 4.20714i −0.461644 0.397537i
\(113\) −4.27905 4.27905i −0.402539 0.402539i 0.476588 0.879127i \(-0.341873\pi\)
−0.879127 + 0.476588i \(0.841873\pi\)
\(114\) 8.68359 3.78777i 0.813293 0.354757i
\(115\) −1.12058 2.65437i −0.104495 0.247521i
\(116\) 6.70843 0.249921i 0.622862 0.0232046i
\(117\) 1.85478i 0.171474i
\(118\) 4.72963 + 10.8428i 0.435398 + 0.998164i
\(119\) 11.9760i 1.09784i
\(120\) 8.08648 0.507083i 0.738192 0.0462901i
\(121\) 0.216302i 0.0196639i
\(122\) 12.2348 5.33680i 1.10768 0.483171i
\(123\) 3.41996i 0.308367i
\(124\) −0.330046 + 0.355590i −0.0296390 + 0.0319329i
\(125\) 4.48739 + 10.2403i 0.401365 + 0.915918i
\(126\) 1.23838 + 2.83903i 0.110324 + 0.252921i
\(127\) −7.29257 7.29257i −0.647111 0.647111i 0.305183 0.952294i \(-0.401282\pi\)
−0.952294 + 0.305183i \(0.901282\pi\)
\(128\) 5.65129 + 9.80117i 0.499508 + 0.866309i
\(129\) 11.5923i 1.02065i
\(130\) −3.12878 2.97381i −0.274412 0.260821i
\(131\) −11.9793 + 11.9793i −1.04664 + 1.04664i −0.0477778 + 0.998858i \(0.515214\pi\)
−0.998858 + 0.0477778i \(0.984786\pi\)
\(132\) 0.313240 + 8.40804i 0.0272640 + 0.731826i
\(133\) 8.42848 0.730842
\(134\) −5.98537 2.34965i −0.517057 0.202978i
\(135\) −11.5679 4.70010i −0.995606 0.404520i
\(136\) 6.94571 19.8342i 0.595590 1.70077i
\(137\) −4.92762 4.92762i −0.420995 0.420995i 0.464551 0.885546i \(-0.346216\pi\)
−0.885546 + 0.464551i \(0.846216\pi\)
\(138\) 2.13975 0.933359i 0.182148 0.0794528i
\(139\) 10.3015 10.3015i 0.873761 0.873761i −0.119119 0.992880i \(-0.538007\pi\)
0.992880 + 0.119119i \(0.0380071\pi\)
\(140\) 6.77461 + 2.46289i 0.572559 + 0.208152i
\(141\) 10.0927 + 10.0927i 0.849962 + 0.849962i
\(142\) −7.97845 + 20.3239i −0.669537 + 1.70555i
\(143\) 3.16963 3.16963i 0.265058 0.265058i
\(144\) −0.404411 5.42010i −0.0337009 0.451675i
\(145\) −6.91454 + 2.91909i −0.574221 + 0.242417i
\(146\) −1.19391 2.73707i −0.0988086 0.226522i
\(147\) 5.63931i 0.465123i
\(148\) 4.55107 4.90329i 0.374096 0.403048i
\(149\) −15.2040 15.2040i −1.24556 1.24556i −0.957662 0.287896i \(-0.907044\pi\)
−0.287896 0.957662i \(-0.592956\pi\)
\(150\) −8.25338 + 3.73391i −0.673886 + 0.304873i
\(151\) −10.7055 −0.871204 −0.435602 0.900139i \(-0.643464\pi\)
−0.435602 + 0.900139i \(0.643464\pi\)
\(152\) −13.9589 4.88825i −1.13222 0.396489i
\(153\) −7.13882 + 7.13882i −0.577139 + 0.577139i
\(154\) −2.73534 + 6.96787i −0.220420 + 0.561487i
\(155\) 0.204178 0.502523i 0.0164000 0.0403636i
\(156\) 2.37929 2.56343i 0.190495 0.205238i
\(157\) 2.34588 0.187222 0.0936108 0.995609i \(-0.470159\pi\)
0.0936108 + 0.995609i \(0.470159\pi\)
\(158\) 5.32405 13.5622i 0.423559 1.07895i
\(159\) −7.43180 −0.589380
\(160\) −9.79143 8.00799i −0.774080 0.633087i
\(161\) 2.07689 0.163682
\(162\) 1.59028 4.05101i 0.124945 0.318278i
\(163\) −2.73625 −0.214319 −0.107160 0.994242i \(-0.534176\pi\)
−0.107160 + 0.994242i \(0.534176\pi\)
\(164\) −3.63215 + 3.91326i −0.283624 + 0.305574i
\(165\) −3.65865 8.66636i −0.284825 0.674675i
\(166\) −1.68774 + 4.29926i −0.130994 + 0.333687i
\(167\) 10.1328 10.1328i 0.784097 0.784097i −0.196423 0.980519i \(-0.562932\pi\)
0.980519 + 0.196423i \(0.0629325\pi\)
\(168\) −1.93034 + 5.51230i −0.148929 + 0.425283i
\(169\) 11.1367 0.856670
\(170\) 0.596443 + 23.4881i 0.0457451 + 1.80146i
\(171\) 5.02415 + 5.02415i 0.384207 + 0.384207i
\(172\) 12.3116 13.2644i 0.938748 1.01140i
\(173\) 8.79590i 0.668740i −0.942442 0.334370i \(-0.891477\pi\)
0.942442 0.334370i \(-0.108523\pi\)
\(174\) −2.43137 5.57399i −0.184322 0.422563i
\(175\) −8.05851 + 0.109105i −0.609166 + 0.00824753i
\(176\) 8.57130 9.95349i 0.646086 0.750273i
\(177\) 7.57735 7.57735i 0.569549 0.569549i
\(178\) −5.04998 + 12.8641i −0.378512 + 0.964202i
\(179\) 6.62071 + 6.62071i 0.494855 + 0.494855i 0.909832 0.414977i \(-0.136210\pi\)
−0.414977 + 0.909832i \(0.636210\pi\)
\(180\) 2.57018 + 5.50640i 0.191570 + 0.410423i
\(181\) −5.84339 + 5.84339i −0.434336 + 0.434336i −0.890100 0.455765i \(-0.849366\pi\)
0.455765 + 0.890100i \(0.349366\pi\)
\(182\) 2.85204 1.24406i 0.211408 0.0922157i
\(183\) −8.55009 8.55009i −0.632041 0.632041i
\(184\) −3.43966 1.20453i −0.253575 0.0887992i
\(185\) −2.81545 + 6.92939i −0.206996 + 0.509459i
\(186\) 0.409095 + 0.160596i 0.0299963 + 0.0117755i
\(187\) −24.3990 −1.78423
\(188\) −0.829571 22.2675i −0.0605027 1.62402i
\(189\) 6.36440 6.36440i 0.462942 0.462942i
\(190\) 16.5305 0.419764i 1.19925 0.0304529i
\(191\) 1.83906i 0.133070i −0.997784 0.0665349i \(-0.978806\pi\)
0.997784 0.0665349i \(-0.0211944\pi\)
\(192\) 6.39391 8.00970i 0.461440 0.578050i
