Properties

Label 80.2.s.b.27.1
Level $80$
Weight $2$
Character 80.27
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(3,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.s (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + \cdots + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 27.1
Root \(-0.480367 - 1.33013i\) of defining polynomial
Character \(\chi\) \(=\) 80.27
Dual form 80.2.s.b.3.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38031 - 0.307817i) q^{2} +2.85601 q^{3} +(1.81050 + 0.849763i) q^{4} +(-1.71489 + 1.43498i) q^{5} +(-3.94217 - 0.879127i) q^{6} +(-0.458895 - 0.458895i) q^{7} +(-2.23747 - 1.73024i) q^{8} +5.15678 q^{9} +O(q^{10})\) \(q+(-1.38031 - 0.307817i) q^{2} +2.85601 q^{3} +(1.81050 + 0.849763i) q^{4} +(-1.71489 + 1.43498i) q^{5} +(-3.94217 - 0.879127i) q^{6} +(-0.458895 - 0.458895i) q^{7} +(-2.23747 - 1.73024i) q^{8} +5.15678 q^{9} +(2.80878 - 1.45284i) q^{10} +(-0.492763 + 0.492763i) q^{11} +(5.17080 + 2.42693i) q^{12} -4.52109i q^{13} +(0.492160 + 0.774671i) q^{14} +(-4.89773 + 4.09831i) q^{15} +(2.55581 + 3.07699i) q^{16} +(-3.12823 - 3.12823i) q^{17} +(-7.11794 - 1.58734i) q^{18} +(-4.04508 + 4.04508i) q^{19} +(-4.32419 + 1.14077i) q^{20} +(-1.31061 - 1.31061i) q^{21} +(0.831845 - 0.528484i) q^{22} +(-1.80660 + 1.80660i) q^{23} +(-6.39024 - 4.94157i) q^{24} +(0.881683 - 4.92165i) q^{25} +(-1.39167 + 6.24050i) q^{26} +6.15978 q^{27} +(-0.440876 - 1.22078i) q^{28} +(3.83926 + 3.83926i) q^{29} +(8.02191 - 4.14932i) q^{30} -0.139949i q^{31} +(-2.58065 - 5.03391i) q^{32} +(-1.40733 + 1.40733i) q^{33} +(3.35500 + 5.28085i) q^{34} +(1.44546 + 0.128450i) q^{35} +(9.33634 + 4.38204i) q^{36} +5.84330i q^{37} +(6.82860 - 4.33831i) q^{38} -12.9123i q^{39} +(6.31986 - 0.243561i) q^{40} -4.55648i q^{41} +(1.40561 + 2.21247i) q^{42} +7.49928i q^{43} +(-1.31088 + 0.473414i) q^{44} +(-8.84330 + 7.39986i) q^{45} +(3.04976 - 1.93756i) q^{46} +(4.14073 - 4.14073i) q^{47} +(7.29940 + 8.78790i) q^{48} -6.57883i q^{49} +(-2.73196 + 6.52199i) q^{50} +(-8.93426 - 8.93426i) q^{51} +(3.84186 - 8.18543i) q^{52} +2.75773 q^{53} +(-8.50239 - 1.89608i) q^{54} +(0.137930 - 1.55214i) q^{55} +(0.232768 + 1.82076i) q^{56} +(-11.5528 + 11.5528i) q^{57} +(-4.11757 - 6.48115i) q^{58} +(3.62521 + 3.62521i) q^{59} +(-12.3499 + 3.25806i) q^{60} +(3.72781 - 3.72781i) q^{61} +(-0.0430787 + 0.193173i) q^{62} +(-2.36642 - 2.36642i) q^{63} +(2.01257 + 7.74271i) q^{64} +(6.48766 + 7.75317i) q^{65} +(2.37576 - 1.50935i) q^{66} +3.32677i q^{67} +(-3.00540 - 8.32192i) q^{68} +(-5.15965 + 5.15965i) q^{69} +(-1.95563 - 0.622235i) q^{70} +1.37056 q^{71} +(-11.5382 - 8.92244i) q^{72} +(2.55028 + 2.55028i) q^{73} +(1.79867 - 8.06556i) q^{74} +(2.51809 - 14.0563i) q^{75} +(-10.7610 + 3.88625i) q^{76} +0.452252 q^{77} +(-3.97461 + 17.8229i) q^{78} +3.86426 q^{79} +(-8.79833 - 1.60917i) q^{80} +2.12204 q^{81} +(-1.40256 + 6.28934i) q^{82} +14.4698 q^{83} +(-1.25915 - 3.48655i) q^{84} +(9.85351 + 0.875628i) q^{85} +(2.30840 - 10.3513i) q^{86} +(10.9650 + 10.9650i) q^{87} +(1.95514 - 0.249948i) q^{88} +3.35011 q^{89} +(14.4843 - 7.49197i) q^{90} +(-2.07470 + 2.07470i) q^{91} +(-4.80602 + 1.73566i) q^{92} -0.399696i q^{93} +(-6.99006 + 4.44089i) q^{94} +(1.13226 - 12.7415i) q^{95} +(-7.37035 - 14.3769i) q^{96} +(-4.95582 - 4.95582i) q^{97} +(-2.02507 + 9.08081i) q^{98} +(-2.54107 + 2.54107i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{4} + 2 q^{5} - 8 q^{6} + 2 q^{7} - 12 q^{8} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + 4 q^{4} + 2 q^{5} - 8 q^{6} + 2 q^{7} - 12 q^{8} + 10 q^{9} - 2 q^{11} - 12 q^{14} - 20 q^{15} - 6 q^{17} - 24 q^{18} - 2 q^{19} - 12 q^{20} - 16 q^{21} + 12 q^{22} - 2 q^{23} - 4 q^{24} - 6 q^{25} - 16 q^{26} - 24 q^{27} + 40 q^{28} + 14 q^{29} + 40 q^{30} + 20 q^{32} - 8 q^{33} + 28 q^{34} + 2 q^{35} - 4 q^{36} + 24 q^{38} + 44 q^{40} + 8 q^{42} - 44 q^{44} - 14 q^{45} + 12 q^{46} + 38 q^{47} + 4 q^{48} - 8 q^{50} + 8 q^{51} + 8 q^{52} + 12 q^{53} + 4 q^{54} - 6 q^{55} + 20 q^{56} - 24 q^{57} + 20 q^{58} + 10 q^{59} + 8 q^{60} + 14 q^{61} - 40 q^{62} - 6 q^{63} + 16 q^{64} + 4 q^{66} - 60 q^{68} - 32 q^{69} - 28 q^{70} + 24 q^{71} - 68 q^{72} - 14 q^{73} - 48 q^{74} + 16 q^{75} - 16 q^{76} - 44 q^{77} - 36 q^{78} - 16 q^{79} - 92 q^{80} + 2 q^{81} + 48 q^{82} + 40 q^{83} + 24 q^{84} + 14 q^{85} - 36 q^{86} + 24 q^{87} - 8 q^{88} + 12 q^{89} - 8 q^{90} - 8 q^{92} - 28 q^{94} + 34 q^{95} - 40 q^{96} + 18 q^{97} - 56 q^{98} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38031 0.307817i −0.976025 0.217659i
\(3\) 2.85601 1.64892 0.824458 0.565923i \(-0.191480\pi\)
0.824458 + 0.565923i \(0.191480\pi\)
\(4\) 1.81050 + 0.849763i 0.905249 + 0.424882i
\(5\) −1.71489 + 1.43498i −0.766921 + 0.641741i
\(6\) −3.94217 0.879127i −1.60938 0.358902i
\(7\) −0.458895 0.458895i −0.173446 0.173446i 0.615046 0.788491i \(-0.289138\pi\)
−0.788491 + 0.615046i \(0.789138\pi\)
\(8\) −2.23747 1.73024i −0.791066 0.611731i
\(9\) 5.15678 1.71893
\(10\) 2.80878 1.45284i 0.888215 0.459428i
\(11\) −0.492763 + 0.492763i −0.148574 + 0.148574i −0.777481 0.628907i \(-0.783503\pi\)
0.628907 + 0.777481i \(0.283503\pi\)
\(12\) 5.17080 + 2.42693i 1.49268 + 0.700594i
\(13\) 4.52109i 1.25393i −0.779049 0.626963i \(-0.784298\pi\)
0.779049 0.626963i \(-0.215702\pi\)
\(14\) 0.492160 + 0.774671i 0.131535 + 0.207040i
\(15\) −4.89773 + 4.09831i −1.26459 + 1.05818i
\(16\) 2.55581 + 3.07699i 0.638951 + 0.769247i
\(17\) −3.12823 3.12823i −0.758708 0.758708i 0.217379 0.976087i \(-0.430249\pi\)
−0.976087 + 0.217379i \(0.930249\pi\)
\(18\) −7.11794 1.58734i −1.67772 0.374140i
\(19\) −4.04508 + 4.04508i −0.928005 + 0.928005i −0.997577 0.0695721i \(-0.977837\pi\)
0.0695721 + 0.997577i \(0.477837\pi\)
\(20\) −4.32419 + 1.14077i −0.966919 + 0.255085i
\(21\) −1.31061 1.31061i −0.285998 0.285998i
\(22\) 0.831845 0.528484i 0.177350 0.112673i
\(23\) −1.80660 + 1.80660i −0.376701 + 0.376701i −0.869911 0.493209i \(-0.835824\pi\)
