Properties

Label 80.2.s.b.27.5
Level $80$
Weight $2$
Character 80.27
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(3,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + \cdots + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 27.5
Root \(0.235136 + 1.39453i\) of defining polynomial
Character \(\chi\) \(=\) 80.27
Dual form 80.2.s.b.3.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.430311 - 1.34716i) q^{2} -2.96561 q^{3} +(-1.62967 - 1.15939i) q^{4} +(-0.177336 - 2.22902i) q^{5} +(-1.27613 + 3.99515i) q^{6} +(-0.115101 - 0.115101i) q^{7} +(-2.26315 + 1.69652i) q^{8} +5.79486 q^{9} +O(q^{10})\) \(q+(0.430311 - 1.34716i) q^{2} -2.96561 q^{3} +(-1.62967 - 1.15939i) q^{4} +(-0.177336 - 2.22902i) q^{5} +(-1.27613 + 3.99515i) q^{6} +(-0.115101 - 0.115101i) q^{7} +(-2.26315 + 1.69652i) q^{8} +5.79486 q^{9} +(-3.07916 - 0.720273i) q^{10} +(2.95966 - 2.95966i) q^{11} +(4.83296 + 3.43831i) q^{12} -1.55822i q^{13} +(-0.204588 + 0.105530i) q^{14} +(0.525911 + 6.61042i) q^{15} +(1.31162 + 3.77884i) q^{16} +(0.299668 + 0.299668i) q^{17} +(2.49359 - 7.80658i) q^{18} +(-2.26261 + 2.26261i) q^{19} +(-2.29532 + 3.83817i) q^{20} +(0.341344 + 0.341344i) q^{21} +(-2.71356 - 5.26071i) q^{22} +(4.14573 - 4.14573i) q^{23} +(6.71162 - 5.03121i) q^{24} +(-4.93710 + 0.790575i) q^{25} +(-2.09917 - 0.670518i) q^{26} -8.28846 q^{27} +(0.0541288 + 0.321023i) q^{28} +(0.289656 + 0.289656i) q^{29} +(9.13159 + 2.13605i) q^{30} -4.18508i q^{31} +(5.65510 - 0.140879i) q^{32} +(-8.77721 + 8.77721i) q^{33} +(0.532650 - 0.274749i) q^{34} +(-0.236151 + 0.276974i) q^{35} +(-9.44368 - 6.71851i) q^{36} +1.63643i q^{37} +(2.07447 + 4.02172i) q^{38} +4.62107i q^{39} +(4.18292 + 4.74376i) q^{40} +7.61648i q^{41} +(0.606729 - 0.312960i) q^{42} +6.72651i q^{43} +(-8.25467 + 1.39185i) q^{44} +(-1.02764 - 12.9169i) q^{45} +(-3.80100 - 7.36890i) q^{46} +(4.38366 - 4.38366i) q^{47} +(-3.88975 - 11.2066i) q^{48} -6.97350i q^{49} +(-1.05946 + 6.99125i) q^{50} +(-0.888698 - 0.888698i) q^{51} +(-1.80659 + 2.53938i) q^{52} +11.4324 q^{53} +(-3.56661 + 11.1659i) q^{54} +(-7.12202 - 6.07231i) q^{55} +(0.455760 + 0.0652196i) q^{56} +(6.71003 - 6.71003i) q^{57} +(0.514854 - 0.265570i) q^{58} +(1.63497 + 1.63497i) q^{59} +(6.80702 - 11.3825i) q^{60} +(-1.23034 + 1.23034i) q^{61} +(-5.63796 - 1.80089i) q^{62} +(-0.666993 - 0.666993i) q^{63} +(2.24366 - 7.67893i) q^{64} +(-3.47331 + 0.276329i) q^{65} +(8.04736 + 15.6012i) q^{66} +2.49337i q^{67} +(-0.140926 - 0.835791i) q^{68} +(-12.2946 + 12.2946i) q^{69} +(0.271509 + 0.437317i) q^{70} +8.00096 q^{71} +(-13.1146 + 9.83107i) q^{72} +(-1.12102 - 1.12102i) q^{73} +(2.20453 + 0.704173i) q^{74} +(14.6415 - 2.34454i) q^{75} +(6.31056 - 1.06405i) q^{76} -0.681319 q^{77} +(6.22531 + 1.98850i) q^{78} +3.62218 q^{79} +(8.19054 - 3.59376i) q^{80} +7.19579 q^{81} +(10.2606 + 3.27745i) q^{82} +1.62629 q^{83} +(-0.160525 - 0.952029i) q^{84} +(0.614825 - 0.721109i) q^{85} +(9.06167 + 2.89449i) q^{86} +(-0.859007 - 0.859007i) q^{87} +(-1.67703 + 11.7193i) q^{88} -15.7149 q^{89} +(-17.8433 - 4.17388i) q^{90} +(-0.179352 + 0.179352i) q^{91} +(-11.5627 + 1.94962i) q^{92} +12.4113i q^{93} +(-4.01915 - 7.79182i) q^{94} +(5.44467 + 4.64218i) q^{95} +(-16.7708 + 0.417792i) q^{96} +(9.69217 + 9.69217i) q^{97} +(-9.39441 - 3.00077i) q^{98} +(17.1508 - 17.1508i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{4} + 2 q^{5} - 8 q^{6} + 2 q^{7} - 12 q^{8} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + 4 q^{4} + 2 q^{5} - 8 q^{6} + 2 q^{7} - 12 q^{8} + 10 q^{9} - 2 q^{11} - 12 q^{14} - 20 q^{15} - 6 q^{17} - 24 q^{18} - 2 q^{19} - 12 q^{20} - 16 q^{21} + 12 q^{22} - 2 q^{23} - 4 q^{24} - 6 q^{25} - 16 q^{26} - 24 q^{27} + 40 q^{28} + 14 q^{29} + 40 q^{30} + 20 q^{32} - 8 q^{33} + 28 q^{34} + 2 q^{35} - 4 q^{36} + 24 q^{38} + 44 q^{40} + 8 q^{42} - 44 q^{44} - 14 q^{45} + 12 q^{46} + 38 q^{47} + 4 q^{48} - 8 q^{50} + 8 q^{51} + 8 q^{52} + 12 q^{53} + 4 q^{54} - 6 q^{55} + 20 q^{56} - 24 q^{57} + 20 q^{58} + 10 q^{59} + 8 q^{60} + 14 q^{61} - 40 q^{62} - 6 q^{63} + 16 q^{64} + 4 q^{66} - 60 q^{68} - 32 q^{69} - 28 q^{70} + 24 q^{71} - 68 q^{72} - 14 q^{73} - 48 q^{74} + 16 q^{75} - 16 q^{76} - 44 q^{77} - 36 q^{78} - 16 q^{79} - 92 q^{80} + 2 q^{81} + 48 q^{82} + 40 q^{83} + 24 q^{84} + 14 q^{85} - 36 q^{86} + 24 q^{87} - 8 q^{88} + 12 q^{89} - 8 q^{90} - 8 q^{92} - 28 q^{94} + 34 q^{95} - 40 q^{96} + 18 q^{97} - 56 q^{98} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.430311 1.34716i 0.304276 0.952584i
\(3\) −2.96561 −1.71220 −0.856099 0.516813i \(-0.827118\pi\)
−0.856099 + 0.516813i \(0.827118\pi\)
\(4\) −1.62967 1.15939i −0.814833 0.579696i
\(5\) −0.177336 2.22902i −0.0793073 0.996850i
\(6\) −1.27613 + 3.99515i −0.520980 + 1.63101i
\(7\) −0.115101 0.115101i −0.0435040 0.0435040i 0.685020 0.728524i \(-0.259793\pi\)
−0.728524 + 0.685020i \(0.759793\pi\)
\(8\) −2.26315 + 1.69652i −0.800143 + 0.599809i
\(9\) 5.79486 1.93162
\(10\) −3.07916 0.720273i −0.973715 0.227770i
\(11\) 2.95966 2.95966i 0.892372 0.892372i −0.102374 0.994746i \(-0.532644\pi\)
0.994746 + 0.102374i \(0.0326439\pi\)
\(12\) 4.83296 + 3.43831i 1.39515 + 0.992554i
\(13\) 1.55822i 0.432172i −0.976374 0.216086i \(-0.930671\pi\)
0.976374 0.216086i \(-0.0693292\pi\)
\(14\) −0.204588 + 0.105530i −0.0546784 + 0.0282040i
\(15\) 0.525911 + 6.61042i 0.135790 + 1.70680i
\(16\) 1.31162 + 3.77884i 0.327905 + 0.944711i
\(17\) 0.299668 + 0.299668i 0.0726801 + 0.0726801i 0.742512 0.669832i \(-0.233634\pi\)
−0.669832 + 0.742512i \(0.733634\pi\)
\(18\) 2.49359 7.80658i 0.587745 1.84003i
\(19\) −2.26261 + 2.26261i −0.519079 + 0.519079i −0.917293 0.398214i \(-0.869630\pi\)
0.398214 + 0.917293i \(0.369630\pi\)
\(20\) −2.29532 + 3.83817i −0.513248 + 0.858240i
\(21\) 0.341344 + 0.341344i 0.0744874 + 0.0744874i
\(22\) −2.71356 5.26071i −0.578532 1.12159i
\(23\) 4.14573 4.14573i 0.864444 0.864444i −0.127406 0.991851i \(-0.540665\pi\)
0.991851 + 0.127406i \(0.0406652\pi\)