\(193\) 6.18343 + 6.18343i 0.445093 + 0.445093i 0.893719 0.448626i \(-0.148087\pi\)
−0.448626 + 0.893719i \(0.648087\pi\)
\(194\) −1.30810 2.99886i −0.0939160 0.215305i
\(195\) −1.47191 + 3.62266i −0.105405 + 0.259424i
\(196\) 5.98921 6.45273i 0.427801 0.460910i
\(197\) 5.55669i 0.395898i −0.980212 0.197949i \(-0.936572\pi\)
0.980212 0.197949i \(-0.0634280\pi\)
\(198\) −5.78401 + 2.52298i −0.411052 + 0.179300i
\(199\) 6.96413i 0.493674i −0.969057 0.246837i \(-0.920609\pi\)
0.969057 0.246837i \(-0.0793912\pi\)
\(200\) 13.4094 + 4.49298i 0.948191 + 0.317702i
\(201\) 5.82480i 0.410850i
\(202\) −5.30920 12.1715i −0.373554 0.856385i
\(203\) 5.41024i 0.379724i
\(204\) −19.0239 + 0.708731i −1.33194 + 0.0496211i
\(205\) 2.24697 5.53026i 0.156935 0.386250i
\(206\) −2.97379 + 1.29716i −0.207194 + 0.0903776i
\(207\) 1.23802 + 1.23802i 0.0860483 + 0.0860483i
\(208\) −5.44495 + 0.406265i −0.377539 + 0.0281694i
\(209\) 17.1715i 1.18778i
\(210\) −0.165763 6.52779i −0.0114387 0.450460i
\(211\) 5.43389 5.43389i 0.374084 0.374084i −0.494878 0.868962i \(-0.664787\pi\)
0.868962 + 0.494878i \(0.164787\pi\)
\(212\) 8.50377 + 7.89291i 0.584041 + 0.542088i
\(213\) 19.7787 1.35521
\(214\) −1.88730 + 4.80761i −0.129013 + 0.328642i
\(215\) −7.61635 + 18.7454i −0.519431 + 1.27843i
\(216\) −14.2316 + 6.84931i −0.968338 + 0.466036i
\(217\) 0.276477 + 0.276477i 0.0187685 + 0.0187685i
\(218\) 4.16416 + 9.54647i 0.282032 + 0.646568i
\(219\) −1.91276 + 1.91276i −0.129253 + 0.129253i
\(220\) −5.01770 + 13.8021i −0.338293 + 0.930534i
\(221\) 7.17155 + 7.17155i 0.482411 + 0.482411i
\(222\) −5.64108 2.21449i −0.378605 0.148627i
\(223\) 8.61776 8.61776i 0.577088 0.577088i −0.357012 0.934100i \(-0.616204\pi\)
0.934100 + 0.357012i \(0.116204\pi\)
\(224\) 8.06309 4.25728i 0.538738 0.284452i
\(225\) −4.86865 4.73858i −0.324577 0.315905i
\(226\) 7.84431 3.42168i 0.521796 0.227607i
\(227\) 6.01977i 0.399546i −0.979842 0.199773i \(-0.935980\pi\)
0.979842 0.199773i \(-0.0640205\pi\)
\(228\) 0.498791 + 13.3886i 0.0330332 + 0.886683i
\(229\) −0.568504 0.568504i −0.0375678 0.0375678i 0.688073 0.725641i \(-0.258457\pi\)
−0.725641 + 0.688073i \(0.758457\pi\)
\(230\) 4.07333 0.103436i 0.268588 0.00682034i
\(231\) 6.78094 0.446153
\(232\) −3.13776 + 8.96022i −0.206004 + 0.588267i
\(233\) 12.6979 12.6979i 0.831869 0.831869i −0.155904 0.987772i \(-0.549829\pi\)
0.987772 + 0.155904i \(0.0498289\pi\)
\(234\) 2.44165 + 0.958508i 0.159616 + 0.0626596i
\(235\) 9.68940 + 22.9516i 0.632067 + 1.49720i
\(236\) −16.7178 + 0.622819i −1.08824 + 0.0405421i
\(237\) −13.1984 −0.857327
\(238\) −15.7654 6.18894i −1.02192 0.401169i
\(239\) 1.78306 0.115336 0.0576682 0.998336i \(-0.481633\pi\)
0.0576682 + 0.998336i \(0.481633\pi\)
\(240\) −3.51138 + 10.9072i −0.226659 + 0.704056i
\(241\) 10.4440 0.672754 0.336377 0.941727i \(-0.390798\pi\)
0.336377 + 0.941727i \(0.390798\pi\)
\(242\) 0.284743 + 0.111780i 0.0183040 + 0.00718550i
\(243\) 12.8098 0.821747
\(244\) 0.702773 + 18.8639i 0.0449904 + 1.20764i
\(245\) −3.70513 + 9.11908i −0.236712 + 0.582596i
\(246\) 4.50208 + 1.76736i 0.287042 + 0.112683i
\(247\) 5.04719 5.04719i 0.321145 0.321145i
\(248\) −0.297542 0.618238i −0.0188939 0.0392581i
\(249\) 4.18392 0.265145
\(250\) −15.7994 + 0.615321i −0.999242 + 0.0389163i
\(251\) −12.6497 12.6497i −0.798445 0.798445i 0.184406 0.982850i \(-0.440964\pi\)
−0.982850 + 0.184406i \(0.940964\pi\)
\(252\) −4.37730 + 0.163075i −0.275744 + 0.0102728i
\(253\) 4.23130i 0.266019i
\(254\) 13.3687 5.83140i 0.838825 0.365894i
\(255\) 19.6084 8.27800i 1.22792 0.518388i
\(256\) −15.8228 + 2.37440i −0.988927 + 0.148400i
\(257\) −4.13062 + 4.13062i −0.257661 + 0.257661i −0.824102 0.566441i \(-0.808320\pi\)
0.566441 + 0.824102i \(0.308320\pi\)
\(258\) −15.2603 5.99064i −0.950063 0.372961i
\(259\) −3.81240 3.81240i −0.236891 0.236891i
\(260\) 5.53165 2.58197i 0.343058 0.160127i
\(261\) 3.22500 3.22500i 0.199623 0.199623i
\(262\) −9.57907 21.9603i −0.591797 1.35671i
\(263\) 17.1303 + 17.1303i 1.05630 + 1.05630i 0.998318 + 0.0579798i \(0.0184659\pi\)
0.0579798 + 0.998318i \(0.481534\pi\)
\(264\) −11.2303 3.93273i −0.691178 0.242043i
\(265\) −12.0176 4.88282i −0.738237 0.299949i
\(266\) −4.35565 + 11.0954i −0.267062 + 0.680300i
\(267\) 12.5190 0.766147
\(268\) 6.18620 6.66497i 0.377883 0.407128i
\(269\) −19.8075 + 19.8075i −1.20768 + 1.20768i −0.235910 + 0.971775i \(0.575807\pi\)
−0.971775 + 0.235910i \(0.924193\pi\)
\(270\) 12.1653 12.7992i 0.740356 0.778936i
\(271\) 27.9542i 1.69810i 0.528316 + 0.849048i \(0.322824\pi\)
−0.528316 + 0.849048i \(0.677176\pi\)