0.493209 + 0.869911i \(0.335824\pi\)
\(24\) −6.39024 4.94157i −1.30440 1.00869i
\(25\) 0.881683 4.92165i 0.176337 0.984330i
\(26\) −1.39167 + 6.24050i −0.272928 + 1.22386i
\(27\) 6.15978 1.18545
\(28\) −0.440876 1.22078i −0.0833177 0.230706i
\(29\) 3.83926 + 3.83926i 0.712932 + 0.712932i 0.967148 0.254215i \(-0.0818172\pi\)
−0.254215 + 0.967148i \(0.581817\pi\)
\(30\) 8.02191 4.14932i 1.46459 0.757558i
\(31\) 0.139949i 0.0251356i −0.999921 0.0125678i \(-0.995999\pi\)
0.999921 0.0125678i \(-0.00400057\pi\)
\(32\) −2.58065 5.03391i −0.456199 0.889878i
\(33\) −1.40733 + 1.40733i −0.244985 + 0.244985i
\(34\) 3.35500 + 5.28085i 0.575378 + 0.905658i
\(35\) 1.44546 + 0.128450i 0.244327 + 0.0217120i
\(36\) 9.33634 + 4.38204i 1.55606 + 0.730340i
\(37\) 5.84330i 0.960633i 0.877095 + 0.480317i \(0.159478\pi\)
−0.877095 + 0.480317i \(0.840522\pi\)
\(38\) 6.82860 4.33831i 1.10774 0.703767i
\(39\) 12.9123i 2.06762i
\(40\) 6.31986 0.243561i 0.999258 0.0385104i
\(41\) 4.55648i 0.711602i −0.934562 0.355801i \(-0.884208\pi\)
0.934562 0.355801i \(-0.115792\pi\)
\(42\) 1.40561 + 2.21247i 0.216891 + 0.341391i
\(43\) 7.49928i 1.14363i 0.820383 + 0.571815i \(0.193760\pi\)
−0.820383 + 0.571815i \(0.806240\pi\)
\(44\) −1.31088 + 0.473414i −0.197622 + 0.0713699i
\(45\) −8.84330 + 7.39986i −1.31828 + 1.10311i
\(46\) 3.04976 1.93756i 0.449662 0.285677i
\(47\) 4.14073 4.14073i 0.603987 0.603987i −0.337381 0.941368i \(-0.609541\pi\)
0.941368 + 0.337381i \(0.109541\pi\)
\(48\) 7.29940 + 8.78790i 1.05358 + 1.26842i
\(49\) 6.57883i 0.939833i
\(50\) −2.73196 + 6.52199i −0.386357 + 0.922349i
\(51\) −8.93426 8.93426i −1.25105 1.25105i
\(52\) 3.84186 8.18543i 0.532770 1.13511i
\(53\) 2.75773 0.378803 0.189402 0.981900i \(-0.439345\pi\)
0.189402 + 0.981900i \(0.439345\pi\)
\(54\) −8.50239 1.89608i −1.15703 0.258024i
\(55\) 0.137930 1.55214i 0.0185985 0.209290i
\(56\) 0.232768 + 1.82076i 0.0311050 + 0.243309i
\(57\) −11.5528 + 11.5528i −1.53020 + 1.53020i
\(58\) −4.11757 6.48115i −0.540663 0.851016i
\(59\) 3.62521 + 3.62521i 0.471962 + 0.471962i 0.902549 0.430587i \(-0.141694\pi\)
−0.430587 + 0.902549i \(0.641694\pi\)
\(60\) −12.3499 + 3.25806i −1.59437 + 0.420614i
\(61\) 3.72781 3.72781i 0.477298 0.477298i −0.426969 0.904266i \(-0.640419\pi\)
0.904266 + 0.426969i \(0.140419\pi\)
\(62\) −0.0430787 + 0.193173i −0.00547100 + 0.0245330i
\(63\) −2.36642 2.36642i −0.298141 0.298141i
\(64\) 2.01257 + 7.74271i 0.251571 + 0.967839i
\(65\) 6.48766 + 7.75317i 0.804696 + 0.961662i
\(66\) 2.37576 1.50935i 0.292435 0.185789i
\(67\) 3.32677i 0.406430i 0.979134 + 0.203215i \(0.0651390\pi\)
−0.979134 + 0.203215i \(0.934861\pi\)
\(68\) −3.00540 8.32192i −0.364459 1.00918i
\(69\) −5.15965 + 5.15965i −0.621149 + 0.621149i
\(70\) −1.95563 0.622235i −0.233743 0.0743714i
\(71\) 1.37056 0.162655 0.0813275 0.996687i \(-0.474084\pi\)
0.0813275 + 0.996687i \(0.474084\pi\)
\(72\) −11.5382 8.92244i −1.35978 1.05152i
\(73\) 2.55028 + 2.55028i 0.298488 + 0.298488i 0.840422 0.541933i \(-0.182307\pi\)
−0.541933 + 0.840422i \(0.682307\pi\)
\(74\) 1.79867 8.06556i 0.209091 0.937602i
\(75\) 2.51809 14.0563i 0.290764 1.62308i
\(76\) −10.7610 + 3.88625i −1.23437 + 0.445783i
\(77\) 0.452252 0.0515389
\(78\) −3.97461 + 17.8229i −0.450036 + 2.01805i
\(79\) 3.86426 0.434763 0.217382 0.976087i \(-0.430248\pi\)
0.217382 + 0.976087i \(0.430248\pi\)
\(80\) −8.79833 1.60917i −0.983683 0.179911i
\(81\) 2.12204 0.235782
\(82\) −1.40256 + 6.28934i −0.154887 + 0.694541i
\(83\) 14.4698 1.58827 0.794133 0.607744i \(-0.207925\pi\)
0.794133 + 0.607744i \(0.207925\pi\)
\(84\) −1.25915 3.48655i −0.137384 0.380414i
\(85\) 9.85351 + 0.875628i 1.06876 + 0.0949752i
\(86\) 2.30840 10.3513i 0.248922 1.11621i
\(87\) 10.9650 + 10.9650i 1.17557 + 1.17557i
\(88\) 1.95514 0.249948i 0.208419 0.0266445i
\(89\) 3.35011 0.355111 0.177556 0.984111i \(-0.443181\pi\)
0.177556 + 0.984111i \(0.443181\pi\)
\(90\) 14.4843 7.49197i 1.52678 0.789723i
\(91\) −2.07470 + 2.07470i −0.217488 + 0.217488i
\(92\) −4.80602 + 1.73566i −0.501062 + 0.180955i
\(93\) 0.399696i 0.0414466i
\(94\) −6.99006 + 4.44089i −0.720970 + 0.458043i
\(95\) 1.13226 12.7415i 0.116168 1.30725i
\(96\) −7.37035 14.3769i −0.752234 1.46733i
\(97\) −4.95582 4.95582i −0.503187 0.503187i 0.409240 0.912427i \(-0.365794\pi\)
−0.912427 + 0.409240i \(0.865794\pi\)
\(98\) −2.02507 + 9.08081i −0.204563 + 0.917300i
\(99\) −2.54107 + 2.54107i −0.255387 + 0.255387i
\(100\) 5.77852 8.16142i 0.577852 0.816142i
\(101\) −1.84536 1.84536i −0.183621 0.183621i 0.609311 0.792931i \(-0.291446\pi\)
−0.792931 + 0.609311i \(0.791446\pi\)
\(102\) 9.58191 + 15.0821i 0.948751 + 1.49335i
\(103\) −11.6655 + 11.6655i −1.14944 + 1.14944i −0.162773 + 0.986664i \(0.552044\pi\)
−0.986664 + 0.162773i \(0.947956\pi\)
\(104\) −7.82256 + 10.1158i −0.767065 + 0.991938i
\(105\) 4.12823 + 0.366853i 0.402874 + 0.0358012i
\(106\) −3.80651 0.848874i −0.369721 0.0824500i
\(107\) −15.3106 −1.48013 −0.740067 0.672534i \(-0.765206\pi\)
−0.740067 + 0.672534i \(0.765206\pi\)
\(108\) 11.1523 + 5.23435i 1.07313 + 0.503676i
\(109\) −12.4798 12.4798i −1.19535 1.19535i −0.975544 0.219803i \(-0.929458\pi\)
−0.219803 0.975544i \(-0.570542\pi\)
\(110\) −0.668159 + 2.09997i −0.0637065 + 0.200224i
\(111\) 16.6885i 1.58400i
\(112\) 0.239168 2.58486i 0.0225993 0.244246i
\(113\) 2.53557 2.53557i 0.238526 0.238526i −0.577713 0.816240i \(-0.696055\pi\)
0.816240 + 0.577713i \(0.196055\pi\)
\(114\) 19.5025 12.3903i 1.82658 1.16045i
\(115\) 0.505686 5.69053i 0.0471555 0.530645i
\(116\) 3.68851 + 10.2134i 0.342470 + 0.948293i
\(117\) 23.3143i 2.15541i
\(118\) −3.88800 6.11980i −0.357919 0.563373i
\(119\) 2.87106i 0.263189i
\(120\) 18.0496 0.695612i 1.64769 0.0635004i
\(121\) 10.5144i 0.955852i
\(122\) −6.29301 + 3.99805i −0.569743 + 0.361966i
\(123\) 13.0133i 1.17337i
\(124\) 0.118924 0.253378i 0.0106797 0.0227540i
\(125\) 5.55047 + 9.70527i 0.496449 + 0.868066i
\(126\) 2.53796 + 3.99481i 0.226100 + 0.355886i