\(24\) 6.71162 5.03121i 1.37000 1.02699i
\(25\) −4.93710 + 0.790575i −0.987421 + 0.158115i
\(26\) −2.09917 0.670518i −0.411680 0.131499i
\(27\) −8.28846 −1.59511
\(28\) 0.0541288 + 0.321023i 0.0102294 + 0.0606676i
\(29\) 0.289656 + 0.289656i 0.0537878 + 0.0537878i 0.733489 0.679701i \(-0.237891\pi\)
−0.679701 + 0.733489i \(0.737891\pi\)
\(30\) 9.13159 + 2.13605i 1.66719 + 0.389988i
\(31\) 4.18508i 0.751663i −0.926688 0.375832i \(-0.877357\pi\)
0.926688 0.375832i \(-0.122643\pi\)
\(32\) 5.65510 0.140879i 0.999690 0.0249041i
\(33\) −8.77721 + 8.77721i −1.52792 + 1.52792i
\(34\) 0.532650 0.274749i 0.0913487 0.0471191i
\(35\) −0.236151 + 0.276974i −0.0399168 + 0.0468172i
\(36\) −9.44368 6.71851i −1.57395 1.11975i
\(37\) 1.63643i 0.269027i 0.990912 + 0.134514i \(0.0429472\pi\)
−0.990912 + 0.134514i \(0.957053\pi\)
\(38\) 2.07447 + 4.02172i 0.336523 + 0.652410i
\(39\) 4.62107i 0.739964i
\(40\) 4.18292 + 4.74376i 0.661377 + 0.750054i
\(41\) 7.61648i 1.18949i 0.803913 + 0.594747i \(0.202748\pi\)
−0.803913 + 0.594747i \(0.797252\pi\)
\(42\) 0.606729 0.312960i 0.0936203 0.0482908i
\(43\) 6.72651i 1.02578i 0.858453 + 0.512892i \(0.171426\pi\)
−0.858453 + 0.512892i \(0.828574\pi\)
\(44\) −8.25467 + 1.39185i −1.24444 + 0.209829i
\(45\) −1.02764 12.9169i −0.153191 1.92553i
\(46\) −3.80100 7.36890i −0.560427 1.08649i
\(47\) 4.38366 4.38366i 0.639423 0.639423i −0.310990 0.950413i \(-0.600661\pi\)
0.950413 + 0.310990i \(0.100661\pi\)
\(48\) −3.88975 11.2066i −0.561437 1.61753i
\(49\) 6.97350i 0.996215i
\(50\) −1.05946 + 6.99125i −0.149830 + 0.988712i
\(51\) −0.888698 0.888698i −0.124443 0.124443i
\(52\) −1.80659 + 2.53938i −0.250529 + 0.352148i
\(53\) 11.4324 1.57036 0.785182 0.619265i \(-0.212569\pi\)
0.785182 + 0.619265i \(0.212569\pi\)
\(54\) −3.56661 + 11.1659i −0.485355 + 1.51948i
\(55\) −7.12202 6.07231i −0.960333 0.818790i
\(56\) 0.455760 + 0.0652196i 0.0609035 + 0.00871533i
\(57\) 6.71003 6.71003i 0.888766 0.888766i
\(58\) 0.514854 0.265570i 0.0676037 0.0348711i
\(59\) 1.63497 + 1.63497i 0.212855 + 0.212855i 0.805479 0.592624i \(-0.201908\pi\)
−0.592624 + 0.805479i \(0.701908\pi\)
\(60\) 6.80702 11.3825i 0.878782 1.46948i
\(61\) −1.23034 + 1.23034i −0.157528 + 0.157528i −0.781471 0.623942i \(-0.785530\pi\)
0.623942 + 0.781471i \(0.285530\pi\)
\(62\) −5.63796 1.80089i −0.716022 0.228713i
\(63\) −0.666993 0.666993i −0.0840332 0.0840332i
\(64\) 2.24366 7.67893i 0.280458 0.959866i
\(65\) −3.47331 + 0.276329i −0.430811 + 0.0342744i
\(66\) 8.04736 + 15.6012i 0.990561 + 1.92038i
\(67\) 2.49337i 0.304614i 0.988333 + 0.152307i \(0.0486702\pi\)
−0.988333 + 0.152307i \(0.951330\pi\)
\(68\) −0.140926 0.835791i −0.0170897 0.101354i
\(69\) −12.2946 + 12.2946i −1.48010 + 1.48010i
\(70\) 0.271509 + 0.437317i 0.0324516 + 0.0522694i
\(71\) 8.00096 0.949540 0.474770 0.880110i \(-0.342531\pi\)
0.474770 + 0.880110i \(0.342531\pi\)
\(72\) −13.1146 + 9.83107i −1.54557 + 1.15860i
\(73\) −1.12102 1.12102i −0.131205 0.131205i 0.638454 0.769660i \(-0.279574\pi\)
−0.769660 + 0.638454i \(0.779574\pi\)
\(74\) 2.20453 + 0.704173i 0.256271 + 0.0818584i
\(75\) 14.6415 2.34454i 1.69066 0.270724i
\(76\) 6.31056 1.06405i 0.723871 0.122054i
\(77\) −0.681319 −0.0776435
\(78\) 6.22531 + 1.98850i 0.704878 + 0.225153i
\(79\) 3.62218 0.407527 0.203763 0.979020i \(-0.434683\pi\)
0.203763 + 0.979020i \(0.434683\pi\)
\(80\) 8.19054 3.59376i 0.915730 0.401794i
\(81\) 7.19579 0.799532
\(82\) 10.2606 + 3.27745i 1.13309 + 0.361934i
\(83\) 1.62629 0.178509 0.0892545 0.996009i \(-0.471552\pi\)
0.0892545 + 0.996009i \(0.471552\pi\)
\(84\) −0.160525 0.952029i −0.0175147 0.103875i
\(85\) 0.614825 0.721109i 0.0666871 0.0782152i
\(86\) 9.06167 + 2.89449i 0.977145 + 0.312121i
\(87\) −0.859007 0.859007i −0.0920953 0.0920953i
\(88\) −1.67703 + 11.7193i −0.178772 + 1.24928i
\(89\) −15.7149 −1.66577 −0.832887 0.553443i \(-0.813314\pi\)
−0.832887 + 0.553443i \(0.813314\pi\)
\(90\) −17.8433 4.17388i −1.88085 0.439966i
\(91\) −0.179352 + 0.179352i −0.0188012 + 0.0188012i
\(92\) −11.5627 + 1.94962i −1.20549 + 0.203262i
\(93\) 12.4113i 1.28700i
\(94\) −4.01915 7.79182i −0.414543 0.803665i
\(95\) 5.44467 + 4.64218i 0.558611 + 0.476277i
\(96\) −16.7708 + 0.417792i −1.71167 + 0.0426407i
\(97\) 9.69217 + 9.69217i 0.984091 + 0.984091i 0.999875 0.0157848i \(-0.00502467\pi\)
−0.0157848 + 0.999875i \(0.505025\pi\)
\(98\) −9.39441 3.00077i −0.948978 0.303124i
\(99\) 17.1508 17.1508i 1.72372 1.72372i
\(100\) 8.96241 + 4.43567i 0.896241 + 0.443567i
\(101\) −12.8067 12.8067i −1.27432 1.27432i −0.943800 0.330516i \(-0.892777\pi\)
−0.330516 0.943800i \(-0.607223\pi\)
\(102\) −1.57963 + 0.814800i −0.156407 + 0.0806772i
\(103\) −4.33738 + 4.33738i −0.427375 + 0.427375i −0.887733 0.460358i \(-0.847721\pi\)
0.460358 + 0.887733i \(0.347721\pi\)
\(104\) 2.64354 + 3.52648i 0.259221 + 0.345800i
\(105\) 0.700332 0.821398i 0.0683454 0.0801602i
\(106\) 4.91950 15.4013i 0.477824 1.49590i
\(107\) −11.9807 −1.15822 −0.579108 0.815251i \(-0.696599\pi\)
−0.579108 + 0.815251i \(0.696599\pi\)
\(108\) 13.5074 + 9.60958i 1.29975 + 0.924682i
\(109\) 4.01503 + 4.01503i 0.384570 + 0.384570i 0.872746 0.488175i \(-0.162337\pi\)
−0.488175 + 0.872746i \(0.662337\pi\)
\(110\) −11.2450 + 6.98150i −1.07217 + 0.665660i
\(111\) 4.85301i 0.460628i
\(112\) 0.283980 0.585916i 0.0268336 0.0553639i
\(113\) 6.47754 6.47754i 0.609356 0.609356i −0.333422 0.942778i \(-0.608203\pi\)
0.942778 + 0.333422i \(0.108203\pi\)
\(114\) −6.15207 11.9269i −0.576194 1.11705i
\(115\) −9.97612 8.50575i −0.930278 0.793165i
\(116\) −0.136217 0.807867i −0.0126475 0.0750086i
\(117\) 9.02966i 0.834792i
\(118\) 2.90611 1.49902i 0.267529 0.137996i
\(119\) 0.0689840i 0.00632375i
\(120\) −12.4049 14.0681i −1.13241 1.28424i
\(121\) 6.51921i 0.592655i
\(122\) 1.12803 + 2.18688i 0.102127 + 0.197991i
\(123\) 22.5875i 2.03665i
\(124\) −4.85215 + 6.82028i −0.435736 + 0.612480i
\(125\) 2.63774 + 10.8647i 0.235927 + 0.971771i
\(126\) −1.18556 + 0.611530i −0.105618 + 0.0544794i