\(272\) 22.5206 + 19.3933i 1.36551 + 1.17589i
\(273\) −1.99311 1.99311i −0.120628 0.120628i
\(274\) 9.03326 3.94030i 0.545719 0.238042i
\(275\) −0.222281 16.4178i −0.0134041 0.990029i
\(276\) 0.122909 + 3.29914i 0.00739824 + 0.198585i
\(277\) 26.0257i 1.56373i 0.623447 + 0.781866i \(0.285732\pi\)
−0.623447 + 0.781866i \(0.714268\pi\)
\(278\) 8.23743 + 18.8846i 0.494048 + 1.13262i
\(279\) 0.329612i 0.0197333i
\(280\) −6.74314 + 7.64541i −0.402980 + 0.456901i
\(281\) 24.1001i 1.43769i −0.695170 0.718846i \(-0.744671\pi\)
0.695170 0.718846i \(-0.255329\pi\)
\(282\) −18.5019 + 8.07051i −1.10177 + 0.480592i
\(283\) 4.73708i 0.281590i 0.990039 + 0.140795i \(0.0449658\pi\)
−0.990039 + 0.140795i \(0.955034\pi\)
\(284\) −22.6316 21.0059i −1.34294 1.24647i
\(285\) −5.82588 13.8000i −0.345096 0.817439i
\(286\) 2.53455 + 5.81053i 0.149871 + 0.343584i
\(287\) 3.04262 + 3.04262i 0.179600 + 0.179600i
\(288\) 7.34408 + 2.26861i 0.432754 + 0.133679i
\(289\) 38.2049i 2.24734i
\(290\) −0.269446 10.6109i −0.0158224 0.623093i
\(291\) −2.09571 + 2.09571i −0.122852 + 0.122852i
\(292\) 4.22010 0.157219i 0.246963 0.00920056i
\(293\) −3.11001 −0.181689 −0.0908445 0.995865i \(-0.528957\pi\)
−0.0908445 + 0.995865i \(0.528957\pi\)
\(294\) −7.42366 2.91427i −0.432957 0.169964i
\(295\) 17.2314 7.27454i 1.00325 0.423540i
\(296\) 4.10287 + 8.52500i 0.238474 + 0.495505i
\(297\) 12.9663 + 12.9663i 0.752382 + 0.752382i
\(298\) 27.8718 12.1576i 1.61457 0.704273i
\(299\) 1.24370 1.24370i 0.0719248 0.0719248i
\(300\) −0.650208 12.7945i −0.0375398 0.738688i
\(301\) −10.3133 10.3133i −0.594449 0.594449i
\(302\) 5.53238 14.0929i 0.318352 0.810955i
\(303\) −8.50588 + 8.50588i −0.488650 + 0.488650i
\(304\) 13.6486 15.8495i 0.782801 0.909034i
\(305\) −8.20840 19.4435i −0.470012 1.11333i
\(306\) −5.70845 13.0868i −0.326330 0.748123i
\(307\) 14.5670i 0.831382i −0.909506 0.415691i \(-0.863540\pi\)
0.909506 0.415691i \(-0.136460\pi\)
\(308\) −7.75903 7.20167i −0.442112 0.410353i
\(309\) 2.07819 + 2.07819i 0.118224 + 0.118224i
\(310\) 0.556014 + 0.528475i 0.0315794 + 0.0300153i
\(311\) −14.4572 −0.819791 −0.409896 0.912132i \(-0.634435\pi\)
−0.409896 + 0.912132i \(0.634435\pi\)
\(312\) 2.14496 + 4.45684i 0.121435 + 0.252319i
\(313\) −10.1273 + 10.1273i −0.572429 + 0.572429i −0.932807 0.360377i \(-0.882648\pi\)
0.360377 + 0.932807i \(0.382648\pi\)
\(314\) −1.21230 + 3.08815i −0.0684139 + 0.174274i
\(315\) 4.51178 1.90472i 0.254210 0.107319i
\(316\) 15.1021 + 14.0173i 0.849561 + 0.788534i
\(317\) −13.8750 −0.779295 −0.389648 0.920964i \(-0.627403\pi\)
−0.389648 + 0.920964i \(0.627403\pi\)
\(318\) 3.84058 9.78332i 0.215369 0.548621i
\(319\) 11.0224 0.617136
\(320\) 15.6018 8.75121i 0.872167 0.489208i
\(321\) 4.67864 0.261136
\(322\) −1.07329 + 2.73405i −0.0598121 + 0.152362i
\(323\) −38.8520 −2.16179
\(324\) 4.51098 + 4.18694i 0.250610 + 0.232608i
\(325\) −4.76030 + 4.89097i −0.264054 + 0.271302i
\(326\) 1.41403 3.60203i 0.0783158 0.199498i
\(327\) 6.67140 6.67140i 0.368930 0.368930i
\(328\) −3.27445 6.80369i −0.180801 0.375671i
\(329\) −17.9584 −0.990076
\(330\) 13.2992 0.337712i 0.732097 0.0185904i
\(331\) 1.69458 + 1.69458i 0.0931425 + 0.0931425i 0.752143 0.659000i \(-0.229020\pi\)
−0.659000 + 0.752143i \(0.729020\pi\)
\(332\) −4.78741 4.44352i −0.262743 0.243870i
\(333\) 4.54508i 0.249069i
\(334\) 8.10251 + 18.5753i 0.443350 + 1.01639i
\(335\) −3.82699 + 9.41902i −0.209091 + 0.514616i
\(336\) −6.25890 5.38975i −0.341451 0.294035i
\(337\) −9.53338 + 9.53338i −0.519316 + 0.519316i −0.917364 0.398048i \(-0.869688\pi\)
0.398048 + 0.917364i \(0.369688\pi\)
\(338\) −5.75520 + 14.6605i −0.313042 + 0.797427i
\(339\) −5.48188 5.48188i −0.297735 0.297735i
\(340\) −31.2283 11.3530i −1.69359 0.615701i
\(341\) −0.563273 + 0.563273i −0.0305029 + 0.0305029i
\(342\) −9.21023 + 4.01749i −0.498032 + 0.217241i
\(343\) −12.9954 12.9954i −0.701683 0.701683i
\(344\) 11.0991 + 23.0618i 0.598422 + 1.24341i
\(345\) −1.43558 3.40050i −0.0772888 0.183077i
\(346\) 11.5790 + 4.54552i 0.622492 + 0.244369i
\(347\) −6.67273 −0.358211 −0.179105 0.983830i \(-0.557320\pi\)
−0.179105 + 0.983830i \(0.557320\pi\)
\(348\) 8.59415 0.320173i 0.460695 0.0171631i
\(349\) 2.02618 2.02618i 0.108459 0.108459i −0.650795 0.759254i \(-0.725564\pi\)
0.759254 + 0.650795i \(0.225564\pi\)
\(350\) 4.02082 10.6647i 0.214922 0.570052i
\(351\) 7.62233i 0.406850i
\(352\) 8.67345 + 16.4271i 0.462296 + 0.875567i
\(353\) −5.36542 5.36542i −0.285572 0.285572i 0.549754 0.835327i \(-0.314721\pi\)
−0.835327 + 0.549754i \(0.814721\pi\)