\(127\) 0.615790 0.615790i 0.0546426 0.0546426i −0.679257 0.733900i \(-0.737698\pi\)
0.733900 + 0.679257i \(0.237698\pi\)
\(128\) −0.394630 11.3068i −0.0348807 0.999391i
\(129\) 21.4180i 1.88575i
\(130\) −6.56842 12.6988i −0.576088 1.11376i
\(131\) 9.55413 + 9.55413i 0.834748 + 0.834748i 0.988162 0.153414i \(-0.0490268\pi\)
−0.153414 + 0.988162i \(0.549027\pi\)
\(132\) −3.74388 + 1.35208i −0.325863 + 0.117683i
\(133\) 3.71253 0.321917
\(134\) 1.02404 4.59197i 0.0884632 0.396686i
\(135\) −10.5633 + 8.83914i −0.909147 + 0.760752i
\(136\) 1.58676 + 12.4119i 0.136063 + 1.06431i
\(137\) 3.70277 3.70277i 0.316349 0.316349i −0.531014 0.847363i \(-0.678189\pi\)
0.847363 + 0.531014i \(0.178189\pi\)
\(138\) 8.71013 5.53368i 0.741456 0.471058i
\(139\) −5.46761 5.46761i −0.463756 0.463756i 0.436128 0.899885i \(-0.356349\pi\)
−0.899885 + 0.436128i \(0.856349\pi\)
\(140\) 2.50784 + 1.46085i 0.211951 + 0.123465i
\(141\) 11.8260 11.8260i 0.995925 0.995925i
\(142\) −1.89179 0.421880i −0.158755 0.0354034i
\(143\) 2.22783 + 2.22783i 0.186300 + 0.186300i
\(144\) 13.1797 + 15.8674i 1.09831 + 1.32228i
\(145\) −12.0931 1.07465i −1.00428 0.0892450i
\(146\) −2.73516 4.30520i −0.226363 0.356301i
\(147\) 18.7892i 1.54971i
\(148\) −4.96542 + 10.5793i −0.408155 + 0.869612i
\(149\) −4.21561 + 4.21561i −0.345356 + 0.345356i −0.858376 0.513021i \(-0.828526\pi\)
0.513021 + 0.858376i \(0.328526\pi\)
\(150\) −7.80250 + 18.6269i −0.637071 + 1.52088i
\(151\) 12.4417 1.01249 0.506244 0.862390i \(-0.331034\pi\)
0.506244 + 0.862390i \(0.331034\pi\)
\(152\) 16.0497 2.05181i 1.30180 0.166424i
\(153\) −16.1316 16.1316i −1.30416 1.30416i
\(154\) −0.624247 0.139211i −0.0503033 0.0112179i
\(155\) 0.200824 + 0.239997i 0.0161306 + 0.0192771i
\(156\) 10.9724 23.3777i 0.878493 1.87171i
\(157\) 7.50500 0.598964 0.299482 0.954102i \(-0.403186\pi\)
0.299482 + 0.954102i \(0.403186\pi\)
\(158\) −5.33387 1.18948i −0.424340 0.0946302i
\(159\) 7.87609 0.624615
\(160\) 11.6491 + 4.92942i 0.920940 + 0.389705i
\(161\) 1.65807 0.130675
\(162\) −2.92907 0.653199i −0.230129 0.0513202i
\(163\) −23.7284 −1.85855 −0.929277 0.369383i \(-0.879569\pi\)
−0.929277 + 0.369383i \(0.879569\pi\)
\(164\) 3.87193 8.24949i 0.302347 0.644177i
\(165\) 0.393929 4.43291i 0.0306673 0.345102i
\(166\) −19.9728 4.45404i −1.55019 0.345701i
\(167\) −0.402976 0.402976i −0.0311832 0.0311832i 0.691343 0.722526i \(-0.257019\pi\)
−0.722526 + 0.691343i \(0.757019\pi\)
\(168\) 0.664788 + 5.20010i 0.0512895 + 0.401197i
\(169\) −7.44028 −0.572330
\(170\) −13.3313 4.24171i −1.02247 0.325324i
\(171\) −20.8596 + 20.8596i −1.59517 + 1.59517i
\(172\) −6.37261 + 13.5774i −0.485907 + 1.03527i
\(173\) 15.4500i 1.17464i 0.809355 + 0.587320i \(0.199817\pi\)
−0.809355 + 0.587320i \(0.800183\pi\)
\(174\) −11.7598 18.5102i −0.891509 1.40325i
\(175\) −2.66312 + 1.85392i −0.201313 + 0.140143i
\(176\) −2.77563 0.256820i −0.209221 0.0193585i
\(177\) 10.3536 + 10.3536i 0.778225 + 0.778225i
\(178\) −4.62419 1.03122i −0.346597 0.0772932i
\(179\) −5.20444 + 5.20444i −0.388998 + 0.388998i −0.874330 0.485332i \(-0.838699\pi\)
0.485332 + 0.874330i \(0.338699\pi\)
\(180\) −22.2989 + 5.88272i −1.66206 + 0.438472i
\(181\) −9.08925 9.08925i −0.675599 0.675599i 0.283402 0.959001i \(-0.408537\pi\)
−0.959001 + 0.283402i \(0.908537\pi\)
\(182\) 3.50236 2.22510i 0.259612 0.164936i
\(183\) 10.6467 10.6467i 0.787024 0.787024i
\(184\) 7.16804 0.916372i 0.528435 0.0675559i
\(185\) −8.38500 10.0206i −0.616478 0.736730i
\(186\) −0.123033 + 0.551704i −0.00902123 + 0.0404529i
\(187\) 3.08295 0.225448
\(188\) 11.0154 3.97814i 0.803382 0.290136i
\(189\) −2.82669 2.82669i −0.205611 0.205611i
\(190\) −5.48490 + 17.2386i −0.397917 + 1.25062i
\(191\) 15.1075i 1.09314i −0.837413 0.546571i \(-0.815933\pi\)
0.837413 0.546571i \(-0.184067\pi\)
\(192\) 5.74791 + 22.1132i 0.414820 + 1.59589i
\(193\) 4.19166 4.19166i 0.301722 0.301722i −0.539965 0.841687i \(-0.681563\pi\)
0.841687 + 0.539965i \(0.181563\pi\)
\(194\) 5.31507 + 8.36604i 0.381600 + 0.600647i
\(195\) 18.5288 + 22.1431i 1.32688 + 1.58570i
\(196\) 5.59045 11.9110i 0.399318 0.850783i
\(197\) 4.03184i 0.287256i −0.989632 0.143628i \(-0.954123\pi\)
0.989632 0.143628i \(-0.0458769\pi\)
\(198\) 4.28964 2.72527i 0.304852 0.193677i
\(199\) 5.43055i 0.384961i −0.981301 0.192481i \(-0.938347\pi\)
0.981301 0.192481i \(-0.0616533\pi\)
\(200\) −10.4884 + 9.48654i −0.741639 + 0.670800i
\(201\) 9.50129i 0.670169i
\(202\) 1.97914 + 3.11520i 0.139252 + 0.219185i
\(203\) 3.52363i 0.247310i
\(204\) −8.58345 23.7675i −0.600962 1.66405i
\(205\) 6.53844 + 7.81385i 0.456664 + 0.545743i
\(206\) 19.6928 12.5111i 1.37206 0.871693i
\(207\) −9.31622 + 9.31622i −0.647522 + 0.647522i
\(208\) 13.9114 11.5550i 0.964579 0.801197i
\(209\) 3.98653i 0.275754i
\(210\) −5.58531 1.77711i −0.385423 0.122632i
\(211\) 3.23020 + 3.23020i 0.222376 + 0.222376i 0.809498 0.587122i \(-0.199739\pi\)
−0.587122 + 0.809498i \(0.699739\pi\)
\(212\) 4.99286 + 2.34342i 0.342911 + 0.160946i
\(213\) 3.91432 0.268205
\(214\) 21.1334 + 4.71286i 1.44465 + 0.322165i
\(215\) −10.7613 12.8604i −0.733914 0.877074i
\(216\) −13.7823 10.6579i −0.937770 0.725176i
\(217\) −0.0642220 + 0.0642220i −0.00435967 + 0.00435967i
\(218\) 13.3845 + 21.0674i 0.906511 + 1.42687i
\(219\) 7.28363 + 7.28363i 0.492182 + 0.492182i
\(220\) 1.56867 2.69293i 0.105760 0.181557i
\(221\) −14.1430 + 14.1430i −0.951363 + 0.951363i
\(222\) 5.13700 23.0353i 0.344773 1.54603i
\(223\) 8.17319 + 8.17319i 0.547317 + 0.547317i 0.925664 0.378347i \(-0.123507\pi\)
−0.378347 + 0.925664i \(0.623507\pi\)
\(224\) −1.12579 + 3.49428i −0.0752199 + 0.233471i
\(225\) 4.54664 25.3799i 0.303110 1.69199i
\(226\) −4.28035 + 2.71937i −0.284725 + 0.180890i
\(227\) 1.54068i 0.102258i −0.998692 0.0511292i \(-0.983718\pi\)
0.998692 0.0511292i \(-0.0162820\pi\)
\(228\) −30.7334 + 11.0992i −2.03537 + 0.735060i
\(229\) 17.5646 17.5646i 1.16070 1.16070i 0.176378 0.984322i \(-0.443562\pi\)