\(127\) −12.2756 + 12.2756i −1.08928 + 1.08928i −0.0936781 + 0.995603i \(0.529862\pi\)
−0.995603 + 0.0936781i \(0.970138\pi\)
\(128\) −9.37925 6.32690i −0.829017 0.559224i
\(129\) 19.9482i 1.75634i
\(130\) −1.12234 + 4.79800i −0.0984360 + 0.420813i
\(131\) 7.99562 + 7.99562i 0.698581 + 0.698581i 0.964104 0.265524i \(-0.0855448\pi\)
−0.265524 + 0.964104i \(0.585545\pi\)
\(132\) 24.4802 4.12768i 2.13072 0.359269i
\(133\) 0.520857 0.0451641
\(134\) 3.35896 + 1.07292i 0.290170 + 0.0926865i
\(135\) 1.46985 + 18.4752i 0.126504 + 1.59009i
\(136\) −1.18658 0.169801i −0.101749 0.0145603i
\(137\) −3.08551 + 3.08551i −0.263613 + 0.263613i −0.826520 0.562907i \(-0.809683\pi\)
0.562907 + 0.826520i \(0.309683\pi\)
\(138\) 11.2723 + 21.8533i 0.959561 + 1.86028i
\(139\) 12.2206 + 12.2206i 1.03654 + 1.03654i 0.999307 + 0.0372284i \(0.0118529\pi\)
0.0372284 + 0.999307i \(0.488147\pi\)
\(140\) 0.705969 0.177583i 0.0596653 0.0150085i
\(141\) −13.0002 + 13.0002i −1.09482 + 1.09482i
\(142\) 3.44290 10.7786i 0.288922 0.904516i
\(143\) −4.61180 4.61180i −0.385658 0.385658i
\(144\) 7.60064 + 21.8979i 0.633386 + 1.82482i
\(145\) 0.594284 0.697017i 0.0493526 0.0578841i
\(146\) −1.99258 + 1.02780i −0.164907 + 0.0850616i
\(147\) 20.6807i 1.70572i
\(148\) 1.89726 2.66683i 0.155954 0.219212i
\(149\) 2.59172 2.59172i 0.212322 0.212322i −0.592931 0.805253i \(-0.702029\pi\)
0.805253 + 0.592931i \(0.202029\pi\)
\(150\) 3.14195 20.7333i 0.256539 1.69287i
\(151\) −16.9594 −1.38014 −0.690068 0.723745i \(-0.742419\pi\)
−0.690068 + 0.723745i \(0.742419\pi\)
\(152\) 1.28207 8.95919i 0.103989 0.726686i
\(153\) 1.73653 + 1.73653i 0.140390 + 0.140390i
\(154\) −0.293179 + 0.917844i −0.0236250 + 0.0739620i
\(155\) −9.32865 + 0.742168i −0.749296 + 0.0596124i
\(156\) 5.35764 7.53080i 0.428954 0.602947i
\(157\) 8.55235 0.682552 0.341276 0.939963i \(-0.389141\pi\)
0.341276 + 0.939963i \(0.389141\pi\)
\(158\) 1.55866 4.87964i 0.124000 0.388203i
\(159\) −33.9041 −2.68877
\(160\) −1.31688 12.5804i −0.104108 0.994566i
\(161\) −0.954354 −0.0752136
\(162\) 3.09643 9.69386i 0.243278 0.761622i
\(163\) −3.57797 −0.280248 −0.140124 0.990134i \(-0.544750\pi\)
−0.140124 + 0.990134i \(0.544750\pi\)
\(164\) 8.83049 12.4123i 0.689545 0.969238i
\(165\) 21.1211 + 18.0081i 1.64428 + 1.40193i
\(166\) 0.699812 2.19087i 0.0543159 0.170045i
\(167\) 0.482874 + 0.482874i 0.0373659 + 0.0373659i 0.725543 0.688177i \(-0.241589\pi\)
−0.688177 + 0.725543i \(0.741589\pi\)
\(168\) −1.35161 0.193416i −0.104279 0.0149224i
\(169\) 10.5720 0.813227
\(170\) −0.706881 1.13857i −0.0542153 0.0873241i
\(171\) −13.1115 + 13.1115i −1.00266 + 1.00266i
\(172\) 7.79867 10.9620i 0.594643 0.835842i
\(173\) 11.8189i 0.898576i −0.893387 0.449288i \(-0.851678\pi\)
0.893387 0.449288i \(-0.148322\pi\)
\(174\) −1.52686 + 0.787578i −0.115751 + 0.0597061i
\(175\) 0.659260 + 0.477269i 0.0498354 + 0.0360781i
\(176\) 15.0661 + 7.30216i 1.13565 + 0.550421i
\(177\) −4.84870 4.84870i −0.364451 0.364451i
\(178\) −6.76228 + 21.1704i −0.506855 + 1.58679i
\(179\) −4.71524 + 4.71524i −0.352433 + 0.352433i −0.861014 0.508581i \(-0.830170\pi\)
0.508581 + 0.861014i \(0.330170\pi\)
\(180\) −13.3010 + 22.2416i −0.991400 + 1.65779i
\(181\) 13.1843 + 13.1843i 0.979983 + 0.979983i 0.999804 0.0198205i \(-0.00630948\pi\)
−0.0198205 + 0.999804i \(0.506309\pi\)
\(182\) 0.164439 + 0.318793i 0.0121890 + 0.0236305i
\(183\) 3.64870 3.64870i 0.269720 0.269720i
\(184\) −2.34910 + 16.4157i −0.173178 + 1.21018i
\(185\) 3.64764 0.290199i 0.268180 0.0213358i
\(186\) 16.7200 + 5.34073i 1.22597 + 0.391601i
\(187\) 1.77383 0.129715
\(188\) −12.2263 + 2.06152i −0.891694 + 0.150352i
\(189\) 0.954008 + 0.954008i 0.0693939 + 0.0693939i
\(190\) 8.59664 5.33724i 0.623666 0.387204i
\(191\) 13.9872i 1.01208i −0.862510 0.506040i \(-0.831109\pi\)
0.862510 0.506040i \(-0.168891\pi\)
\(192\) −6.65384 + 22.7727i −0.480199 + 1.64348i
\(193\) 3.88875 3.88875i 0.279919 0.279919i −0.553158 0.833076i \(-0.686577\pi\)
0.833076 + 0.553158i \(0.186577\pi\)
\(194\) 17.2275 8.88623i 1.23686 0.637994i
\(195\) 10.3005 0.819485i 0.737633 0.0586845i
\(196\) −8.08503 + 11.3645i −0.577502 + 0.811748i
\(197\) 22.3277i 1.59078i −0.606097 0.795391i \(-0.707266\pi\)
0.606097 0.795391i \(-0.292734\pi\)
\(198\) −15.7247 30.4850i −1.11750 2.16648i
\(199\) 9.83847i 0.697431i −0.937229 0.348715i \(-0.886618\pi\)
0.937229 0.348715i \(-0.113382\pi\)
\(200\) 9.83217 10.1651i 0.695239 0.718779i
\(201\) 7.39437i 0.521559i
\(202\) −22.7635 + 11.7418i −1.60164 + 0.826150i
\(203\) 0.0666793i 0.00467997i
\(204\) 0.417931 + 2.47863i 0.0292610 + 0.173539i
\(205\) 16.9773 1.35068i 1.18575 0.0943355i
\(206\) 3.97671 + 7.70955i 0.277071 + 0.537150i
\(207\) 24.0239 24.0239i 1.66978 1.66978i
\(208\) 5.88827 2.04379i 0.408278 0.141711i
\(209\) 13.3931i 0.926423i
\(210\) −0.805192 1.29691i −0.0555635 0.0894956i
\(211\) 11.0531 + 11.0531i 0.760925 + 0.760925i 0.976490 0.215565i \(-0.0691592\pi\)
−0.215565 + 0.976490i \(0.569159\pi\)
\(212\) −18.6310 13.2547i −1.27958 0.910334i
\(213\) −23.7278 −1.62580
\(214\) −5.15541 + 16.1398i −0.352417 + 1.10330i
\(215\) 14.9936 1.19286i 1.02255 0.0813521i
\(216\) 18.7580 14.0615i 1.27632 0.956764i
\(217\) −0.481706 + 0.481706i −0.0327004 + 0.0327004i
\(218\) 7.13659 3.68117i 0.483351 0.249320i
\(219\) 3.32451 + 3.32451i 0.224650 + 0.224650i
\(220\) 4.56632 + 18.1530i 0.307861 + 1.22388i
\(221\) 0.466948 0.466948i 0.0314103 0.0314103i
\(222\) −6.53777 2.08830i −0.438787 0.140158i
\(223\) 5.93975 + 5.93975i 0.397755 + 0.397755i 0.877440 0.479686i \(-0.159249\pi\)
−0.479686 + 0.877440i \(0.659249\pi\)
\(224\) −0.667122 0.634691i −0.0445740 0.0424071i
\(225\) −28.6098 + 4.58127i −1.90732 + 0.305418i
\(226\) −5.93891 11.5136i −0.395051 0.765875i
\(227\) 23.2105i 1.54054i −0.637720 0.770269i \(-0.720122\pi\)
0.637720 0.770269i \(-0.279878\pi\)
\(228\) −18.7147 + 3.15555i −1.23941 + 0.208981i
\(229\) 5.59944 5.59944i 0.370021 0.370021i −0.497464 0.867485i \(-0.665735\pi\)