\(354\) 6.05912 + 13.8907i 0.322039 + 0.738284i
\(355\) 31.9832 + 12.9949i 1.69749 + 0.689700i
\(356\) −14.3247 13.2957i −0.759207 0.704671i
\(357\) 15.3425i 0.812009i
\(358\) −12.1370 + 5.29416i −0.641462 + 0.279805i
\(359\) 7.76117i 0.409619i 0.978802 + 0.204809i \(0.0656574\pi\)
−0.978802 + 0.204809i \(0.934343\pi\)
\(360\) −8.57690 + 0.537836i −0.452043 + 0.0283465i
\(361\) 8.34326i 0.439119i
\(362\) −4.67258 10.7120i −0.245585 0.563012i
\(363\) 0.277104i 0.0145442i
\(364\) 0.163823 + 4.39737i 0.00858666 + 0.230485i
\(365\) −4.34976 + 1.83632i −0.227677 + 0.0961175i
\(366\) 15.6739 6.83695i 0.819290 0.357373i
\(367\) 18.0536 + 18.0536i 0.942389 + 0.942389i 0.998429 0.0560392i \(-0.0178472\pi\)
−0.0560392 + 0.998429i \(0.517847\pi\)
\(368\) 3.36320 3.90554i 0.175319 0.203590i
\(369\) 3.62737i 0.188833i
\(370\) −7.66698 7.28724i −0.398587 0.378845i
\(371\) 6.61183 6.61183i 0.343269 0.343269i
\(372\) −0.422821 + 0.455545i −0.0219223 + 0.0236189i
\(373\) −4.36197 −0.225854 −0.112927 0.993603i \(-0.536023\pi\)
−0.112927 + 0.993603i \(0.536023\pi\)
\(374\) 12.6089 32.1192i 0.651988 1.66084i
\(375\) 5.74879 + 13.1188i 0.296866 + 0.677451i
\(376\) 29.7419 + 10.4153i 1.53382 + 0.537126i
\(377\) −3.23979 3.23979i −0.166858 0.166858i
\(378\) 5.08920 + 11.6671i 0.261760 + 0.600093i
\(379\) −5.93072 + 5.93072i −0.304641 + 0.304641i −0.842826 0.538186i \(-0.819110\pi\)
0.538186 + 0.842826i \(0.319110\pi\)
\(380\) −7.98998 + 21.9778i −0.409878 + 1.12744i
\(381\) −9.34249 9.34249i −0.478630 0.478630i
\(382\) 2.42096 + 0.950385i 0.123867 + 0.0486259i
\(383\) −19.3340 + 19.3340i −0.987922 + 0.987922i −0.999928 0.0120057i \(-0.996178\pi\)
0.0120057 + 0.999928i \(0.496178\pi\)
\(384\) 7.23984 + 12.5562i 0.369457 + 0.640758i
\(385\) 10.9652 + 4.45520i 0.558836 + 0.227058i
\(386\) −11.3354 + 4.94449i −0.576957 + 0.251668i
\(387\) 12.2954i 0.625008i
\(388\) 4.62373 0.172256i 0.234734 0.00874498i
\(389\) 6.28607 + 6.28607i 0.318716 + 0.318716i 0.848274 0.529558i \(-0.177642\pi\)
−0.529558 + 0.848274i \(0.677642\pi\)
\(390\) −4.00827 3.80974i −0.202967 0.192914i
\(391\) −9.57367 −0.484161
\(392\) 5.39937 + 11.2189i 0.272709 + 0.566640i
\(393\) −15.3466 + 15.3466i −0.774135 + 0.774135i
\(394\) 7.31489 + 2.87157i 0.368519 + 0.144668i
\(395\) −21.3425 8.67157i −1.07386 0.436314i
\(396\) −0.332237 8.91796i −0.0166955 0.448144i
\(397\) 6.58413 0.330448 0.165224 0.986256i \(-0.447165\pi\)
0.165224 + 0.986256i \(0.447165\pi\)
\(398\) 9.16767 + 3.59890i 0.459534 + 0.180397i
\(399\) 10.7977 0.540561
\(400\) −12.8443 + 15.3305i −0.642215 + 0.766524i
\(401\) 19.7951 0.988522 0.494261 0.869313i \(-0.335439\pi\)
0.494261 + 0.869313i \(0.335439\pi\)
\(402\) −7.66784 3.01012i −0.382437 0.150131i
\(403\) 0.331123 0.0164944
\(404\) 18.7664 0.699139i 0.933664 0.0347835i
\(405\) −6.37497 2.59018i −0.316775 0.128707i
\(406\) 7.12211 + 2.79589i 0.353464 + 0.138758i
\(407\) 7.76707 7.76707i 0.385000 0.385000i
\(408\) 8.89813 25.4095i 0.440523 1.25796i
\(409\) 5.76937 0.285277 0.142638 0.989775i \(-0.454441\pi\)
0.142638 + 0.989775i \(0.454441\pi\)
\(410\) 6.11892 + 5.81585i 0.302192 + 0.287225i
\(411\) −6.31276 6.31276i −0.311385 0.311385i
\(412\) −0.170816 4.58507i −0.00841550 0.225890i
\(413\) 13.4826i 0.663437i
\(414\) −2.26952 + 0.989964i −0.111541 + 0.0486541i
\(415\) 6.76563 + 2.74891i 0.332112 + 0.134939i
\(416\) 2.27901 7.37775i 0.111738 0.361724i
\(417\) 13.1972 13.1972i 0.646270 0.646270i
\(418\) −22.6048 8.87385i −1.10564 0.434034i
\(419\) 8.68932 + 8.68932i 0.424501 + 0.424501i 0.886750 0.462249i \(-0.152957\pi\)
−0.462249 + 0.886750i \(0.652957\pi\)
\(420\) 8.67893 + 3.15520i 0.423488 + 0.153958i
\(421\) 20.1193 20.1193i 0.980555 0.980555i −0.0192594 0.999815i \(-0.506131\pi\)
0.999815 + 0.0192594i \(0.00613083\pi\)
\(422\) 4.34513 + 9.96134i 0.211517 + 0.484911i
\(423\) −10.7048 10.7048i −0.520487 0.520487i
\(424\) −14.7849 + 7.11559i −0.718017 + 0.345564i
\(425\) 37.1466 0.502930i 1.80187 0.0243957i
\(426\) −10.2212 + 26.0369i −0.495217 + 1.26149i
\(427\) 15.2135 0.736231
\(428\) −5.35349 4.96893i −0.258770 0.240182i
\(429\) 4.06060 4.06060i 0.196048 0.196048i
\(430\) −20.7407 19.7134i −1.00021 0.950667i
\(431\) 33.6247i 1.61965i −0.586675 0.809823i \(-0.699563\pi\)
0.586675 0.809823i \(-0.300437\pi\)
\(432\) −1.66195 22.2742i −0.0799606 1.07167i
\(433\) 7.46558 + 7.46558i 0.358773 + 0.358773i 0.863361 0.504588i \(-0.168355\pi\)
−0.504588 + 0.863361i \(0.668355\pi\)
\(434\) −0.506835 + 0.221081i −0.0243289 + 0.0106122i
\(435\) −8.85819 + 3.73963i −0.424718 + 0.179302i