0.984322 0.176378i \(-0.0564382\pi\)
\(230\) −2.44964 + 7.69903i −0.161525 + 0.507659i
\(231\) 1.29164 0.0849834
\(232\) −1.94741 15.2331i −0.127854 1.00010i
\(233\) −9.99018 9.99018i −0.654479 0.654479i 0.299590 0.954068i \(-0.403150\pi\)
−0.954068 + 0.299590i \(0.903150\pi\)
\(234\) −7.17652 + 32.1809i −0.469144 + 2.10373i
\(235\) −1.15904 + 13.0427i −0.0756072 + 0.850814i
\(236\) 3.48286 + 9.64399i 0.226715 + 0.627771i
\(237\) 11.0364 0.716889
\(238\) 0.883759 3.96294i 0.0572856 0.256879i
\(239\) −26.2762 −1.69967 −0.849833 0.527052i \(-0.823297\pi\)
−0.849833 + 0.527052i \(0.823297\pi\)
\(240\) −25.1281 4.59580i −1.62201 0.296658i
\(241\) −0.113242 −0.00729456 −0.00364728 0.999993i \(-0.501161\pi\)
−0.00364728 + 0.999993i \(0.501161\pi\)
\(242\) 3.23650 14.5131i 0.208050 0.932935i
\(243\) −12.4188 −0.796665
\(244\) 9.91696 3.58144i 0.634868 0.229278i
\(245\) 9.44047 + 11.2820i 0.603130 + 0.720778i
\(246\) −4.00572 + 17.9624i −0.255395 + 1.14524i
\(247\) 18.2882 + 18.2882i 1.16365 + 1.16365i
\(248\) −0.242145 + 0.313133i −0.0153762 + 0.0198840i
\(249\) 41.3258 2.61892
\(250\) −4.67391 15.1048i −0.295604 0.955311i
\(251\) 19.2220 19.2220i 1.21328 1.21328i 0.243339 0.969941i \(-0.421757\pi\)
0.969941 0.243339i \(-0.0782427\pi\)
\(252\) −2.27350 6.29529i −0.143217 0.396566i
\(253\) 1.78045i 0.111936i
\(254\) −1.03953 + 0.660430i −0.0652260 + 0.0414390i
\(255\) 28.1417 + 2.50080i 1.76230 + 0.156606i
\(256\) −2.93572 + 15.7284i −0.183482 + 0.983023i
\(257\) −0.757800 0.757800i −0.0472703 0.0472703i 0.683077 0.730347i \(-0.260642\pi\)
−0.730347 + 0.683077i \(0.760642\pi\)
\(258\) 6.59282 29.5634i 0.410451 1.84054i
\(259\) 2.68146 2.68146i 0.166618 0.166618i
\(260\) 5.15755 + 19.5501i 0.319857 + 1.21244i
\(261\) 19.7982 + 19.7982i 1.22548 + 1.22548i
\(262\) −10.2467 16.1286i −0.633044 0.996425i
\(263\) 5.73017 5.73017i 0.353338 0.353338i −0.508012 0.861350i \(-0.669620\pi\)
0.861350 + 0.508012i \(0.169620\pi\)
\(264\) 5.58389 0.713852i 0.343665 0.0439346i
\(265\) −4.72919 + 3.95728i −0.290512 + 0.243094i
\(266\) −5.12443 1.14278i −0.314199 0.0700682i
\(267\) 9.56795 0.585549
\(268\) −2.82697 + 6.02311i −0.172685 + 0.367920i
\(269\) −9.78879 9.78879i −0.596833 0.596833i 0.342635 0.939468i \(-0.388680\pi\)
−0.939468 + 0.342635i \(0.888680\pi\)
\(270\) 17.3015 8.94917i 1.05293 0.544629i
\(271\) 4.10159i 0.249154i −0.992210 0.124577i \(-0.960243\pi\)
0.992210 0.124577i \(-0.0397574\pi\)
\(272\) 1.63038 17.6207i 0.0988565 1.06841i
\(273\) −5.92537 + 5.92537i −0.358620 + 0.358620i
\(274\) −6.25074 + 3.97119i −0.377621 + 0.239908i
\(275\) 1.99075 + 2.85967i 0.120046 + 0.172444i
\(276\) −13.7260 + 4.95706i −0.826209 + 0.298380i
\(277\) 24.6755i 1.48261i 0.671169 + 0.741305i \(0.265793\pi\)
−0.671169 + 0.741305i \(0.734207\pi\)
\(278\) 5.86396 + 9.23000i 0.351697 + 0.553578i
\(279\) 0.721688i 0.0432063i
\(280\) −3.01192 2.78838i −0.179997 0.166638i
\(281\) 23.6688i 1.41196i 0.708230 + 0.705981i \(0.249494\pi\)
−0.708230 + 0.705981i \(0.750506\pi\)
\(282\) −19.9637 + 12.6832i −1.18882 + 0.755275i
\(283\) 13.0492i 0.775694i −0.921724 0.387847i \(-0.873219\pi\)
0.921724 0.387847i \(-0.126781\pi\)
\(284\) 2.48139 + 1.16465i 0.147243 + 0.0691091i
\(285\) 3.23375 36.3897i 0.191551 2.15554i
\(286\) −2.38932 3.76085i −0.141284 0.222384i
\(287\) −2.09094 + 2.09094i −0.123424 + 0.123424i
\(288\) −13.3078 25.9588i −0.784172 1.52963i
\(289\) 2.57168i 0.151275i
\(290\) 16.3615 + 5.20582i 0.960778 + 0.305696i
\(291\) −14.1539 14.1539i −0.829714 0.829714i
\(292\) 2.45015 + 6.78442i 0.143384 + 0.397028i
\(293\) −31.6731 −1.85036 −0.925181 0.379526i \(-0.876087\pi\)
−0.925181 + 0.379526i \(0.876087\pi\)
\(294\) −5.78363 + 25.9349i −0.337308 + 1.51255i
\(295\) −11.4189 1.01474i −0.664835 0.0590802i
\(296\) 10.1103 13.0742i 0.587649 0.759924i
\(297\) −3.03531 + 3.03531i −0.176127 + 0.176127i
\(298\) 7.11646 4.52120i 0.412246 0.261906i
\(299\) 8.16779 + 8.16779i 0.472355 + 0.472355i
\(300\) 16.5035 23.3091i 0.952830 1.34575i
\(301\) 3.44138 3.44138i 0.198358 0.198358i
\(302\) −17.1733 3.82975i −0.988213 0.220377i
\(303\) −5.27037 5.27037i −0.302775 0.302775i
\(304\) −22.7851 2.10823i −1.30682 0.120915i
\(305\) −1.04346 + 11.7421i −0.0597482 + 0.672351i
\(306\) 17.3010 + 27.2322i 0.989033 + 1.55676i
\(307\) 27.3597i 1.56150i −0.624843 0.780751i \(-0.714837\pi\)
0.624843 0.780751i \(-0.285163\pi\)
\(308\) 0.818802 + 0.384307i 0.0466556 + 0.0218979i
\(309\) −33.3168 + 33.3168i −1.89532 + 1.89532i
\(310\) −0.203324 0.393087i −0.0115480 0.0223259i
\(311\) −15.8076 −0.896368 −0.448184 0.893941i \(-0.647929\pi\)
−0.448184 + 0.893941i \(0.647929\pi\)
\(312\) −22.3413 + 28.8909i −1.26483 + 1.63562i
\(313\) 13.8388 + 13.8388i 0.782217 + 0.782217i 0.980205 0.197988i \(-0.0634406\pi\)
−0.197988 + 0.980205i \(0.563441\pi\)
\(314\) −10.3592 2.31016i −0.584604 0.130370i
\(315\) 7.45390 + 0.662387i 0.419980 + 0.0373213i
\(316\) 6.99624 + 3.28371i 0.393569 + 0.184723i
\(317\) −35.0092 −1.96631 −0.983156 0.182766i \(-0.941495\pi\)
−0.983156 + 0.182766i \(0.941495\pi\)
\(318\) −10.8714 2.42439i −0.609639 0.135953i
\(319\) −3.78369 −0.211846
\(320\) −14.5619 10.3899i −0.814037 0.580813i
\(321\) −43.7272 −2.44062
\(322\) −2.28865 0.510383i −0.127542 0.0284425i
\(323\) 25.3079 1.40817
\(324\) 3.84195 + 1.80323i 0.213442 + 0.100180i
\(325\) −22.2512 3.98617i −1.23428 0.221113i
\(326\) 32.7525 + 7.30401i 1.81400 + 0.404532i
\(327\) −35.6424 35.6424i −1.97103 1.97103i
\(328\) −7.88378 + 10.1950i −0.435309 + 0.562924i
\(329\) −3.80032 −0.209518
\(330\) −1.90827 + 5.99753i −0.105047 + 0.330153i
\(331\) 16.8212 16.8212i 0.924578 0.924578i −0.0727709 0.997349i \(-0.523184\pi\)
0.997349 + 0.0727709i \(0.0231842\pi\)
\(332\) 26.1975 + 12.2959i 1.43778 + 0.674825i
\(333\) 30.1326i 1.65126i
\(334\) 0.432188 + 0.680273i 0.0236483 + 0.0372229i
\(335\) −4.77384 5.70504i −0.260823 0.311700i
\(336\) 0.683066 7.38238i 0.0372643 0.402742i