0.867485 + 0.497464i \(0.165735\pi\)
\(230\) −15.7514 + 9.77929i −1.03862 + 0.644828i
\(231\) 2.02053 0.132941
\(232\) −1.14694 0.164128i −0.0753003 0.0107755i
\(233\) 3.01998 + 3.01998i 0.197845 + 0.197845i 0.799076 0.601230i \(-0.205323\pi\)
−0.601230 + 0.799076i \(0.705323\pi\)
\(234\) −12.1644 3.88556i −0.795209 0.254007i
\(235\) −10.5487 8.99391i −0.688120 0.586698i
\(236\) −0.768884 4.56004i −0.0500501 0.296833i
\(237\) −10.7420 −0.697766
\(238\) −0.0929323 0.0296846i −0.00602391 0.00192416i
\(239\) −0.00138865 −8.98241e−5 −4.49120e−5 1.00000i \(-0.500014\pi\)
−4.49120e−5 1.00000i \(0.500014\pi\)
\(240\) −24.2900 + 10.6577i −1.56791 + 0.687951i
\(241\) −12.8578 −0.828245 −0.414123 0.910221i \(-0.635912\pi\)
−0.414123 + 0.910221i \(0.635912\pi\)
\(242\) −8.78240 2.80529i −0.564554 0.180331i
\(243\) 3.52546 0.226158
\(244\) 3.43148 0.578593i 0.219678 0.0370407i
\(245\) −15.5441 + 1.23666i −0.993077 + 0.0790071i
\(246\) −30.4289 9.71965i −1.94008 0.619702i
\(247\) 3.52565 + 3.52565i 0.224332 + 0.224332i
\(248\) 7.10006 + 9.47146i 0.450854 + 0.601438i
\(249\) −4.82296 −0.305643
\(250\) 15.7715 + 1.12176i 0.997480 + 0.0709463i
\(251\) −9.14111 + 9.14111i −0.576982 + 0.576982i −0.934071 0.357089i \(-0.883769\pi\)
0.357089 + 0.934071i \(0.383769\pi\)
\(252\) 0.313668 + 1.86028i 0.0197593 + 0.117187i
\(253\) 24.5399i 1.54281i
\(254\) 11.2548 + 21.8194i 0.706190 + 1.36907i
\(255\) −1.82333 + 2.13853i −0.114181 + 0.133920i
\(256\) −12.5593 + 9.91280i −0.784957 + 0.619550i
\(257\) 21.2733 + 21.2733i 1.32699 + 1.32699i 0.907980 + 0.419013i \(0.137624\pi\)
0.419013 + 0.907980i \(0.362376\pi\)
\(258\) −26.8734 8.58394i −1.67306 0.534413i
\(259\) 0.188354 0.188354i 0.0117038 0.0117038i
\(260\) 5.98071 + 3.57660i 0.370908 + 0.221812i
\(261\) 1.67851 + 1.67851i 0.103897 + 0.103897i
\(262\) 14.2120 7.33076i 0.878018 0.452896i
\(263\) −16.7214 + 16.7214i −1.03108 + 1.03108i −0.0315818 + 0.999501i \(0.510054\pi\)
−0.999501 + 0.0315818i \(0.989946\pi\)
\(264\) 4.97343 34.7548i 0.306094 2.13901i
\(265\) −2.02739 25.4832i −0.124541 1.56542i
\(266\) 0.224131 0.701677i 0.0137423 0.0430226i
\(267\) 46.6043 2.85213
\(268\) 2.89079 4.06336i 0.176583 0.248209i
\(269\) 15.9096 + 15.9096i 0.970026 + 0.970026i 0.999564 0.0295378i \(-0.00940355\pi\)
−0.0295378 + 0.999564i \(0.509404\pi\)
\(270\) 25.5215 + 5.96996i 1.55319 + 0.363320i
\(271\) 12.3601i 0.750824i 0.926858 + 0.375412i \(0.122499\pi\)
−0.926858 + 0.375412i \(0.877501\pi\)
\(272\) −0.739348 + 1.52545i −0.0448295 + 0.0924938i
\(273\) 0.531889 0.531889i 0.0321914 0.0321914i
\(274\) 2.82894 + 5.48440i 0.170902 + 0.331324i
\(275\) −12.2723 + 16.9520i −0.740049 + 1.02224i
\(276\) 34.2904 5.78183i 2.06404 0.348025i
\(277\) 21.0270i 1.26339i 0.775217 + 0.631695i \(0.217641\pi\)
−0.775217 + 0.631695i \(0.782359\pi\)
\(278\) 21.7217 11.2044i 1.30278 0.671994i
\(279\) 24.2520i 1.45193i
\(280\) 0.0645531 1.02747i 0.00385779 0.0614029i
\(281\) 10.6807i 0.637158i 0.947896 + 0.318579i \(0.103206\pi\)
−0.947896 + 0.318579i \(0.896794\pi\)
\(282\) 11.9192 + 23.1075i 0.709780 + 1.37603i
\(283\) 12.5946i 0.748673i −0.927293 0.374336i \(-0.877871\pi\)
0.927293 0.374336i \(-0.122129\pi\)
\(284\) −13.0389 9.27626i −0.773716 0.550445i
\(285\) −16.1468 13.7669i −0.956452 0.815481i
\(286\) −8.19733 + 4.22832i −0.484718 + 0.250026i
\(287\) 0.876663 0.876663i 0.0517478 0.0517478i
\(288\) 32.7705 0.816372i 1.93102 0.0481052i
\(289\) 16.8204i 0.989435i
\(290\) −0.683265 1.10053i −0.0401227 0.0646252i
\(291\) −28.7432 28.7432i −1.68496 1.68496i
\(292\) 0.527185 + 3.12659i 0.0308512 + 0.182970i
\(293\) 3.43132 0.200460 0.100230 0.994964i \(-0.468042\pi\)
0.100230 + 0.994964i \(0.468042\pi\)
\(294\) 27.8602 + 8.89913i 1.62484 + 0.519008i
\(295\) 3.35446 3.93434i 0.195304 0.229066i
\(296\) −2.77623 3.70348i −0.161365 0.215260i
\(297\) −24.5310 + 24.5310i −1.42344 + 1.42344i
\(298\) −2.37621 4.60670i −0.137650 0.266859i
\(299\) −6.45996 6.45996i −0.373589 0.373589i
\(300\) −26.5790 13.1545i −1.53454 0.759474i
\(301\) 0.774227 0.774227i 0.0446257 0.0446257i
\(302\) −7.29781 + 22.8470i −0.419942 + 1.31470i
\(303\) 37.9798 + 37.9798i 2.18188 + 2.18188i
\(304\) −11.5177 5.58238i −0.660588 0.320171i
\(305\) 2.96063 + 2.52427i 0.169525 + 0.144539i
\(306\) 3.08663 1.59213i 0.176451 0.0910162i
\(307\) 11.8104i 0.674053i −0.941495 0.337027i \(-0.890579\pi\)
0.941495 0.337027i \(-0.109421\pi\)
\(308\) 1.11032 + 0.789916i 0.0632665 + 0.0450097i
\(309\) 12.8630 12.8630i 0.731750 0.731750i
\(310\) −3.01440 + 12.8865i −0.171207 + 0.731906i
\(311\) 22.6262 1.28301 0.641506 0.767118i \(-0.278310\pi\)
0.641506 + 0.767118i \(0.278310\pi\)
\(312\) −7.83973 10.4582i −0.443837 0.592077i
\(313\) 7.08945 + 7.08945i 0.400719 + 0.400719i 0.878486 0.477767i \(-0.158554\pi\)
−0.477767 + 0.878486i \(0.658554\pi\)
\(314\) 3.68017 11.5214i 0.207684 0.650188i
\(315\) −1.36846 + 1.60503i −0.0771040 + 0.0904329i
\(316\) −5.90294 4.19952i −0.332066 0.236242i
\(317\) −25.1265 −1.41124 −0.705621 0.708589i \(-0.749332\pi\)
−0.705621 + 0.708589i \(0.749332\pi\)
\(318\) −14.5893 + 45.6742i −0.818128 + 2.56128i
\(319\) 1.71457 0.0959974
\(320\) −17.5144 3.63943i −0.979085 0.203450i
\(321\) 35.5300 1.98309
\(322\) −0.410669 + 1.28566i −0.0228857 + 0.0716473i
\(323\) −1.35606 −0.0754535
\(324\) −11.7267 8.34274i −0.651485 0.463486i
\(325\) 1.23189 + 7.69309i 0.0683329 + 0.426736i
\(326\) −1.53964 + 4.82008i −0.0852726 + 0.266960i
\(327\) −11.9070 11.9070i −0.658460 0.658460i
\(328\) −12.9215 17.2372i −0.713469 0.951765i
\(329\) −1.00913 −0.0556349
\(330\) 33.3484 20.7044i 1.83577 1.13974i
\(331\) 5.80829 5.80829i 0.319253 0.319253i −0.529227 0.848480i \(-0.677518\pi\)
0.848480 + 0.529227i \(0.177518\pi\)
\(332\) −2.65032 1.88551i −0.145455 0.103481i
\(333\) 9.48287i 0.519658i
\(334\) 0.858293 0.442721i 0.0469637 0.0242246i
\(335\) 5.55778 0.442166i 0.303654 0.0241581i
\(336\) −0.842174 + 1.73760i −0.0459443 + 0.0947939i