\(436\) −14.7190 + 0.548355i −0.704914 + 0.0262614i
\(437\) 6.73775i 0.322310i
\(438\) −1.52951 3.50646i −0.0730829 0.167545i
\(439\) 7.91929i 0.377967i 0.981980 + 0.188984i \(0.0605193\pi\)
−0.981980 + 0.188984i \(0.939481\pi\)
\(440\) −15.5762 13.7379i −0.742564 0.654931i
\(441\) 5.98132i 0.284825i
\(442\) −13.1468 + 5.73463i −0.625330 + 0.272768i
\(443\) 10.6463i 0.505823i 0.967489 + 0.252911i \(0.0813881\pi\)
−0.967489 + 0.252911i \(0.918612\pi\)
\(444\) 5.83036 6.28159i 0.276697 0.298111i
\(445\) 20.2438 + 8.22517i 0.959649 + 0.389910i
\(446\) 6.89106 + 15.7980i 0.326301 + 0.748056i
\(447\) −19.4778 19.4778i −0.921266 0.921266i
\(448\) 1.43752 + 12.8144i 0.0679164 + 0.605424i
\(449\) 6.08115i 0.286987i 0.989651 + 0.143494i \(0.0458336\pi\)
−0.989651 + 0.143494i \(0.954166\pi\)
\(450\) 8.75393 3.96036i 0.412664 0.186693i
\(451\) −6.19880 + 6.19880i −0.291890 + 0.291890i
\(452\) 0.450582 + 12.0946i 0.0211936 + 0.568882i
\(453\) −13.7148 −0.644379
\(454\) 7.92450 + 3.11088i 0.371915 + 0.146001i
\(455\) −1.91346 4.53247i −0.0897042 0.212485i
\(456\) −17.8827 6.26232i −0.837435 0.293260i
\(457\) 0.313815 + 0.313815i 0.0146796 + 0.0146796i 0.714409 0.699729i \(-0.246696\pi\)
−0.699729 + 0.714409i \(0.746696\pi\)
\(458\) 1.04218 0.454596i 0.0486977 0.0212419i
\(459\) −29.3374 + 29.3374i −1.36935 + 1.36935i
\(460\) −1.96884 + 5.41564i −0.0917977 + 0.252505i
\(461\) 9.90949 + 9.90949i 0.461531 + 0.461531i 0.899157 0.437626i \(-0.144181\pi\)
−0.437626 + 0.899157i \(0.644181\pi\)
\(462\) −3.50424 + 8.92652i −0.163032 + 0.415299i
\(463\) 17.3430 17.3430i 0.805999 0.805999i −0.178027 0.984026i \(-0.556971\pi\)
0.984026 + 0.178027i \(0.0569714\pi\)
\(464\) −10.1738 8.76103i −0.472307 0.406720i
\(465\) 0.261571 0.643781i 0.0121301 0.0298546i
\(466\) 10.1537 + 23.2777i 0.470361 + 1.07832i
\(467\) 1.52267i 0.0704606i −0.999379 0.0352303i \(-0.988784\pi\)
0.999379 0.0352303i \(-0.0112165\pi\)
\(468\) −2.52358 + 2.71889i −0.116653 + 0.125681i
\(469\) −5.18213 5.18213i −0.239289 0.239289i
\(470\) −35.2210 + 0.894381i −1.62463 + 0.0412547i
\(471\) 3.00530 0.138477
\(472\) 7.81950 22.3294i 0.359921 1.02779i
\(473\) 21.0115 21.0115i 0.966110 0.966110i
\(474\) 6.82062 17.3745i 0.313282 0.798038i
\(475\) −0.353952 26.1430i −0.0162404 1.19952i
\(476\) 16.2944 17.5555i 0.746852 0.804653i
\(477\) 7.88252 0.360916
\(478\) −0.921443 + 2.34724i −0.0421458 + 0.107360i
\(479\) 0.507657 0.0231955 0.0115977 0.999933i \(-0.496308\pi\)
0.0115977 + 0.999933i \(0.496308\pi\)
\(480\) −12.5438 10.2590i −0.572542 0.468258i
\(481\) −4.56592 −0.208188
\(482\) −5.39720 + 13.7486i −0.245836 + 0.626229i
\(483\) 2.66070 0.121066
\(484\) −0.294297 + 0.317074i −0.0133772 + 0.0144125i
\(485\) −4.76578 + 2.01195i −0.216403 + 0.0913581i
\(486\) −6.61979 + 16.8629i −0.300280 + 0.764918i
\(487\) −25.9809 + 25.9809i −1.17730 + 1.17730i −0.196876 + 0.980428i \(0.563080\pi\)
−0.980428 + 0.196876i \(0.936920\pi\)
\(488\) −25.1959 8.82332i −1.14057 0.399413i
\(489\) −3.50539 −0.158519
\(490\) −10.0897 9.59000i −0.455808 0.433232i
\(491\) −3.28208 3.28208i −0.148118 0.148118i 0.629159 0.777277i \(-0.283400\pi\)
−0.777277 + 0.629159i \(0.783400\pi\)
\(492\) −4.65314 + 5.01326i −0.209780 + 0.226015i
\(493\) 24.9391i 1.12320i
\(494\) 4.03591 + 9.25246i 0.181584 + 0.416288i
\(495\) 3.88053 + 9.19195i 0.174417 + 0.413147i
\(496\) 0.967619 0.0721971i 0.0434474 0.00324175i
\(497\) −17.5964 + 17.5964i −0.789308 + 0.789308i
\(498\) −2.16215 + 5.50777i −0.0968885 + 0.246809i
\(499\) −6.73907 6.73907i −0.301682 0.301682i 0.539990 0.841672i \(-0.318428\pi\)
−0.841672 + 0.539990i \(0.818428\pi\)
\(500\) 7.35476 21.1165i 0.328915 0.944360i
\(501\) 12.9810 12.9810i 0.579950 0.579950i
\(502\) 23.1894 10.1152i 1.03499 0.451463i
\(503\) −6.12090 6.12090i −0.272918 0.272918i 0.557356 0.830274i \(-0.311816\pi\)
−0.830274 + 0.557356i \(0.811816\pi\)
\(504\) 2.04741 5.84660i 0.0911990 0.260428i
\(505\) −19.3430 + 8.16596i −0.860752 + 0.363380i
\(506\) −5.57013 2.18664i −0.247623 0.0972079i
\(507\) 14.2672 0.633629
\(508\) 0.767904 + 20.6122i 0.0340702 + 0.914519i
\(509\) 13.8727 13.8727i 0.614894 0.614894i −0.329323 0.944217i \(-0.606820\pi\)
0.944217 + 0.329323i \(0.106820\pi\)
\(510\) 0.764101 + 30.0906i 0.0338350 + 1.33243i
\(511\) 3.40344i 0.150559i
\(512\) 5.05119 22.0564i 0.223233 0.974765i
\(513\) 20.6471 + 20.6471i 0.911590 + 0.911590i
\(514\) −3.30299 7.57221i −0.145689 0.333996i
\(515\) 1.99514 + 4.72594i 0.0879162 + 0.208250i
\(516\) 15.7723 16.9930i 0.694337 0.748074i
\(517\) 36.5869i 1.60909i