\(337\) 14.4984 + 14.4984i 0.789777 + 0.789777i 0.981457 0.191680i \(-0.0613937\pi\)
−0.191680 + 0.981457i \(0.561394\pi\)
\(338\) 10.2699 + 2.29024i 0.558608 + 0.124573i
\(339\) 7.24160 7.24160i 0.393310 0.393310i
\(340\) 17.0957 + 9.95847i 0.927144 + 0.540074i
\(341\) 0.0689618 + 0.0689618i 0.00373449 + 0.00373449i
\(342\) 35.2136 22.3717i 1.90413 1.20972i
\(343\) −6.23125 + 6.23125i −0.336456 + 0.336456i
\(344\) 12.9755 16.7794i 0.699593 0.904687i
\(345\) 1.44424 16.2522i 0.0777555 0.874989i
\(346\) 4.75576 21.3257i 0.255671 1.14648i
\(347\) −16.7705 −0.900286 −0.450143 0.892956i \(-0.648627\pi\)
−0.450143 + 0.892956i \(0.648627\pi\)
\(348\) 10.5344 + 29.1696i 0.564704 + 1.56366i
\(349\) −1.86337 1.86337i −0.0997439 0.0997439i 0.655474 0.755218i \(-0.272469\pi\)
−0.755218 + 0.655474i \(0.772469\pi\)
\(350\) 4.24659 1.73923i 0.226990 0.0929656i
\(351\) 27.8489i 1.48647i
\(352\) 3.75217 + 1.20888i 0.199991 + 0.0644333i
\(353\) 24.1362 24.1362i 1.28464 1.28464i 0.346642 0.937998i \(-0.387322\pi\)
0.937998 0.346642i \(-0.112678\pi\)
\(354\) −11.1042 17.4782i −0.590179 0.928955i
\(355\) −2.35035 + 1.96672i −0.124744 + 0.104382i
\(356\) 6.06537 + 2.84680i 0.321464 + 0.150880i
\(357\) 8.19976i 0.433978i
\(358\) 8.78574 5.58171i 0.464341 0.295003i
\(359\) 12.2500i 0.646532i 0.946308 + 0.323266i \(0.104781\pi\)
−0.946308 + 0.323266i \(0.895219\pi\)
\(360\) 32.5901 1.25599i 1.71765 0.0661965i
\(361\) 13.7253i 0.722386i
\(362\) 9.74814 + 15.3438i 0.512351 + 0.806451i
\(363\) 30.0291i 1.57612i
\(364\) −5.51926 + 1.99324i −0.289288 + 0.104474i
\(365\) −8.03305 0.713853i −0.420469 0.0373648i
\(366\) −17.9729 + 11.4185i −0.939458 + 0.596852i
\(367\) −2.71307 + 2.71307i −0.141621 + 0.141621i −0.774363 0.632742i \(-0.781929\pi\)
0.632742 + 0.774363i \(0.281929\pi\)
\(368\) −10.1762 0.941567i −0.530470 0.0490826i
\(369\) 23.4967i 1.22319i
\(370\) 8.48938 + 16.4126i 0.441342 + 0.853249i
\(371\) −1.26551 1.26551i −0.0657018 0.0657018i
\(372\) 0.339647 0.723649i 0.0176099 0.0375195i
\(373\) 16.4846 0.853541 0.426771 0.904360i \(-0.359651\pi\)
0.426771 + 0.904360i \(0.359651\pi\)
\(374\) −4.25542 0.948984i −0.220043 0.0490708i
\(375\) 15.8522 + 27.7183i 0.818603 + 1.43137i
\(376\) −16.4292 + 2.10033i −0.847272 + 0.108316i
\(377\) 17.3576 17.3576i 0.893964 0.893964i
\(378\) 3.03160 + 4.77180i 0.155929 + 0.245435i
\(379\) 13.7716 + 13.7716i 0.707401 + 0.707401i 0.965988 0.258587i \(-0.0832568\pi\)
−0.258587 + 0.965988i \(0.583257\pi\)
\(380\) 12.8772 22.1062i 0.660585 1.13403i
\(381\) 1.75870 1.75870i 0.0901011 0.0901011i
\(382\) −4.65034 + 20.8530i −0.237932 + 1.06693i
\(383\) −11.5530 11.5530i −0.590332 0.590332i 0.347389 0.937721i \(-0.387068\pi\)
−0.937721 + 0.347389i \(0.887068\pi\)
\(384\) −1.12707 32.2924i −0.0575153 1.64791i
\(385\) −0.775562 + 0.648972i −0.0395263 + 0.0330747i
\(386\) −7.07604 + 4.49552i −0.360161 + 0.228816i
\(387\) 38.6722i 1.96582i
\(388\) −4.76123 13.1838i −0.241715 0.669305i
\(389\) 15.7728 15.7728i 0.799712 0.799712i −0.183338 0.983050i \(-0.558690\pi\)
0.983050 + 0.183338i \(0.0586903\pi\)
\(390\) −18.7595 36.2678i −0.949922 1.83649i
\(391\) 11.3029 0.571612
\(392\) −11.3829 + 14.7200i −0.574925 + 0.743470i
\(393\) 27.2867 + 27.2867i 1.37643 + 1.37643i
\(394\) −1.24107 + 5.56517i −0.0625240 + 0.280369i
\(395\) −6.62677 + 5.54512i −0.333429 + 0.279006i
\(396\) −6.75991 + 2.44129i −0.339698 + 0.122680i
\(397\) 29.9558 1.50344 0.751720 0.659483i \(-0.229225\pi\)
0.751720 + 0.659483i \(0.229225\pi\)
\(398\) −1.67161 + 7.49583i −0.0837904 + 0.375732i
\(399\) 10.6030 0.530815
\(400\) 17.3973 9.86585i 0.869863 0.493293i
\(401\) 19.9241 0.994963 0.497481 0.867475i \(-0.334258\pi\)
0.497481 + 0.867475i \(0.334258\pi\)
\(402\) 2.92465 13.1147i 0.145868 0.654102i
\(403\) −0.632724 −0.0315182
\(404\) −1.77291 4.90915i −0.0882054 0.244239i
\(405\) −3.63906 + 3.04508i −0.180826 + 0.151311i
\(406\) −1.08463 + 4.86369i −0.0538294 + 0.241381i
\(407\) −2.87936 2.87936i −0.142725 0.142725i
\(408\) 4.53179 + 35.4485i 0.224357 + 1.75496i
\(409\) −5.89856 −0.291665 −0.145832 0.989309i \(-0.546586\pi\)
−0.145832 + 0.989309i \(0.546586\pi\)
\(410\) −6.61982 12.7982i −0.326930 0.632056i
\(411\) 10.5751 10.5751i 0.521634 0.521634i
\(412\) −31.0333 + 11.2075i −1.52890 + 0.552152i
\(413\) 3.32717i 0.163720i
\(414\) 15.7269 9.99156i 0.772936 0.491058i
\(415\) −24.8141 + 20.7638i −1.21808 + 1.01926i
\(416\) −22.7588 + 11.6674i −1.11584 + 0.572039i
\(417\) −15.6155 15.6155i −0.764696 0.764696i
\(418\) −1.22712 + 5.50264i −0.0600204 + 0.269143i
\(419\) −8.24430 + 8.24430i −0.402760 + 0.402760i −0.879205 0.476444i \(-0.841925\pi\)
0.476444 + 0.879205i \(0.341925\pi\)
\(420\) 7.16242 + 4.17221i 0.349490 + 0.203583i
\(421\) −17.1776 17.1776i −0.837184 0.837184i 0.151304 0.988487i \(-0.451653\pi\)
−0.988487 + 0.151304i \(0.951653\pi\)
\(422\) −3.46436 5.45297i −0.168642 0.265447i
\(423\) 21.3528 21.3528i 1.03821 1.03821i
\(424\) −6.17034 4.77152i −0.299658 0.231725i
\(425\) −18.1542 + 12.6380i −0.880607 + 0.613031i
\(426\) −5.40296 1.20489i −0.261774 0.0583772i
\(427\) −3.42135 −0.165571
\(428\) −27.7198 13.0104i −1.33989 0.628881i
\(429\) 6.36269 + 6.36269i 0.307194 + 0.307194i
\(430\) 10.8952 + 21.0639i 0.525415 + 1.01579i
\(431\) 32.1769i 1.54990i 0.632020 + 0.774952i \(0.282226\pi\)
−0.632020 + 0.774952i \(0.717774\pi\)
\(432\) 15.7432 + 18.9536i 0.757445 + 0.911904i
\(433\) −20.3383 + 20.3383i −0.977396 + 0.977396i −0.999750 0.0223540i \(-0.992884\pi\)
0.0223540 + 0.999750i \(0.492884\pi\)
\(434\) 0.108415 0.0688775i 0.00520407 0.00330623i
\(435\) −34.5381 3.06921i −1.65598 0.147158i
\(436\) −11.9898 33.1995i −0.574206 1.58997i
\(437\) 14.6156i 0.699161i
\(438\) −7.81163 12.2957i −0.373254 0.587510i
\(439\) 35.4180i 1.69041i −0.534444 0.845204i \(-0.679479\pi\)
0.534444 0.845204i \(-0.320521\pi\)
\(440\) −2.99418 + 3.23421i −0.142742 + 0.154185i
\(441\) 33.9256i 1.61550i
\(442\) 23.8752 15.1683i 1.13563 0.721481i