\(337\) −7.41679 7.41679i −0.404019 0.404019i 0.475628 0.879647i \(-0.342221\pi\)
−0.879647 + 0.475628i \(0.842221\pi\)
\(338\) 4.54923 14.2421i 0.247445 0.774667i
\(339\) −19.2099 + 19.2099i −1.04334 + 1.04334i
\(340\) −1.83801 + 0.462343i −0.0996799 + 0.0250741i
\(341\) −12.3864 12.3864i −0.670763 0.670763i
\(342\) 12.0213 + 23.3053i 0.650035 + 1.26021i
\(343\) −1.60836 + 1.60836i −0.0868434 + 0.0868434i
\(344\) −11.4116 15.2231i −0.615274 0.820774i
\(345\) 29.5853 + 25.2247i 1.59282 + 1.35805i
\(346\) −15.9220 5.08581i −0.855970 0.273415i
\(347\) −18.2493 −0.979673 −0.489837 0.871814i \(-0.662944\pi\)
−0.489837 + 0.871814i \(0.662944\pi\)
\(348\) 0.403968 + 2.39582i 0.0216549 + 0.128430i
\(349\) −19.4413 19.4413i −1.04067 1.04067i −0.999137 0.0415330i \(-0.986776\pi\)
−0.0415330 0.999137i \(-0.513224\pi\)
\(350\) 0.926643 0.682754i 0.0495312 0.0364947i
\(351\) 12.9152i 0.689364i
\(352\) 16.3202 17.1541i 0.869871 0.914319i
\(353\) −1.13598 + 1.13598i −0.0604622 + 0.0604622i −0.736691 0.676229i \(-0.763613\pi\)
0.676229 + 0.736691i \(0.263613\pi\)
\(354\) −8.61841 + 4.44551i −0.458063 + 0.236276i
\(355\) −1.41886 17.8343i −0.0753054 0.946549i
\(356\) 25.6100 + 18.2197i 1.35733 + 0.965643i
\(357\) 0.204580i 0.0108275i
\(358\) 4.32315 + 8.38118i 0.228485 + 0.442959i
\(359\) 28.4140i 1.49963i 0.661645 + 0.749817i \(0.269859\pi\)
−0.661645 + 0.749817i \(0.730141\pi\)
\(360\) 24.2394 + 27.4894i 1.27753 + 1.44882i
\(361\) 8.76116i 0.461114i
\(362\) 23.4347 12.0880i 1.23170 0.635331i
\(363\) 19.3334i 1.01474i
\(364\) 0.500224 0.0843445i 0.0262189 0.00442085i
\(365\) −2.29998 + 2.69758i −0.120387 + 0.141198i
\(366\) −3.34530 6.48545i −0.174861 0.339000i
\(367\) −2.29692 + 2.29692i −0.119898 + 0.119898i −0.764510 0.644612i \(-0.777019\pi\)
0.644612 + 0.764510i \(0.277019\pi\)
\(368\) 21.1037 + 10.2285i 1.10011 + 0.533195i
\(369\) 44.1364i 2.29765i
\(370\) 1.17868 5.03882i 0.0612764 0.261956i
\(371\) −1.31588 1.31588i −0.0683172 0.0683172i
\(372\) 14.3896 20.2263i 0.746066 1.04869i
\(373\) −18.0787 −0.936081 −0.468040 0.883707i \(-0.655040\pi\)
−0.468040 + 0.883707i \(0.655040\pi\)
\(374\) 0.763298 2.38963i 0.0394692 0.123565i
\(375\) −7.82251 32.2206i −0.403953 1.66386i
\(376\) −2.48392 + 17.3578i −0.128098 + 0.895162i
\(377\) 0.451348 0.451348i 0.0232456 0.0232456i
\(378\) 1.69572 0.874679i 0.0872184 0.0449886i
\(379\) −2.79031 2.79031i −0.143328 0.143328i 0.631802 0.775130i \(-0.282316\pi\)
−0.775130 + 0.631802i \(0.782316\pi\)
\(380\) −3.49088 13.8777i −0.179078 0.711911i
\(381\) 36.4046 36.4046i 1.86506 1.86506i
\(382\) −18.8430 6.01885i −0.964090 0.307951i
\(383\) −8.12206 8.12206i −0.415018 0.415018i 0.468464 0.883482i \(-0.344807\pi\)
−0.883482 + 0.468464i \(0.844807\pi\)
\(384\) 27.8152 + 18.7631i 1.41944 + 0.957501i
\(385\) 0.120823 + 1.51868i 0.00615770 + 0.0773990i
\(386\) −3.56539 6.91213i −0.181474 0.351818i
\(387\) 38.9792i 1.98142i
\(388\) −4.55796 27.0320i −0.231396 1.37234i
\(389\) −14.4341 + 14.4341i −0.731839 + 0.731839i −0.970984 0.239145i \(-0.923133\pi\)
0.239145 + 0.970984i \(0.423133\pi\)
\(390\) 3.32844 14.2290i 0.168542 0.720514i
\(391\) 2.48468 0.125656
\(392\) 11.8307 + 15.7821i 0.597539 + 0.797114i
\(393\) −23.7119 23.7119i −1.19611 1.19611i
\(394\) −30.0789 9.60785i −1.51535 0.484036i
\(395\) −0.642344 8.07392i −0.0323198 0.406243i
\(396\) −47.8346 + 8.06556i −2.40378 + 0.405310i
\(397\) −35.1624 −1.76475 −0.882374 0.470549i \(-0.844056\pi\)
−0.882374 + 0.470549i \(0.844056\pi\)
\(398\) −13.2540 4.23360i −0.664362 0.212211i
\(399\) −1.54466 −0.0773298
\(400\) −9.46305 17.6196i −0.473153 0.880980i
\(401\) −23.5164 −1.17435 −0.587176 0.809459i \(-0.699760\pi\)
−0.587176 + 0.809459i \(0.699760\pi\)
\(402\) −9.96138 3.18188i −0.496828 0.158698i
\(403\) −6.52128 −0.324848
\(404\) 6.02265 + 35.7187i 0.299638 + 1.77707i
\(405\) −1.27608 16.0396i −0.0634087 0.797014i
\(406\) −0.0898275 0.0286928i −0.00445806 0.00142400i
\(407\) 4.84328 + 4.84328i 0.240072 + 0.240072i
\(408\) 3.51895 + 0.503563i 0.174214 + 0.0249301i
\(409\) 23.2595 1.15011 0.575054 0.818115i \(-0.304981\pi\)
0.575054 + 0.818115i \(0.304981\pi\)
\(410\) 5.48594 23.4523i 0.270931 1.15823i
\(411\) 9.15043 9.15043i 0.451357 0.451357i
\(412\) 12.0972 2.03975i 0.595986 0.100491i
\(413\) 0.376374i 0.0185201i
\(414\) −22.0262 42.7017i −1.08253 2.09868i
\(415\) −0.288401 3.62505i −0.0141571 0.177947i
\(416\) −0.219520 8.81188i −0.0107628 0.432038i
\(417\) −36.2415 36.2415i −1.77475 1.77475i
\(418\) 18.0427 + 5.76322i 0.882496 + 0.281888i
\(419\) 6.63975 6.63975i 0.324373 0.324373i −0.526069 0.850442i \(-0.676335\pi\)
0.850442 + 0.526069i \(0.176335\pi\)
\(420\) −2.09363 + 0.526644i −0.102159 + 0.0256976i
\(421\) 7.28216 + 7.28216i 0.354911 + 0.354911i 0.861933 0.507022i \(-0.169254\pi\)
−0.507022 + 0.861933i \(0.669254\pi\)
\(422\) 19.6465 10.1340i 0.956376 0.493314i
\(423\) 25.4027 25.4027i 1.23512 1.23512i
\(424\) −25.8733 + 19.3953i −1.25652 + 0.941919i
\(425\) −1.71640 1.24258i −0.0832576 0.0602740i
\(426\) −10.2103 + 31.9650i −0.494691 + 1.54871i
\(427\) 0.283225 0.0137062
\(428\) 19.5245 + 13.8903i 0.943751 + 0.671413i
\(429\) 13.6768 + 13.6768i 0.660323 + 0.660323i
\(430\) 4.84493 20.7120i 0.233643 0.998821i
\(431\) 11.7250i 0.564771i −0.959301 0.282386i \(-0.908874\pi\)
0.959301 0.282386i \(-0.0911258\pi\)
\(432\) −10.8713 31.3208i −0.523045 1.50692i
\(433\) −20.8827 + 20.8827i −1.00356 + 1.00356i −0.00356603 + 0.999994i \(0.501135\pi\)
−0.999994 + 0.00356603i \(0.998865\pi\)
\(434\) 0.441651 + 0.856218i 0.0211999 + 0.0410998i
\(435\) −1.76242 + 2.06708i −0.0845014 + 0.0991090i
\(436\) −1.88816 11.1982i −0.0904265 0.536294i
\(437\) 18.7604i 0.897430i
\(438\) 5.90921 3.04807i 0.282353 0.145642i
\(439\) 7.53661i 0.359703i −0.983694 0.179851i \(-0.942438\pi\)
0.983694 0.179851i \(-0.0575617\pi\)
\(440\) 26.4199 + 1.65990i 1.25952 + 0.0791325i
\(441\) 40.4105i 1.92431i
\(442\) −0.428120 0.829985i −0.0203636 0.0394784i