\(518\) 6.98884 3.04853i 0.307072 0.133945i
\(519\) 11.2684i 0.494628i
\(520\) 0.540302 + 8.61623i 0.0236938 + 0.377847i
\(521\) 5.87686i 0.257470i 0.991679 + 0.128735i \(0.0410917\pi\)
−0.991679 + 0.128735i \(0.958908\pi\)
\(522\) 2.57883 + 5.91204i 0.112872 + 0.258763i
\(523\) 26.0176i 1.13767i −0.822452 0.568834i \(-0.807395\pi\)
0.822452 0.568834i \(-0.192605\pi\)
\(524\) 33.8591 1.26141i 1.47914 0.0551051i
\(525\) −10.3237 + 0.139774i −0.450564 + 0.00610022i
\(526\) −31.4030 + 13.6980i −1.36924 + 0.597260i
\(527\) −1.27445 1.27445i −0.0555160 0.0555160i
\(528\) 10.9807 12.7514i 0.477872 0.554933i
\(529\) 21.3397i 0.927814i
\(530\) 12.6382 13.2968i 0.548970 0.577577i
\(531\) −8.03690 + 8.03690i −0.348772 + 0.348772i
\(532\) −12.3552 11.4677i −0.535665 0.497186i
\(533\) 3.64400 0.157839
\(534\) −6.46951 + 16.4801i −0.279963 + 0.713164i
\(535\) 7.56561 + 3.07394i 0.327090 + 0.132898i
\(536\) 5.57696 + 11.5879i 0.240888 + 0.500521i
\(537\) 8.48177 + 8.48177i 0.366016 + 0.366016i
\(538\) −15.8388 36.3109i −0.682858 1.56547i
\(539\) 10.2215 10.2215i 0.440270 0.440270i
\(540\) 10.5623 + 22.6289i 0.454529 + 0.973792i
\(541\) −6.57691 6.57691i −0.282764 0.282764i 0.551447 0.834210i \(-0.314076\pi\)
−0.834210 + 0.551447i \(0.814076\pi\)
\(542\) −36.7992 14.4461i −1.58066 0.620513i
\(543\) −7.48594 + 7.48594i −0.321253 + 0.321253i
\(544\) −37.1677 + 19.6244i −1.59355 + 0.841390i
\(545\) 15.1712 6.40479i 0.649865 0.274351i
\(546\) 3.65374 1.59376i 0.156366 0.0682066i
\(547\) 10.6170i 0.453951i 0.973900 + 0.226976i \(0.0728838\pi\)
−0.973900 + 0.226976i \(0.927116\pi\)
\(548\) 0.518876 + 13.9277i 0.0221653 + 0.594964i
\(549\) 9.06863 + 9.06863i 0.387040 + 0.387040i
\(550\) 21.7274 + 8.19171i 0.926460 + 0.349296i
\(551\) 17.5516 0.747724
\(552\) −4.40654 1.54312i −0.187555 0.0656796i
\(553\) 11.7422 11.7422i 0.499328 0.499328i
\(554\) −34.2605 13.4495i −1.45559 0.571414i
\(555\) −3.60686 + 8.87722i −0.153103 + 0.376817i
\(556\) −29.1168 + 1.08474i −1.23483 + 0.0460033i
\(557\) 20.9610 0.888146 0.444073 0.895991i \(-0.353533\pi\)
0.444073 + 0.895991i \(0.353533\pi\)
\(558\) −0.433905 0.170336i −0.0183687 0.00721089i
\(559\) −12.3517 −0.522422
\(560\) −6.57981 12.8277i −0.278048 0.542070i
\(561\) −31.2575 −1.31969
\(562\) 31.7257 + 12.4544i 1.33827 + 0.525356i
\(563\) 16.5598 0.697911 0.348955 0.937139i \(-0.386536\pi\)
0.348955 + 0.937139i \(0.386536\pi\)
\(564\) −1.06276 28.5268i −0.0447503 1.20119i
\(565\) −5.26280 12.4662i −0.221408 0.524456i
\(566\) −6.23594 2.44801i −0.262116 0.102898i
\(567\) 3.50736 3.50736i 0.147295 0.147295i
\(568\) 39.3479 18.9371i 1.65100 0.794584i
\(569\) −39.6751 −1.66327 −0.831634 0.555325i \(-0.812594\pi\)
−0.831634 + 0.555325i \(0.812594\pi\)
\(570\) 21.1771 0.537759i 0.887012 0.0225242i
\(571\) 24.0292 + 24.0292i 1.00559 + 1.00559i 0.999984 + 0.00560819i \(0.00178515\pi\)
0.00560819 + 0.999984i \(0.498215\pi\)
\(572\) −8.95885 + 0.333760i −0.374588 + 0.0139552i
\(573\) 2.35602i 0.0984240i
\(574\) −5.57771 + 2.43299i −0.232809 + 0.101551i
\(575\) −0.0872185 6.44199i −0.00363726 0.268649i
\(576\) −6.78168 + 8.49547i −0.282570 + 0.353978i
\(577\) −28.7705 + 28.7705i −1.19773 + 1.19773i −0.222888 + 0.974844i \(0.571549\pi\)
−0.974844 + 0.222888i \(0.928451\pi\)
\(578\) 50.2933 + 19.7434i 2.09193 + 0.821217i
\(579\) 7.92157 + 7.92157i 0.329209 + 0.329209i
\(580\) 14.1076 + 5.12877i 0.585785 + 0.212960i
\(581\) −3.72230 + 3.72230i −0.154427 + 0.154427i
\(582\) −1.67580 3.84182i −0.0694641 0.159249i
\(583\) 13.4704 + 13.4704i 0.557888 + 0.557888i
\(584\) −1.97389 + 5.63664i −0.0816800 + 0.233246i
\(585\) 1.56117 3.84237i 0.0645466 0.158862i
\(586\) 1.60718 4.09406i 0.0663922 0.169124i
\(587\) 33.4854 1.38209 0.691046 0.722811i \(-0.257150\pi\)
0.691046 + 0.722811i \(0.257150\pi\)
\(588\) 7.67276 8.26657i 0.316419 0.340908i
\(589\) −0.896933 + 0.896933i −0.0369575 + 0.0369575i
\(590\) 0.671477 + 26.4430i 0.0276443 + 1.08864i
\(591\) 7.11866i 0.292822i
\(592\) −13.3427 + 0.995540i −0.548381 + 0.0409164i
\(593\) 11.5298 + 11.5298i 0.473472 + 0.473472i 0.903036 0.429564i \(-0.141333\pi\)
−0.429564 + 0.903036i \(0.641333\pi\)
\(594\) −23.7697 + 10.3683i −0.975284 + 0.425418i
\(595\) −10.0803 + 24.8096i −0.413250 + 1.01709i
\(596\) 1.60097 + 42.9735i 0.0655783 + 1.76026i
\(597\) 8.92172i 0.365142i
\(598\) 0.994503 + 2.27993i 0.0406683 + 0.0932333i
\(599\) 20.0148i 0.817781i −0.912583 0.408891i \(-0.865916\pi\)
0.912583 0.408891i \(-0.134084\pi\)
\(600\) 17.1788 + 5.75594i 0.701321 + 0.234985i
\(601\) 27.5924i 1.12552i 0.826621 + 0.562759i \(0.190260\pi\)