\(443\) 3.03787i 0.144333i 0.997393 + 0.0721667i \(0.0229913\pi\)
−0.997393 + 0.0721667i \(0.977009\pi\)
\(444\) −14.1813 + 30.2145i −0.673014 + 1.43392i
\(445\) −5.74507 + 4.80733i −0.272342 + 0.227890i
\(446\) −8.76567 13.7974i −0.415067 0.653324i
\(447\) −12.0398 + 12.0398i −0.569463 + 0.569463i
\(448\) 2.62953 4.47664i 0.124234 0.211502i
\(449\) 8.65559i 0.408483i −0.978921 0.204241i \(-0.934527\pi\)
0.978921 0.204241i \(-0.0654727\pi\)
\(450\) −14.0881 + 33.6325i −0.664120 + 1.58545i
\(451\) 2.24526 + 2.24526i 0.105725 + 0.105725i
\(452\) 6.74527 2.43601i 0.317271 0.114580i
\(453\) 35.5335 1.66951
\(454\) −0.474247 + 2.12661i −0.0222575 + 0.0998068i
\(455\) 0.580733 6.53504i 0.0272252 0.306367i
\(456\) 45.8381 5.86000i 2.14656 0.274420i
\(457\) 13.5575 13.5575i 0.634193 0.634193i −0.314924 0.949117i \(-0.601979\pi\)
0.949117 + 0.314924i \(0.101979\pi\)
\(458\) −29.6512 + 18.8379i −1.38551 + 0.880236i
\(459\) −19.2692 19.2692i −0.899411 0.899411i
\(460\) 5.75115 9.87298i 0.268149 0.460330i
\(461\) −1.19682 + 1.19682i −0.0557416 + 0.0557416i −0.734428 0.678687i \(-0.762550\pi\)
0.678687 + 0.734428i \(0.262550\pi\)
\(462\) −1.78286 0.397587i −0.0829459 0.0184974i
\(463\) 21.1815 + 21.1815i 0.984390 + 0.984390i 0.999880 0.0154904i \(-0.00493096\pi\)
−0.0154904 + 0.999880i \(0.504931\pi\)
\(464\) −2.00096 + 21.6258i −0.0928921 + 1.00395i
\(465\) 0.573555 + 0.685435i 0.0265980 + 0.0317863i
\(466\) 10.7144 + 16.8647i 0.496334 + 0.781241i
\(467\) 24.8448i 1.14968i 0.818266 + 0.574840i \(0.194936\pi\)
−0.818266 + 0.574840i \(0.805064\pi\)
\(468\) 19.8116 42.2105i 0.915792 1.95118i
\(469\) 1.52664 1.52664i 0.0704936 0.0704936i
\(470\) 5.61460 17.6462i 0.258982 0.813959i
\(471\) 21.4343 0.987642
\(472\) −1.83884 14.3838i −0.0846394 0.662066i
\(473\) −3.69537 3.69537i −0.169913 0.169913i
\(474\) −15.2336 3.39717i −0.699701 0.156037i
\(475\) 16.3420 + 23.4749i 0.749822 + 1.07710i
\(476\) −2.43972 + 5.19804i −0.111824 + 0.238252i
\(477\) 14.2210 0.651135
\(478\) 36.2692 + 8.08825i 1.65892 + 0.369948i
\(479\) 23.5766 1.07724 0.538621 0.842548i \(-0.318946\pi\)
0.538621 + 0.842548i \(0.318946\pi\)
\(480\) 33.2698 + 14.0785i 1.51855 + 0.642591i
\(481\) 26.4181 1.20456
\(482\) 0.156309 + 0.0348578i 0.00711967 + 0.00158773i
\(483\) 4.73547 0.215471
\(484\) −8.93472 + 19.0362i −0.406124 + 0.865284i
\(485\) 15.6102 + 1.38719i 0.708821 + 0.0629891i
\(486\) 17.1417 + 3.82271i 0.777565 + 0.173401i
\(487\) −2.63011 2.63011i −0.119182 0.119182i 0.645001 0.764182i \(-0.276857\pi\)
−0.764182 + 0.645001i \(0.776857\pi\)
\(488\) −14.7909 + 1.89089i −0.669552 + 0.0855964i
\(489\) −67.7686 −3.06460
\(490\) −9.55798 18.4785i −0.431786 0.834774i
\(491\) −18.6899 + 18.6899i −0.843465 + 0.843465i −0.989308 0.145843i \(-0.953411\pi\)
0.145843 + 0.989308i \(0.453411\pi\)
\(492\) 11.0582 23.5606i 0.498544 1.06219i
\(493\) 24.0202i 1.08182i
\(494\) −19.6139 30.8727i −0.882472 1.38903i
\(495\) 0.711274 8.00403i 0.0319694 0.359754i
\(496\) 0.430623 0.357683i 0.0193355 0.0160605i
\(497\) −0.628940 0.628940i −0.0282118 0.0282118i
\(498\) −57.0424 12.7208i −2.55613 0.570032i
\(499\) 9.69342 9.69342i 0.433937 0.433937i −0.456028 0.889965i \(-0.650728\pi\)
0.889965 + 0.456028i \(0.150728\pi\)
\(500\) 1.80192 + 22.2880i 0.0805845 + 0.996748i
\(501\) −1.15090 1.15090i −0.0514185 0.0514185i
\(502\) −32.4491 + 20.6154i −1.44827 + 0.920110i
\(503\) −13.0434 + 13.0434i −0.581577 + 0.581577i −0.935336 0.353759i \(-0.884903\pi\)
0.353759 + 0.935336i \(0.384903\pi\)
\(504\) 1.20034 + 9.38926i 0.0534672 + 0.418231i
\(505\) 5.81265 + 0.516538i 0.258659 + 0.0229856i
\(506\) −0.548051 + 2.45756i −0.0243638 + 0.109252i
\(507\) −21.2495 −0.943724
\(508\) 1.63816 0.591611i 0.0726817 0.0262485i
\(509\) 25.8539 + 25.8539i 1.14595 + 1.14595i 0.987341 + 0.158611i \(0.0507016\pi\)
0.158611 + 0.987341i \(0.449298\pi\)
\(510\) −38.0744 12.1144i −1.68596 0.536433i
\(511\) 2.34062i 0.103543i
\(512\) 8.89365 20.8063i 0.393047 0.919518i
\(513\) −24.9168 + 24.9168i −1.10010 + 1.10010i
\(514\) 0.812734 + 1.27926i 0.0358481 + 0.0564258i
\(515\) 3.26531 36.7448i 0.143887 1.61917i
\(516\) −18.2002 + 38.7773i −0.801221 + 1.70707i
\(517\) 4.08080i 0.179473i
\(518\) −4.52664 + 2.87584i −0.198889 + 0.126357i
\(519\) 44.1252i 1.93688i
\(520\) −1.10116 28.5727i −0.0482892 1.25300i
\(521\) 25.0528i 1.09758i −0.835959 0.548792i \(-0.815088\pi\)
0.835959 0.548792i \(-0.184912\pi\)
\(522\) −21.2334 33.4218i −0.929361 1.46283i
\(523\) 40.3434i 1.76410i −0.471160 0.882048i \(-0.656165\pi\)
0.471160 0.882048i \(-0.343835\pi\)
\(524\) 9.17898 + 25.4165i 0.400986 + 1.11032i
\(525\) −7.60588 + 5.29481i −0.331948 + 0.231084i
\(526\) −9.67325 + 6.14556i −0.421774 + 0.267959i
\(527\) −0.437794 + 0.437794i −0.0190706 + 0.0190706i
\(528\) −7.92723 0.733479i −0.344988 0.0319206i
\(529\) 16.4724i 0.716192i
\(530\) 7.74586 4.00653i 0.336459 0.174033i
\(531\) 18.6944 + 18.6944i 0.811267 + 0.811267i
\(532\) 6.72153 + 3.15477i 0.291415 + 0.136777i
\(533\) −20.6003 −0.892296
\(534\) −13.2067 2.94517i −0.571510 0.127450i
\(535\) 26.2560 21.9704i 1.13515 0.949862i
\(536\) 5.75610 7.44356i 0.248626 0.321513i
\(537\) −14.8639 + 14.8639i −0.641425 + 0.641425i
\(538\) 10.4984 + 16.5247i 0.452618 + 0.712430i
\(539\) 3.24180 + 3.24180i 0.139634 + 0.139634i
\(540\) −26.6361 + 7.02692i −1.14623 + 0.302390i
\(541\) −24.7446 + 24.7446i −1.06385 + 1.06385i −0.0660360 + 0.997817i \(0.521035\pi\)
−0.997817 + 0.0660360i \(0.978965\pi\)
\(542\) −1.26254 + 5.66146i −0.0542307 + 0.243181i
\(543\) −25.9590 25.9590i −1.11401 1.11401i
\(544\) −7.67437 + 23.8201i −0.329036 + 1.02128i
\(545\) 39.3097 + 3.49324i 1.68384 + 0.149634i
\(546\) 10.0028 6.35491i 0.428079 0.271965i
\(547\) 19.0254i 0.813465i 0.913547 + 0.406733i \(0.133332\pi\)
−0.913547 + 0.406733i \(0.866668\pi\)
\(548\) 9.85034 3.55738i 0.420786 0.151964i
\(549\) 19.2235 19.2235i 0.820440 0.820440i
\(550\) −1.86759 4.56000i −0.0796342 0.194439i
\(551\) −31.0602 −1.32321