\(443\) 25.7280i 1.22237i 0.791486 + 0.611187i \(0.209308\pi\)
−0.791486 + 0.611187i \(0.790692\pi\)
\(444\) −5.62655 + 7.90879i −0.267024 + 0.375334i
\(445\) 2.78682 + 35.0289i 0.132108 + 1.66053i
\(446\) 10.5577 5.44584i 0.499922 0.257868i
\(447\) −7.68604 + 7.68604i −0.363537 + 0.363537i
\(448\) −1.14210 + 0.625604i −0.0539591 + 0.0295570i
\(449\) 2.33824i 0.110348i 0.998477 + 0.0551741i \(0.0175714\pi\)
−0.998477 + 0.0551741i \(0.982429\pi\)
\(450\) −6.13942 + 40.5133i −0.289415 + 1.90981i
\(451\) 22.5422 + 22.5422i 1.06147 + 1.06147i
\(452\) −18.0662 + 3.04621i −0.849765 + 0.143282i
\(453\) 50.2950 2.36306
\(454\) −31.2682 9.98774i −1.46749 0.468748i
\(455\) 0.431586 + 0.367975i 0.0202331 + 0.0172509i
\(456\) −3.80211 + 26.5695i −0.178050 + 1.24423i
\(457\) 10.4561 10.4561i 0.489115 0.489115i −0.418912 0.908027i \(-0.637588\pi\)
0.908027 + 0.418912i \(0.137588\pi\)
\(458\) −5.13383 9.95282i −0.239888 0.465065i
\(459\) −2.48378 2.48378i −0.115933 0.115933i
\(460\) 6.39625 + 25.4278i 0.298226 + 1.18558i
\(461\) 15.6903 15.6903i 0.730769 0.730769i −0.240003 0.970772i \(-0.577148\pi\)
0.970772 + 0.240003i \(0.0771484\pi\)
\(462\) 0.869455 2.72197i 0.0404507 0.126637i
\(463\) −19.6332 19.6332i −0.912434 0.912434i 0.0840297 0.996463i \(-0.473221\pi\)
−0.996463 + 0.0840297i \(0.973221\pi\)
\(464\) −0.714647 + 1.47448i −0.0331766 + 0.0684511i
\(465\) 27.6652 2.20098i 1.28294 0.102068i
\(466\) 5.36791 2.76886i 0.248664 0.128265i
\(467\) 24.4862i 1.13309i −0.824032 0.566543i \(-0.808281\pi\)
0.824032 0.566543i \(-0.191719\pi\)
\(468\) −10.4689 + 14.7153i −0.483926 + 0.680216i
\(469\) 0.286989 0.286989i 0.0132519 0.0132519i
\(470\) −16.6554 + 10.3406i −0.768257 + 0.476974i
\(471\) −25.3630 −1.16866
\(472\) −6.47395 0.926426i −0.297987 0.0426422i
\(473\) 19.9082 + 19.9082i 0.915380 + 0.915380i
\(474\) −4.62239 + 14.4711i −0.212313 + 0.664681i
\(475\) 9.38199 12.9595i 0.430475 0.594624i
\(476\) −0.0799795 + 0.112421i −0.00366586 + 0.00515280i
\(477\) 66.2493 3.03335
\(478\) −0.000597550 0.00187073i −2.73313e−5 8.55650e-5i
\(479\) 37.0609 1.69335 0.846677 0.532108i \(-0.178600\pi\)
0.846677 + 0.532108i \(0.178600\pi\)
\(480\) 3.90535 + 37.3085i 0.178254 + 1.70289i
\(481\) 2.54991 0.116266
\(482\) −5.53286 + 17.3215i −0.252015 + 0.788973i
\(483\) 2.83024 0.128781
\(484\) −7.55832 + 10.6241i −0.343560 + 0.482915i
\(485\) 19.8853 23.3229i 0.902945 1.05904i
\(486\) 1.51704 4.74935i 0.0688145 0.215435i
\(487\) 20.1912 + 20.1912i 0.914950 + 0.914950i 0.996656 0.0817061i \(-0.0260369\pi\)
−0.0817061 + 0.996656i \(0.526037\pi\)
\(488\) 0.697145 4.87172i 0.0315583 0.220532i
\(489\) 10.6109 0.479840
\(490\) −5.02283 + 21.4725i −0.226908 + 0.970029i
\(491\) −7.45822 + 7.45822i −0.336585 + 0.336585i −0.855080 0.518496i \(-0.826492\pi\)
0.518496 + 0.855080i \(0.326492\pi\)
\(492\) −26.1878 + 36.8101i −1.18064 + 1.65953i
\(493\) 0.173601i 0.00781860i
\(494\) 6.26673 3.23248i 0.281953 0.145436i
\(495\) −41.2711 35.1881i −1.85500 1.58159i
\(496\) 15.8148 5.48923i 0.710104 0.246474i
\(497\) −0.920917 0.920917i −0.0413088 0.0413088i
\(498\) −2.07537 + 6.49728i −0.0929996 + 0.291150i
\(499\) 8.17420 8.17420i 0.365927 0.365927i −0.500062 0.865990i \(-0.666689\pi\)
0.865990 + 0.500062i \(0.166689\pi\)
\(500\) 8.29785 20.7640i 0.371091 0.928596i
\(501\) −1.43202 1.43202i −0.0639778 0.0639778i
\(502\) 8.38100 + 16.2480i 0.374062 + 0.725185i
\(503\) −29.2327 + 29.2327i −1.30342 + 1.30342i −0.377348 + 0.926072i \(0.623164\pi\)
−0.926072 + 0.377348i \(0.876836\pi\)
\(504\) 2.64107 + 0.377938i 0.117642 + 0.0168347i
\(505\) −26.2754 + 30.8176i −1.16924 + 1.37136i
\(506\) −33.0591 10.5598i −1.46966 0.469440i
\(507\) −31.3523 −1.39241
\(508\) 34.2373 5.77287i 1.51903 0.256130i
\(509\) −20.0340 20.0340i −0.887992 0.887992i 0.106338 0.994330i \(-0.466088\pi\)
−0.994330 + 0.106338i \(0.966088\pi\)
\(510\) 2.09634 + 3.37655i 0.0928273 + 0.149516i
\(511\) 0.258061i 0.0114159i
\(512\) 7.94969 + 21.1850i 0.351330 + 0.936252i
\(513\) 18.7536 18.7536i 0.827991 0.827991i
\(514\) 37.8126 19.5044i 1.66784 0.860301i
\(515\) 10.4373 + 8.89895i 0.459922 + 0.392135i
\(516\) −23.1278 + 32.5089i −1.01815 + 1.43113i
\(517\) 25.9483i 1.14121i
\(518\) −0.172692 0.334794i −0.00758765 0.0147100i
\(519\) 35.0504i 1.53854i
\(520\) 7.39181 6.51790i 0.324152 0.285829i
\(521\) 5.89264i 0.258161i −0.991634 0.129081i \(-0.958797\pi\)
0.991634 0.129081i \(-0.0412026\pi\)
\(522\) 2.98351 1.53894i 0.130585 0.0673576i
\(523\) 24.6537i 1.07803i 0.842296 + 0.539015i \(0.181203\pi\)
−0.842296 + 0.539015i \(0.818797\pi\)
\(524\) −3.76012 22.3003i −0.164262 0.974191i
\(525\) −1.95511 1.41539i −0.0853280 0.0617729i
\(526\) 15.3309 + 29.7217i 0.668460 + 1.29593i
\(527\) 1.25413 1.25413i 0.0546309 0.0546309i
\(528\) −44.6801 21.6554i −1.94445 0.942429i
\(529\) 11.3742i 0.494528i
\(530\) −35.2022 8.23447i −1.52909 0.357683i
\(531\) 9.47444 + 9.47444i 0.411156 + 0.411156i
\(532\) −0.848823 0.603878i −0.0368012 0.0261814i
\(533\) 11.8681 0.514066
\(534\) 20.0543 62.7833i 0.867835 2.71690i
\(535\) 2.12461 + 26.7052i 0.0918549 + 1.15457i
\(536\) −4.23004 5.64286i −0.182710 0.243735i
\(537\) 13.9836 13.9836i 0.603435 0.603435i
\(538\) 28.2788 14.5867i 1.21919 0.628876i
\(539\) −20.6392 20.6392i −0.888994 0.888994i
\(540\) 19.0246 31.8125i 0.818690 1.36899i
\(541\) −27.1762 + 27.1762i −1.16840 + 1.16840i −0.185812 + 0.982585i \(0.559492\pi\)
−0.982585 + 0.185812i \(0.940508\pi\)
\(542\) 16.6510 + 5.31869i 0.715223 + 0.228457i
\(543\) −39.0996 39.0996i −1.67792 1.67792i
\(544\) 1.73687 + 1.65243i 0.0744676 + 0.0708475i
\(545\) 8.23759 9.66162i 0.352860 0.413858i
\(546\) −0.487661 0.945416i −0.0208700 0.0404601i
\(547\) 3.69225i 0.157869i 0.996880 + 0.0789347i \(0.0251519\pi\)
−0.996880 + 0.0789347i \(0.974848\pi\)
\(548\) 8.60567 1.45103i 0.367616 0.0619850i
\(549\) −7.12962 + 7.12962i −0.304285 + 0.304285i
\(550\) 17.5561 + 23.8274i 0.748594 + 1.01600i
\(551\) −1.31076 −0.0558402