−0.826621 + 0.562759i \(0.809740\pi\)
\(602\) 18.9062 8.24688i 0.770560 0.336118i
\(603\) 6.17806i 0.251590i
\(604\) 15.6931 + 14.5658i 0.638542 + 0.592673i
\(605\) 0.182062 0.448093i 0.00740188 0.0182176i
\(606\) −6.80160 15.5929i −0.276296 0.633418i
\(607\) −30.4850 30.4850i −1.23735 1.23735i −0.961081 0.276265i \(-0.910903\pi\)
−0.276265 0.961081i \(-0.589097\pi\)
\(608\) 13.8113 + 26.1579i 0.560120 + 1.06084i
\(609\) 6.93104i 0.280860i
\(610\) 29.8376 0.757677i 1.20809 0.0306774i
\(611\) −10.7539 + 10.7539i −0.435057 + 0.435057i
\(612\) 20.1776 0.751714i 0.815632 0.0303862i
\(613\) −20.2657 −0.818523 −0.409261 0.912417i \(-0.634214\pi\)
−0.409261 + 0.912417i \(0.634214\pi\)
\(614\) 19.1762 + 7.52788i 0.773887 + 0.303801i
\(615\) 2.87859 7.08480i 0.116076 0.285687i
\(616\) 13.4901 6.49242i 0.543530 0.261587i
\(617\) 1.61302 + 1.61302i 0.0649378 + 0.0649378i 0.738830 0.673892i \(-0.235379\pi\)
−0.673892 + 0.738830i \(0.735379\pi\)
\(618\) −3.80971 + 1.66179i −0.153249 + 0.0668470i
\(619\) −2.46756 + 2.46756i −0.0991797 + 0.0991797i −0.754956 0.655776i \(-0.772342\pi\)
0.655776 + 0.754956i \(0.272342\pi\)
\(620\) −0.983026 + 0.458839i −0.0394793 + 0.0184274i
\(621\) 5.08771 + 5.08771i 0.204163 + 0.204163i
\(622\) 7.47114 19.0316i 0.299565 0.763098i
\(623\) −11.1377 + 11.1377i −0.446222 + 0.446222i
\(624\) −6.97551 + 0.520465i −0.279244 + 0.0208353i
\(625\) 0.676829 + 24.9908i 0.0270732 + 0.999633i
\(626\) −8.09815 18.5653i −0.323667 0.742017i
\(627\) 21.9984i 0.878531i
\(628\) −3.43879 3.19177i −0.137222 0.127365i
\(629\) 17.5737 + 17.5737i 0.700708 + 0.700708i
\(630\) 0.175816 + 6.92368i 0.00700466 + 0.275846i
\(631\) −29.9602 −1.19270 −0.596348 0.802726i \(-0.703382\pi\)
−0.596348 + 0.802726i \(0.703382\pi\)
\(632\) −26.2570 + 12.6368i −1.04445 + 0.502666i
\(633\) 6.96133 6.96133i 0.276688 0.276688i
\(634\) 7.17026 18.2652i 0.284767 0.725402i
\(635\) −8.96913 21.2455i −0.355929 0.843101i
\(636\) 10.8942 + 10.1116i 0.431981 + 0.400950i
\(637\) −6.00875 −0.238075
\(638\) −5.69612 + 14.5100i −0.225512 + 0.574457i
\(639\) −20.9782 −0.829885
\(640\) 3.45755 + 25.0608i 0.136672 + 0.990616i
\(641\) −37.3386 −1.47478 −0.737392 0.675465i \(-0.763943\pi\)
−0.737392 + 0.675465i \(0.763943\pi\)
\(642\) −2.41781 + 6.15901i −0.0954234 + 0.243077i
\(643\) 24.5635 0.968691 0.484345 0.874877i \(-0.339058\pi\)
0.484345 + 0.874877i \(0.339058\pi\)
\(644\) −3.04448 2.82579i −0.119969 0.111352i
\(645\) −9.75728 + 24.0147i −0.384193 + 0.945577i
\(646\) 20.0778 51.1453i 0.789952 2.01229i
\(647\) −23.1347 + 23.1347i −0.909519 + 0.909519i −0.996233 0.0867142i \(-0.972363\pi\)
0.0867142 + 0.996233i \(0.472363\pi\)
\(648\) −7.84291 + 3.77459i −0.308099 + 0.148280i
\(649\) −27.4685 −1.07823
\(650\) −3.97852 8.79406i −0.156050 0.344932i
\(651\) 0.354194 + 0.354194i 0.0138820 + 0.0138820i
\(652\) 4.01101 + 3.72289i 0.157083 + 0.145800i
\(653\) 50.8060i 1.98819i −0.108496 0.994097i \(-0.534603\pi\)
0.108496 0.994097i \(-0.465397\pi\)
\(654\) 5.33469 + 12.2299i 0.208603 + 0.478229i
\(655\) −34.8993 + 14.7333i −1.36363 + 0.575679i
\(656\) 10.6486 0.794528i 0.415759 0.0310211i
\(657\) 2.02877 2.02877i 0.0791497 0.0791497i
\(658\) 9.28047 23.6406i 0.361790 0.921607i
\(659\) −9.97780 9.97780i −0.388680 0.388680i 0.485537 0.874216i \(-0.338624\pi\)
−0.874216 + 0.485537i \(0.838624\pi\)
\(660\) −6.42816 + 17.6818i −0.250216 + 0.688262i
\(661\) −5.09643 + 5.09643i −0.198228 + 0.198228i −0.799240 0.601012i \(-0.794764\pi\)
0.601012 + 0.799240i \(0.294764\pi\)
\(662\) −3.10648 + 1.35505i −0.120737 + 0.0526653i
\(663\) 9.18745 + 9.18745i 0.356811 + 0.356811i
\(664\) 8.32353 4.00590i 0.323015 0.155459i
\(665\) 17.4605 + 7.09428i 0.677088 + 0.275104i
\(666\) 5.98320 + 2.34879i 0.231844 + 0.0910139i
\(667\) 4.32496 0.167463
\(668\) −28.6399 + 1.06697i −1.10811 + 0.0412825i
\(669\) 11.0402 11.0402i 0.426838 0.426838i
\(670\) −10.4216 9.90543i −0.402622 0.382680i
\(671\) 30.9947i 1.19654i
\(672\) 10.3296 5.45399i 0.398473 0.210392i
\(673\) −31.6322 31.6322i −1.21933 1.21933i −0.967867 0.251464i \(-0.919088\pi\)
−0.251464 0.967867i \(-0.580912\pi\)
\(674\) −7.62323 17.4765i −0.293636 0.673169i
\(675\) −20.0080 19.4735i −0.770108 0.749534i
\(676\) −16.3251 15.1524i −0.627889 0.582786i
\(677\) 25.6600i 0.986196i −0.869974 0.493098i \(-0.835864\pi\)
0.869974 0.493098i \(-0.164136\pi\)
\(678\) 10.0493 4.38350i 0.385942 0.168347i
\(679\) 3.72896i 0.143104i
\(680\) 31.0833 35.2424i 1.19199 1.35148i
\(681\) 7.71190i 0.295521i
\(682\) −0.450413 1.03259i −0.0172472 0.0395397i