\(552\) 20.4720 2.61717i 0.871346 0.111394i
\(553\) −1.77329 1.77329i −0.0754079 0.0754079i
\(554\) 7.59554 34.0598i 0.322704 1.44706i
\(555\) −23.9476 28.6189i −1.01652 1.21481i
\(556\) −5.25292 14.5453i −0.222773 0.616856i
\(557\) 30.9517 1.31146 0.655732 0.754993i \(-0.272360\pi\)
0.655732 + 0.754993i \(0.272360\pi\)
\(558\) −0.222148 + 0.996151i −0.00940425 + 0.0421704i
\(559\) 33.9050 1.43403
\(560\) 3.29907 + 4.77594i 0.139411 + 0.201820i
\(561\) 8.80494 0.371745
\(562\) 7.28565 32.6702i 0.307327 1.37811i
\(563\) 3.50238 0.147608 0.0738039 0.997273i \(-0.476486\pi\)
0.0738039 + 0.997273i \(0.476486\pi\)
\(564\) 31.4601 11.3616i 1.32471 0.478410i
\(565\) −0.709734 + 7.98670i −0.0298587 + 0.336003i
\(566\) −4.01676 + 18.0119i −0.168837 + 0.757097i
\(567\) −0.973793 0.973793i −0.0408955 0.0408955i
\(568\) −3.06658 2.37138i −0.128671 0.0995011i
\(569\) 0.525780 0.0220418 0.0110209 0.999939i \(-0.496492\pi\)
0.0110209 + 0.999939i \(0.496492\pi\)
\(570\) −15.6649 + 49.2336i −0.656131 + 2.06217i
\(571\) −11.2487 + 11.2487i −0.470743 + 0.470743i −0.902155 0.431412i \(-0.858016\pi\)
0.431412 + 0.902155i \(0.358016\pi\)
\(572\) 2.14035 + 5.92660i 0.0894926 + 0.247804i
\(573\) 43.1472i 1.80250i
\(574\) 3.52977 2.24252i 0.147330 0.0936008i
\(575\) 7.29859 + 10.4843i 0.304372 + 0.437224i
\(576\) 10.3784 + 39.9275i 0.432432 + 1.66364i
\(577\) −2.92884 2.92884i −0.121929 0.121929i 0.643509 0.765438i \(-0.277478\pi\)
−0.765438 + 0.643509i \(0.777478\pi\)
\(578\) 0.791607 3.54971i 0.0329265 0.147649i
\(579\) 11.9714 11.9714i 0.497515 0.497515i
\(580\) −20.9814 12.2220i −0.871206 0.507489i
\(581\) −6.64011 6.64011i −0.275478 0.275478i
\(582\) 15.1799 + 23.8935i 0.629227 + 0.990416i
\(583\) −1.35891 + 1.35891i −0.0562801 + 0.0562801i
\(584\) −1.29360 10.1188i −0.0535295 0.418718i
\(585\) 33.4555 + 39.9814i 1.38321 + 1.65303i
\(586\) 43.7186 + 9.74951i 1.80600 + 0.402748i
\(587\) 23.1574 0.955809 0.477905 0.878412i \(-0.341396\pi\)
0.477905 + 0.878412i \(0.341396\pi\)
\(588\) 15.9664 34.0178i 0.658442 1.40287i
\(589\) 0.566106 + 0.566106i 0.0233260 + 0.0233260i
\(590\) 15.4493 + 4.91558i 0.636036 + 0.202371i
\(591\) 11.5150i 0.473662i
\(592\) −17.9798 + 14.9343i −0.738964 + 0.613798i
\(593\) −13.9325 + 13.9325i −0.572141 + 0.572141i −0.932726 0.360585i \(-0.882577\pi\)
0.360585 + 0.932726i \(0.382577\pi\)
\(594\) 5.12398 3.25534i 0.210240 0.133568i
\(595\) −4.11990 4.92354i −0.168900 0.201846i
\(596\) −11.2146 + 4.05008i −0.459368 + 0.165898i
\(597\) 15.5097i 0.634769i
\(598\) −8.75988 13.7882i −0.358218 0.563843i
\(599\) 33.5311i 1.37004i 0.728523 + 0.685021i \(0.240207\pi\)
−0.728523 + 0.685021i \(0.759793\pi\)
\(600\) −29.9548 + 27.0936i −1.22290 + 1.10609i
\(601\) 19.4164i 0.792011i 0.918248 + 0.396005i \(0.129604\pi\)
−0.918248 + 0.396005i \(0.870396\pi\)
\(602\) −5.80948 + 3.69085i −0.236777 + 0.150428i
\(603\) 17.1554i 0.698623i
\(604\) 22.5256 + 10.5725i 0.916554 + 0.430187i
\(605\) −15.0879 18.0310i −0.613409 0.733063i
\(606\) 5.65243 + 8.89705i 0.229614 + 0.361418i
\(607\) 9.51495 9.51495i 0.386200 0.386200i −0.487130 0.873330i \(-0.661956\pi\)
0.873330 + 0.487130i \(0.161956\pi\)
\(608\) 30.8015 + 9.92363i 1.24917 + 0.402456i
\(609\) 10.0635i 0.407794i
\(610\) 5.05471 15.8865i 0.204659 0.643227i
\(611\) −18.7206 18.7206i −0.757355 0.757355i
\(612\) −15.4982 42.9143i −0.626478 1.73471i
\(613\) −9.37947 −0.378833 −0.189417 0.981897i \(-0.560660\pi\)
−0.189417 + 0.981897i \(0.560660\pi\)
\(614\) −8.42177 + 37.7648i −0.339875 + 1.52406i
\(615\) 18.6738 + 22.3164i 0.753002 + 0.899884i
\(616\) −1.01190 0.782503i −0.0407707 0.0315280i
\(617\) 3.54768 3.54768i 0.142824 0.142824i −0.632079 0.774904i \(-0.717798\pi\)
0.774904 + 0.632079i \(0.217798\pi\)
\(618\) 56.2428 35.7319i 2.26242 1.43735i
\(619\) −24.6158 24.6158i −0.989392 0.989392i 0.0105527 0.999944i \(-0.496641\pi\)
−0.999944 + 0.0105527i \(0.996641\pi\)
\(620\) 0.159651 + 0.605168i 0.00641172 + 0.0243041i
\(621\) −11.1282 + 11.1282i −0.446561 + 0.446561i
\(622\) 21.8194 + 4.86585i 0.874877 + 0.195103i
\(623\) −1.53735 1.53735i −0.0615926 0.0615926i
\(624\) 39.7309 33.0013i 1.59051 1.32111i
\(625\) −23.4453 8.67867i −0.937811 0.347147i
\(626\) −14.8420 23.3617i −0.593206 0.933720i
\(627\) 11.3856i 0.454695i
\(628\) 13.5878 + 6.37747i 0.542211 + 0.254489i
\(629\) 18.2792 18.2792i 0.728840 0.728840i
\(630\) −10.0848 3.20873i −0.401787 0.127839i
\(631\) −28.8921 −1.15018 −0.575088 0.818092i \(-0.695032\pi\)
−0.575088 + 0.818092i \(0.695032\pi\)
\(632\) −8.64618 6.68608i −0.343927 0.265958i
\(633\) 9.22547 + 9.22547i 0.366679 + 0.366679i
\(634\) 48.3235 + 10.7764i 1.91917 + 0.427986i
\(635\) −0.172367 + 1.93966i −0.00684016 + 0.0769729i
\(636\) 14.2596 + 6.69281i 0.565432 + 0.265387i
\(637\) −29.7435 −1.17848
\(638\) 5.22265 + 1.16468i 0.206767 + 0.0461102i
\(639\) 7.06765 0.279592
\(640\) 16.9018 + 18.8237i 0.668101 + 0.744070i
\(641\) −16.6914 −0.659271 −0.329636 0.944108i \(-0.606926\pi\)
−0.329636 + 0.944108i \(0.606926\pi\)
\(642\) 60.3570 + 13.4600i 2.38210 + 0.531223i
\(643\) −5.22468 −0.206041 −0.103021 0.994679i \(-0.532851\pi\)
−0.103021 + 0.994679i \(0.532851\pi\)
\(644\) 3.00194 + 1.40897i 0.118293 + 0.0555212i
\(645\) −30.7343 36.7295i −1.21016 1.44622i
\(646\) −34.9327 7.79019i −1.37441 0.306501i
\(647\) 21.6797 + 21.6797i 0.852318 + 0.852318i 0.990418 0.138100i \(-0.0440996\pi\)
−0.138100 + 0.990418i \(0.544100\pi\)
\(648\) −4.74801 3.67163i −0.186519 0.144235i
\(649\) −3.57273 −0.140242
\(650\) 29.4865 + 12.3514i 1.15656 + 0.484463i
\(651\) −0.183418 + 0.183418i −0.00718874 + 0.00718874i
\(652\) −42.9603 20.1636i −1.68245 0.789666i
\(653\) 22.7642i 0.890833i −0.895323 0.445417i \(-0.853056\pi\)
0.895323 0.445417i \(-0.146944\pi\)
\(654\) 38.2261 + 60.1688i 1.49476 + 2.35279i
\(655\) −30.0942 2.67431i −1.17588 0.104494i
\(656\) 14.0202 11.6455i 0.547398 0.454679i
\(657\) 13.1513 + 13.1513i 0.513079 + 0.513079i