\(552\) 6.96651 48.6826i 0.296514 2.07207i
\(553\) −0.416915 0.416915i −0.0177290 0.0177290i
\(554\) 28.3267 + 9.04815i 1.20349 + 0.384419i
\(555\) −10.8175 + 0.860616i −0.459177 + 0.0365311i
\(556\) −5.74700 34.0839i −0.243727 1.44548i
\(557\) 12.2117 0.517426 0.258713 0.965954i \(-0.416702\pi\)
0.258713 + 0.965954i \(0.416702\pi\)
\(558\) −32.6712 10.4359i −1.38308 0.441786i
\(559\) 10.4814 0.443315
\(560\) −1.35638 0.529093i −0.0573176 0.0223583i
\(561\) −5.26049 −0.222098
\(562\) 14.3886 + 4.59603i 0.606947 + 0.193872i
\(563\) −12.2211 −0.515057 −0.257528 0.966271i \(-0.582908\pi\)
−0.257528 + 0.966271i \(0.582908\pi\)
\(564\) 36.2584 6.11366i 1.52676 0.257432i
\(565\) −15.5873 13.2899i −0.655763 0.559110i
\(566\) −16.9669 5.41960i −0.713174 0.227803i
\(567\) −0.828241 0.828241i −0.0347829 0.0347829i
\(568\) −18.1074 + 13.5738i −0.759768 + 0.569543i
\(569\) −30.9592 −1.29788 −0.648938 0.760841i \(-0.724787\pi\)
−0.648938 + 0.760841i \(0.724787\pi\)
\(570\) −25.4943 + 15.8282i −1.06784 + 0.662970i
\(571\) 30.1508 30.1508i 1.26177 1.26177i 0.311539 0.950233i \(-0.399156\pi\)
0.950233 0.311539i \(-0.100844\pi\)
\(572\) 2.16881 + 12.8626i 0.0906823 + 0.537812i
\(573\) 41.4806i 1.73288i
\(574\) −0.803765 1.55824i −0.0335485 0.0650397i
\(575\) −17.1904 + 23.7454i −0.716889 + 0.990252i
\(576\) 13.0017 44.4983i 0.541738 1.85410i
\(577\) 1.98215 + 1.98215i 0.0825181 + 0.0825181i 0.747161 0.664643i \(-0.231416\pi\)
−0.664643 + 0.747161i \(0.731416\pi\)
\(578\) −22.6597 7.23800i −0.942520 0.301061i
\(579\) −11.5325 + 11.5325i −0.479276 + 0.479276i
\(580\) −1.77660 + 0.446896i −0.0737693 + 0.0185564i
\(581\) −0.187188 0.187188i −0.00776586 0.00776586i
\(582\) −51.0901 + 26.3531i −2.11775 + 1.09237i
\(583\) 33.8361 33.8361i 1.40135 1.40135i
\(584\) 4.43886 + 0.635204i 0.183681 + 0.0262849i
\(585\) −20.1273 + 1.60129i −0.832163 + 0.0662051i
\(586\) 1.47653 4.62253i 0.0609951 0.190955i
\(587\) 26.9680 1.11309 0.556544 0.830818i \(-0.312127\pi\)
0.556544 + 0.830818i \(0.312127\pi\)
\(588\) 23.9771 33.7026i 0.988797 1.38987i
\(589\) 9.46923 + 9.46923i 0.390173 + 0.390173i
\(590\) −3.85671 6.21197i −0.158778 0.255743i
\(591\) 66.2153i 2.72373i
\(592\) −6.18381 + 2.14637i −0.254153 + 0.0882152i
\(593\) 16.6701 16.6701i 0.684560 0.684560i −0.276464 0.961024i \(-0.589163\pi\)
0.961024 + 0.276464i \(0.0891626\pi\)
\(594\) 22.4912 + 43.6032i 0.922825 + 1.78906i
\(595\) −0.153767 + 0.0122334i −0.00630383 + 0.000501520i
\(596\) −7.22846 + 1.21882i −0.296089 + 0.0499247i
\(597\) 29.1771i 1.19414i
\(598\) −11.4824 + 5.92279i −0.469549 + 0.242201i
\(599\) 28.8376i 1.17827i −0.808033 0.589137i \(-0.799468\pi\)
0.808033 0.589137i \(-0.200532\pi\)
\(600\) −29.1584 + 30.1456i −1.19039 + 1.23069i
\(601\) 1.91377i 0.0780642i −0.999238 0.0390321i \(-0.987573\pi\)
0.999238 0.0390321i \(-0.0124275\pi\)
\(602\) −0.709847 1.37616i −0.0289312 0.0560882i
\(603\) 14.4487i 0.588397i
\(604\) 27.6381 + 19.6626i 1.12458 + 0.800059i
\(605\) −14.5315 + 1.15609i −0.590789 + 0.0470019i
\(606\) 67.5078 34.8216i 2.74232 1.41453i
\(607\) −7.89049 + 7.89049i −0.320265 + 0.320265i −0.848869 0.528604i \(-0.822716\pi\)
0.528604 + 0.848869i \(0.322716\pi\)
\(608\) −12.4766 + 13.1141i −0.505991 + 0.531845i
\(609\) 0.197745i 0.00801303i
\(610\) 4.67457 2.90222i 0.189268 0.117507i
\(611\) −6.83071 6.83071i −0.276341 0.276341i
\(612\) −0.816643 4.84329i −0.0330109 0.195778i
\(613\) −40.1035 −1.61976 −0.809882 0.586592i \(-0.800469\pi\)
−0.809882 + 0.586592i \(0.800469\pi\)
\(614\) −15.9104 5.08213i −0.642092 0.205098i
\(615\) −50.3481 + 4.00559i −2.03023 + 0.161521i
\(616\) 1.54193 1.15587i 0.0621259 0.0465713i
\(617\) 14.5821 14.5821i 0.587052 0.587052i −0.349780 0.936832i \(-0.613744\pi\)
0.936832 + 0.349780i \(0.113744\pi\)
\(618\) −11.7934 22.8635i −0.474399 0.919707i
\(619\) −4.01752 4.01752i −0.161478 0.161478i 0.621743 0.783221i \(-0.286425\pi\)
−0.783221 + 0.621743i \(0.786425\pi\)
\(620\) 16.0630 + 9.60609i 0.645108 + 0.385790i
\(621\) −34.3617 + 34.3617i −1.37889 + 1.37889i
\(622\) 9.73628 30.4810i 0.390389 1.22218i
\(623\) 1.80880 + 1.80880i 0.0724679 + 0.0724679i
\(624\) −17.4623 + 6.06108i −0.699052 + 0.242638i
\(625\) 23.7500 7.80630i 0.949999 0.312252i
\(626\) 12.6013 6.49993i 0.503648 0.259790i
\(627\) 39.7189i 1.58622i
\(628\) −13.9375 9.91553i −0.556166 0.395673i
\(629\) −0.490385 + 0.490385i −0.0195529 + 0.0195529i
\(630\) 1.57336 + 2.53419i 0.0626841 + 0.100965i
\(631\) −26.9309 −1.07210 −0.536052 0.844185i \(-0.680085\pi\)
−0.536052 + 0.844185i \(0.680085\pi\)
\(632\) −8.19752 + 6.14508i −0.326080 + 0.244438i
\(633\) −32.7791 32.7791i −1.30285 1.30285i
\(634\) −10.8122 + 33.8493i −0.429407 + 1.34433i
\(635\) 29.5395 + 25.1856i 1.17224 + 0.999462i
\(636\) 55.2524 + 39.3082i 2.19090 + 1.55867i
\(637\) −10.8662 −0.430536
\(638\) 0.737797 2.30979i 0.0292097 0.0914456i
\(639\) 46.3644 1.83415
\(640\) −12.4395 + 22.0286i −0.491715 + 0.870756i
\(641\) 18.6880 0.738131 0.369065 0.929403i \(-0.379678\pi\)
0.369065 + 0.929403i \(0.379678\pi\)
\(642\) 15.2890 47.8645i 0.603407 1.88906i
\(643\) 29.6249 1.16829 0.584146 0.811648i \(-0.301429\pi\)
0.584146 + 0.811648i \(0.301429\pi\)
\(644\) 1.55528 + 1.10647i 0.0612865 + 0.0436011i
\(645\) −44.4651 + 3.53755i −1.75081 + 0.139291i
\(646\) −0.583529 + 1.82683i −0.0229586 + 0.0718758i
\(647\) −5.04426 5.04426i −0.198310 0.198310i 0.600965 0.799275i \(-0.294783\pi\)
−0.799275 + 0.600965i \(0.794783\pi\)
\(648\) −16.2851 + 12.2078i −0.639740 + 0.479567i
\(649\) 9.67794 0.379893
\(650\) 10.8939 + 1.65087i 0.427294 + 0.0647525i
\(651\) 1.42855 1.42855i 0.0559895 0.0559895i
\(652\) 5.83089 + 4.14827i 0.228355 + 0.162459i
\(653\) 3.04934i 0.119330i −0.998218 0.0596649i \(-0.980997\pi\)
0.998218 0.0596649i \(-0.0190032\pi\)
\(654\) −21.1644 + 10.9169i −0.827592 + 0.426885i
\(655\) 16.4045 19.2404i 0.640978 0.751783i
\(656\) −28.7815 + 9.98991i −1.12373 + 0.390040i
\(657\) −6.49615 6.49615i −0.253439 0.253439i