\(683\) 12.3536i 0.472698i 0.971668 + 0.236349i \(0.0759509\pi\)
−0.971668 + 0.236349i \(0.924049\pi\)
\(684\) −0.529041 14.2006i −0.0202284 0.542974i
\(685\) −6.06048 14.3557i −0.231559 0.548501i
\(686\) 23.8230 10.3915i 0.909564 0.396751i
\(687\) −0.728309 0.728309i −0.0277867 0.0277867i
\(688\) −36.0946 + 2.69314i −1.37610 + 0.102675i
\(689\) 7.91866i 0.301677i
\(690\) 5.21833 0.132511i 0.198658 0.00504461i
\(691\) 22.5426 22.5426i 0.857561 0.857561i −0.133489 0.991050i \(-0.542618\pi\)
0.991050 + 0.133489i \(0.0426180\pi\)
\(692\) −11.9676 + 12.8938i −0.454938 + 0.490147i
\(693\) −7.19219 −0.273209
\(694\) 3.44831 8.78406i 0.130896 0.333438i
\(695\) 30.0114 12.6698i 1.13840 0.480593i
\(696\) −4.01978 + 11.4789i −0.152369 + 0.435107i
\(697\) −14.0253 14.0253i −0.531247 0.531247i
\(698\) 1.62021 + 3.71438i 0.0613258 + 0.140591i
\(699\) 16.2673 16.2673i 0.615285 0.615285i
\(700\) 11.9613 + 10.8043i 0.452094 + 0.408365i
\(701\) 26.9530 + 26.9530i 1.01800 + 1.01800i 0.999835 + 0.0181663i \(0.00578284\pi\)
0.0181663 + 0.999835i \(0.494217\pi\)
\(702\) 10.0341 + 3.93904i 0.378714 + 0.148670i
\(703\) 12.3680 12.3680i 0.466467 0.466467i
\(704\) −26.1071 + 2.92869i −0.983947 + 0.110379i
\(705\) 12.4131 + 29.4032i 0.467503 + 1.10739i
\(706\) 9.83583 4.29038i 0.370176 0.161471i
\(707\) 15.1348i 0.569203i
\(708\) −21.4171 + 0.797891i −0.804905 + 0.0299866i
\(709\) 7.78615 + 7.78615i 0.292415 + 0.292415i 0.838034 0.545619i \(-0.183705\pi\)
−0.545619 + 0.838034i \(0.683705\pi\)
\(710\) −33.6349 + 35.3876i −1.26229 + 1.32807i
\(711\) 13.9988 0.524997
\(712\) 24.9053 11.9863i 0.933365 0.449205i
\(713\) −0.221016 + 0.221016i −0.00827713 + 0.00827713i
\(714\) −20.1970 7.92863i −0.755854 0.296721i
\(715\) 9.23410 3.89833i 0.345336 0.145789i
\(716\) −0.697158 18.7132i −0.0260540 0.699346i
\(717\) 2.28427 0.0853076
\(718\) −10.2169 4.01079i −0.381291 0.149681i
\(719\) 20.6777 0.771150 0.385575 0.922677i \(-0.374003\pi\)
0.385575 + 0.922677i \(0.374003\pi\)
\(720\) 3.72433 11.5687i 0.138798 0.431139i
\(721\) −3.69779 −0.137713
\(722\) −10.9832 4.31161i −0.408751 0.160461i
\(723\) 13.3797 0.497597
\(724\) 16.5161 0.615306i 0.613817 0.0228677i
\(725\) −16.7812 + 0.227201i −0.623237 + 0.00843805i
\(726\) 0.364783 + 0.143201i 0.0135384 + 0.00531469i
\(727\) 20.4994 20.4994i 0.760280 0.760280i −0.216093 0.976373i \(-0.569331\pi\)
0.976373 + 0.216093i \(0.0693315\pi\)
\(728\) −5.87341 2.05680i −0.217683 0.0762301i
\(729\) 25.6425 0.949722
\(730\) −0.169502 6.67505i −0.00627355 0.247055i
\(731\) 47.5403 + 47.5403i 1.75834 + 1.75834i
\(732\) 0.900320 + 24.1665i 0.0332768 + 0.893221i
\(733\) 10.7306i 0.396344i 0.980167 + 0.198172i \(0.0635005\pi\)
−0.980167 + 0.198172i \(0.936500\pi\)
\(734\) −33.0956 + 14.4363i −1.22158 + 0.532853i
\(735\) −4.74663 + 11.6824i −0.175082 + 0.430912i
\(736\) 3.40328 + 6.44565i 0.125447 + 0.237590i
\(737\) 10.5577 10.5577i 0.388897 0.388897i
\(738\) −4.77511 1.87454i −0.175774 0.0690028i
\(739\) 2.93837 + 2.93837i 0.108090 + 0.108090i 0.759083 0.650994i \(-0.225648\pi\)
−0.650994 + 0.759083i \(0.725648\pi\)
\(740\) 13.5551 6.32702i 0.498296 0.232586i
\(741\) 6.46594 6.46594i 0.237532 0.237532i
\(742\) 5.28705 + 12.1207i 0.194094 + 0.444966i
\(743\) −0.223404 0.223404i −0.00819590 0.00819590i 0.702997 0.711193i \(-0.251845\pi\)
−0.711193 + 0.702997i \(0.751845\pi\)
\(744\) −0.381180 0.792022i −0.0139747 0.0290369i
\(745\) −18.6994 44.2938i −0.685091 1.62280i
\(746\) 2.25416 5.74215i 0.0825308 0.210235i
\(747\) −4.43766 −0.162366
\(748\) 35.7661 + 33.1969i 1.30774 + 1.21380i
\(749\) −4.16243 + 4.16243i −0.152092 + 0.152092i
\(750\) −20.2406 + 0.788286i −0.739081 + 0.0287841i
\(751\) 39.9939i 1.45940i −0.683769 0.729699i \(-0.739660\pi\)
0.683769 0.729699i \(-0.260340\pi\)
\(752\) −29.0807 + 33.7702i −1.06046 + 1.23147i
\(753\) −16.2055 16.2055i −0.590563 0.590563i
\(754\) 5.93915 2.59065i 0.216291 0.0943459i
\(755\) −22.1776 9.01088i −0.807126 0.327939i
\(756\) −17.9888 + 0.670168i −0.654245 + 0.0243738i
\(757\) 32.9120i 1.19621i −0.801419 0.598103i \(-0.795921\pi\)
0.801419 0.598103i \(-0.204079\pi\)
\(758\) −4.74241 10.8721i −0.172252 0.394894i
\(759\) 5.42070i 0.196759i
\(760\) −24.8029 21.8758i −0.899694 0.793517i
\(761\) 33.9591i 1.23102i 0.788130 + 0.615509i \(0.211049\pi\)
−0.788130 + 0.615509i \(0.788951\pi\)
\(762\) 17.1266 7.47058i 0.620430 0.270631i
\(763\) 11.8707i 0.429747i
\(764\) −2.50220 + 2.69585i −0.0905263 + 0.0975324i
\(765\) −20.7976 + 8.78003i −0.751937 + 0.317443i
\(766\) −15.4602 35.4429i −0.558598 1.28060i
\(767\)