Defining parameters
| Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 80.s (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(80, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 28 | 28 | 0 |
| Cusp forms | 20 | 20 | 0 |
| Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 80.2.s.a | $2$ | $0.639$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(-4\) | \(-4\) | \(-6\) | \(q+(i-1)q^{2}-2 q^{3}-2 i q^{4}+(i-2)q^{5}+\cdots\) |
| 80.2.s.b | $18$ | $0.639$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(0\) | \(0\) | \(2\) | \(2\) | \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+\beta _{13}q^{4}+\beta _{17}q^{5}+\cdots\) |