\(658\) 5.24560 + 1.16980i 0.204495 + 0.0456036i
\(659\) 1.66201 1.66201i 0.0647427 0.0647427i −0.673994 0.738737i \(-0.735423\pi\)
0.738737 + 0.673994i \(0.235423\pi\)
\(660\) 4.48013 7.69104i 0.174389 0.299373i
\(661\) −5.62818 5.62818i −0.218911 0.218911i 0.589129 0.808039i \(-0.299471\pi\)
−0.808039 + 0.589129i \(0.799471\pi\)
\(662\) −28.3963 + 18.0406i −1.10365 + 0.701168i
\(663\) −40.3926 + 40.3926i −1.56872 + 1.56872i
\(664\) −32.3758 25.0362i −1.25642 0.971591i
\(665\) −6.36657 + 5.32739i −0.246885 + 0.206587i
\(666\) 9.27532 41.5923i 0.359411 1.61167i
\(667\) −13.8720 −0.537125
\(668\) −0.387153 1.07202i −0.0149794 0.0414777i
\(669\) 23.3427 + 23.3427i 0.902481 + 0.902481i
\(670\) 4.83326 + 9.34418i 0.186725 + 0.360997i
\(671\) 3.67386i 0.141828i
\(672\) −3.21526 + 9.97969i −0.124031 + 0.384975i
\(673\) 0.278251 0.278251i 0.0107258 0.0107258i −0.701724 0.712449i \(-0.747586\pi\)
0.712449 + 0.701724i \(0.247586\pi\)
\(674\) −15.5494 24.4751i −0.598940 0.942744i
\(675\) 5.43097 30.3163i 0.209038 1.16687i
\(676\) −13.4706 6.32248i −0.518101 0.243172i
\(677\) 26.3591i 1.01306i 0.862222 + 0.506531i \(0.169072\pi\)
−0.862222 + 0.506531i \(0.830928\pi\)
\(678\) −12.2247 + 7.76655i −0.469488 + 0.298273i
\(679\) 4.54840i 0.174551i
\(680\) −20.5319 19.0081i −0.787363 0.728927i
\(681\) 4.40019i 0.168616i
\(682\) −0.0739609 0.116416i −0.00283211 0.00445780i
\(683\) 2.83023i 0.108296i 0.998533 + 0.0541479i \(0.0172442\pi\)
−0.998533 + 0.0541479i \(0.982756\pi\)
\(684\) −55.4919 + 20.0405i −2.12179 + 0.766269i
\(685\) −1.03645 + 11.6632i −0.0396006 + 0.445629i
\(686\) 10.5191 6.68296i 0.401622 0.255157i
\(687\) 50.1646 50.1646i 1.91390 1.91390i
\(688\) −23.0752 + 19.1667i −0.879734 + 0.730724i
\(689\) 12.4679i 0.474991i
\(690\) −6.99620 + 21.9885i −0.266341 + 0.837087i
\(691\) 22.1815 + 22.1815i 0.843825 + 0.843825i 0.989354 0.145529i \(-0.0464884\pi\)
−0.145529 + 0.989354i \(0.546488\pi\)
\(692\) −13.1288 + 27.9721i −0.499083 + 1.06334i
\(693\) 2.33217 0.0885917
\(694\) 23.1484 + 5.16223i 0.878702 + 0.195956i
\(695\) 17.2222 + 1.53044i 0.653276 + 0.0580531i
\(696\) −5.56183 43.5057i −0.210821 1.64908i
\(697\) −14.2537 + 14.2537i −0.539898 + 0.539898i
\(698\) 1.99845 + 3.14560i 0.0756423 + 0.119063i
\(699\) −28.5320 28.5320i −1.07918 1.07918i
\(700\) −6.39696 + 1.09350i −0.241782 + 0.0413303i
\(701\) 16.2264 16.2264i 0.612864 0.612864i −0.330828 0.943691i \(-0.607328\pi\)
0.943691 + 0.330828i \(0.107328\pi\)
\(702\) −8.57237 + 38.4401i −0.323543 + 1.45083i
\(703\) −23.6366 23.6366i −0.891472 0.891472i
\(704\) −4.80704 2.82360i −0.181172 0.106418i
\(705\) −3.31022 + 37.2502i −0.124670 + 1.40292i
\(706\) −40.7449 + 25.8858i −1.53345 + 0.974226i
\(707\) 1.69365i 0.0636965i
\(708\) 9.94708 + 27.5433i 0.373834 + 1.03514i
\(709\) −25.3577 + 25.3577i −0.952329 + 0.952329i −0.998914 0.0465856i \(-0.985166\pi\)
0.0465856 + 0.998914i \(0.485166\pi\)
\(710\) 3.84959 1.99120i 0.144473 0.0747282i
\(711\) 19.9271 0.747326
\(712\) −7.49579 5.79648i −0.280916 0.217232i
\(713\) 0.252832 + 0.252832i 0.00946863 + 0.00946863i
\(714\) 2.52402 11.3182i 0.0944592 0.423573i
\(715\) −7.01735 0.623594i −0.262434 0.0233211i
\(716\) −13.8452 + 5.00009i −0.517418 + 0.186862i
\(717\) −75.0450 −2.80261
\(718\) 3.77076 16.9088i 0.140724 0.631031i
\(719\) −41.3374 −1.54163 −0.770813 0.637061i \(-0.780150\pi\)
−0.770813 + 0.637061i \(0.780150\pi\)
\(720\) −45.3710 8.29813i −1.69088 0.309253i
\(721\) 10.7065 0.398730
\(722\) −4.22489 + 18.9452i −0.157234 + 0.705067i
\(723\) −0.323420 −0.0120281
\(724\) −8.73236 24.1798i −0.324536 0.898635i
\(725\) 22.2805 15.5105i 0.827477 0.576045i
\(726\) 9.24346 41.4494i 0.343057 1.53833i
\(727\) −23.4630 23.4630i −0.870193 0.870193i 0.122300 0.992493i \(-0.460973\pi\)
−0.992493 + 0.122300i \(0.960973\pi\)
\(728\) 8.23182 1.05237i 0.305092 0.0390033i
\(729\) −41.8342 −1.54942
\(730\) 10.8683 + 3.45804i 0.402256 + 0.127988i
\(731\) 23.4595 23.4595i 0.867681 0.867681i
\(732\) 28.3229 10.2286i 1.04684 0.378061i
\(733\) 15.1628i 0.560051i 0.959993 + 0.280025i \(0.0903429\pi\)
−0.959993 + 0.280025i \(0.909657\pi\)
\(734\) 4.58000 2.90975i 0.169051 0.107401i
\(735\) 26.9621 + 32.2214i 0.994511 + 1.18850i
\(736\) 13.7564 + 4.43205i 0.507069 + 0.163368i
\(737\) −1.63931 1.63931i −0.0603848 0.0603848i
\(738\) −7.23269 + 32.4327i −0.266239 + 1.19387i
\(739\) 0.974343 0.974343i 0.0358418 0.0358418i −0.688959 0.724801i \(-0.741932\pi\)
0.724801 + 0.688959i \(0.241932\pi\)
\(740\) −6.66589 25.2676i −0.245043 0.928854i
\(741\) 52.2312 + 52.2312i 1.91876 + 1.91876i
\(742\) 1.35724 + 2.13633i 0.0498260 + 0.0784272i
\(743\) 29.0897 29.0897i 1.06720 1.06720i 0.0696259 0.997573i \(-0.477819\pi\)
0.997573 0.0696259i \(-0.0221806\pi\)
\(744\) −0.691569 + 0.894310i −0.0253541 + 0.0327870i
\(745\) 1.18000 13.2786i 0.0432317 0.486490i
\(746\) −22.7538 5.07424i −0.833078 0.185781i
\(747\) 74.6176 2.73011
\(748\) 5.58168 + 2.61978i 0.204087 + 0.0957887i
\(749\) 7.02596 + 7.02596i 0.256723 + 0.256723i
\(750\) −13.3487 43.1394i −0.487426 1.57523i
\(751\) 7.77705i 0.283789i 0.989882 + 0.141894i \(0.0453193\pi\)
−0.989882 + 0.141894i \(0.954681\pi\)
\(752\) 23.3239 + 2.15808i 0.850534 + 0.0786970i
\(753\) 54.8981 54.8981i 2.00060 2.00060i
\(754\) −29.3019 + 18.6159i −1.06711 + 0.677952i
\(755\) −21.3361 + 17.8535i −0.776498 + 0.649755i
\(756\) −2.71570 7.51973i −0.0987690 0.273490i
\(757\) 1.42073i 0.0516372i 0.999667 + 0.0258186i \(0.00821923\pi\)
−0.999667 + 0.0258186i \(0.991781\pi\)
\(758\) −14.7699 23.2482i −0.536469 0.844413i
\(759\) 5.08497i 0.184573i
\(760\) −24.5791 + 26.5496i −0.891579 + 0.963054i
\(761\) 26.6737i 0.966921i 0.875366 + 0.483460i \(0.160620\pi\)
−0.875366 + 0.483460i \(0.839380\pi\)
\(762\) −2.96891 + 1.88619i −0.107552 + 0.0683295i
\(763\) 11.4538i 0.414656i
\(764\) 12.8378 27.3521i 0.464456 0.989565i
\(765\) 50.8124 + 4.51542i 1.83713 + 0.163255i
\(766\) 12.3905 + 19.5029i 0.447687 + 0.704669i
\(767\) 16.3899