\(658\) −0.434238 + 1.35945i −0.0169284 + 0.0529970i
\(659\) 22.0441 22.0441i 0.858718 0.858718i −0.132469 0.991187i \(-0.542291\pi\)
0.991187 + 0.132469i \(0.0422906\pi\)
\(660\) −13.5419 53.8349i −0.527119 2.09552i
\(661\) 8.09788 + 8.09788i 0.314971 + 0.314971i 0.846832 0.531861i \(-0.178507\pi\)
−0.531861 + 0.846832i \(0.678507\pi\)
\(662\) −5.32531 10.3241i −0.206974 0.401256i
\(663\) −1.38479 + 1.38479i −0.0537807 + 0.0537807i
\(664\) −3.68054 + 2.75904i −0.142833 + 0.107071i
\(665\) −0.0923670 1.16100i −0.00358184 0.0450218i
\(666\) 12.7749 + 4.08058i 0.495018 + 0.158119i
\(667\) 2.40167 0.0929931
\(668\) −0.227083 1.34676i −0.00878609 0.0521078i
\(669\) −17.6150 17.6150i −0.681035 0.681035i
\(670\) 1.79591 7.67748i 0.0693820 0.296607i
\(671\) 7.28276i 0.281148i
\(672\) 1.97842 + 1.88225i 0.0763194 + 0.0726093i
\(673\) −27.1768 + 27.1768i −1.04759 + 1.04759i −0.0487786 + 0.998810i \(0.515533\pi\)
−0.998810 + 0.0487786i \(0.984467\pi\)
\(674\) −13.1831 + 6.80006i −0.507795 + 0.261929i
\(675\) 40.9210 6.55265i 1.57505 0.252212i
\(676\) −17.2287 12.2570i −0.662644 0.471425i
\(677\) 28.6501i 1.10111i 0.834798 + 0.550557i \(0.185585\pi\)
−0.834798 + 0.550557i \(0.814415\pi\)
\(678\) 17.6125 + 34.1450i 0.676405 + 1.31133i
\(679\) 2.23115i 0.0856238i
\(680\) −0.168066 + 2.67504i −0.00644502 + 0.102583i
\(681\) 68.8334i 2.63770i
\(682\) −22.0165 + 11.3565i −0.843055 + 0.434861i
\(683\) 30.8472i 1.18034i −0.807281 0.590168i \(-0.799062\pi\)
0.807281 0.590168i \(-0.200938\pi\)
\(684\) 36.5688 6.16599i 1.39824 0.235763i
\(685\) 7.42485 + 6.33051i 0.283689 + 0.241876i
\(686\) 1.47462 + 2.85881i 0.0563013 + 0.109150i
\(687\) −16.6058 + 16.6058i −0.633549 + 0.633549i
\(688\) −25.4184 + 8.82261i −0.969069 + 0.336359i
\(689\) 17.8142i 0.678668i
\(690\) 46.7126 29.0016i 1.77832 1.10407i
\(691\) 0.253186 + 0.253186i 0.00963164 + 0.00963164i 0.711906 0.702275i \(-0.247832\pi\)
−0.702275 + 0.711906i \(0.747832\pi\)
\(692\) −13.7028 + 19.2609i −0.520901 + 0.732189i
\(693\) −3.94815 −0.149978
\(694\) −7.85286 + 24.5847i −0.298091 + 0.933221i
\(695\) 25.0728 29.4071i 0.951066 1.11548i
\(696\) 3.40138 + 0.486740i 0.128929 + 0.0184498i
\(697\) −2.28241 + 2.28241i −0.0864525 + 0.0864525i
\(698\) −34.5563 + 17.8247i −1.30798 + 0.674675i
\(699\) −8.95608 8.95608i −0.338750 0.338750i
\(700\) −0.521032 1.54213i −0.0196932 0.0582870i
\(701\) 10.5238 10.5238i 0.397479 0.397479i −0.479864 0.877343i \(-0.659314\pi\)
0.877343 + 0.479864i \(0.159314\pi\)
\(702\) 17.3989 + 5.55756i 0.656677 + 0.209757i
\(703\) −3.70261 3.70261i −0.139646 0.139646i
\(704\) −16.0866 29.3675i −0.606285 1.10683i
\(705\) 31.2833 + 26.6725i 1.17820 + 1.00454i
\(706\) 1.04152 + 2.01917i 0.0391982 + 0.0759925i
\(707\) 2.94813i 0.110876i
\(708\) 2.28021 + 13.5233i 0.0856956 + 0.508237i
\(709\) 1.58968 1.58968i 0.0597015 0.0597015i −0.676626 0.736327i \(-0.736558\pi\)
0.736327 + 0.676626i \(0.236558\pi\)
\(710\) −24.6362 5.76288i −0.924581 0.216277i
\(711\) 20.9900 0.787186
\(712\) 35.5651 26.6606i 1.33286 0.999147i
\(713\) −17.3502 17.3502i −0.649771 0.649771i
\(714\) 0.275601 + 0.0880329i 0.0103141 + 0.00329455i
\(715\) −9.46198 + 11.0977i −0.353858 + 0.415029i
\(716\) 13.1511 2.21745i 0.491478 0.0828699i
\(717\) 0.00411819 0.000153797
\(718\) 38.2781 + 12.2269i 1.42853 + 0.456302i
\(719\) −22.8919 −0.853722 −0.426861 0.904317i \(-0.640381\pi\)
−0.426861 + 0.904317i \(0.640381\pi\)
\(720\) 47.4630 20.8253i 1.76884 0.776113i
\(721\) 0.998472 0.0371850
\(722\) 11.8027 + 3.77002i 0.439249 + 0.140306i
\(723\) 38.1313 1.41812
\(724\) −6.20023 36.7718i −0.230430 1.36661i
\(725\) −1.65906 1.20107i −0.0616158 0.0446065i
\(726\) 26.0452 + 8.31939i 0.966628 + 0.308762i
\(727\) 20.1893 + 20.1893i 0.748780 + 0.748780i 0.974250 0.225470i \(-0.0723919\pi\)
−0.225470 + 0.974250i \(0.572392\pi\)
\(728\) 0.101626 0.710175i 0.00376653 0.0263208i
\(729\) −32.0425 −1.18676
\(730\) 2.64436 + 4.25924i 0.0978720 + 0.157641i
\(731\) −2.01572 + 2.01572i −0.0745540 + 0.0745540i
\(732\) −10.1764 + 1.71588i −0.376132 + 0.0634209i
\(733\) 14.3253i 0.529118i 0.964370 + 0.264559i \(0.0852263\pi\)
−0.964370 + 0.264559i \(0.914774\pi\)
\(734\) 2.10592 + 4.08270i 0.0777311 + 0.150695i
\(735\) 46.0978 3.66744i 1.70034 0.135276i
\(736\) 22.8605 24.0286i 0.842648 0.885705i
\(737\) 7.37954 + 7.37954i 0.271829 + 0.271829i
\(738\) 59.4587 + 18.9924i 2.18870 + 0.699119i
\(739\) −32.3401 + 32.3401i −1.18965 + 1.18965i −0.212487 + 0.977164i \(0.568156\pi\)
−0.977164 + 0.212487i \(0.931844\pi\)
\(740\) −6.28089 3.75612i −0.230890 0.138078i
\(741\) −10.4557 10.4557i −0.384100 0.384100i
\(742\) −2.33894 + 1.20646i −0.0858651 + 0.0442906i
\(743\) −6.06842 + 6.06842i −0.222629 + 0.222629i −0.809605 0.586976i \(-0.800318\pi\)
0.586976 + 0.809605i \(0.300318\pi\)
\(744\) −21.0560 28.0887i −0.771952 1.02978i
\(745\) −6.23662 5.31741i −0.228492 0.194815i
\(746\) −7.77947 + 24.3549i −0.284827 + 0.891696i
\(747\) 9.42414 0.344811
\(748\) −2.89075 2.05657i −0.105696 0.0751955i
\(749\) 1.37898 + 1.37898i 0.0503870 + 0.0503870i
\(750\) −46.7723 3.32670i −1.70788 0.121474i
\(751\) 49.6431i 1.81150i −0.423810 0.905751i \(-0.639308\pi\)
0.423810 0.905751i \(-0.360692\pi\)
\(752\) 22.3149 + 10.8155i 0.813740 + 0.394400i
\(753\) 27.1090 27.1090i 0.987907 0.987907i
\(754\) −0.413816 0.802256i −0.0150703 0.0292164i
\(755\) 3.00752 + 37.8029i 0.109455 + 1.37579i
\(756\) −0.448644 2.66078i −0.0163170 0.0967718i
\(757\) 9.18443i 0.333814i −0.985973 0.166907i \(-0.946622\pi\)
0.985973 0.166907i \(-0.0533779\pi\)
\(758\) −4.95968 + 2.55828i −0.180144 + 0.0929211i
\(759\) 72.7759i 2.64160i
\(760\) −20.1976 1.26896i −0.732644 0.0460302i
\(761\) 4.75310i 0.172300i 0.996282 + 0.0861499i \(0.0274564\pi\)
−0.996282 + 0.0861499i \(0.972544\pi\)
\(762\) −33.3774 64.7080i −1.20914 2.34412i
\(763\) 0.924267i 0.0334607i
\(764\) −16.2167 + 22.7945i −0.586698 + 0.824675i
\(765\) 3.56282 4.17872i 0.128814 0.151082i
\(766\) −14.4367 + 7.44668i −0.521619 + 0.269060i