Properties

Label 80.2.q.c.29.4
Level $80$
Weight $2$
Character 80.29
Analytic conductor $0.639$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(29,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.29");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.q (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 29.4
Root \(-1.40501 - 0.161069i\) of defining polynomial
Character \(\chi\) \(=\) 80.29
Dual form 80.2.q.c.69.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.161069 - 1.40501i) q^{2} +(0.734294 - 0.734294i) q^{3} +(-1.94811 + 0.452606i) q^{4} +(-1.17216 - 1.90421i) q^{5} +(-1.14996 - 0.913419i) q^{6} +1.71452 q^{7} +(0.949697 + 2.66422i) q^{8} +1.92163i q^{9} +O(q^{10})\) \(q+(-0.161069 - 1.40501i) q^{2} +(0.734294 - 0.734294i) q^{3} +(-1.94811 + 0.452606i) q^{4} +(-1.17216 - 1.90421i) q^{5} +(-1.14996 - 0.913419i) q^{6} +1.71452 q^{7} +(0.949697 + 2.66422i) q^{8} +1.92163i q^{9} +(-2.48664 + 1.95361i) q^{10} +(2.82684 - 2.82684i) q^{11} +(-1.09814 + 1.76283i) q^{12} +(-2.59462 + 2.59462i) q^{13} +(-0.276156 - 2.40893i) q^{14} +(-2.25896 - 0.537540i) q^{15} +(3.59030 - 1.76346i) q^{16} +1.89939i q^{17} +(2.69991 - 0.309513i) q^{18} +(2.89623 + 2.89623i) q^{19} +(3.14537 + 3.17910i) q^{20} +(1.25896 - 1.25896i) q^{21} +(-4.42705 - 3.51643i) q^{22} +2.00613 q^{23} +(2.65368 + 1.25896i) q^{24} +(-2.25207 + 4.46410i) q^{25} +(4.06338 + 3.22756i) q^{26} +(3.61392 + 3.61392i) q^{27} +(-3.34009 + 0.776005i) q^{28} +(-6.72307 - 6.72307i) q^{29} +(-0.391402 + 3.26045i) q^{30} -7.11778 q^{31} +(-3.05596 - 4.76037i) q^{32} -4.15146i q^{33} +(2.66867 - 0.305932i) q^{34} +(-2.00970 - 3.26482i) q^{35} +(-0.869740 - 3.74355i) q^{36} +(2.25207 + 2.25207i) q^{37} +(3.60274 - 4.53572i) q^{38} +3.81042i q^{39} +(3.96005 - 4.93133i) q^{40} +1.59630i q^{41} +(-1.97164 - 1.56608i) q^{42} +(-8.06886 - 8.06886i) q^{43} +(-4.22756 + 6.78645i) q^{44} +(3.65919 - 2.25246i) q^{45} +(-0.323124 - 2.81863i) q^{46} +4.43823i q^{47} +(1.34144 - 3.93123i) q^{48} -4.06040 q^{49} +(6.63485 + 2.44515i) q^{50} +(1.39471 + 1.39471i) q^{51} +(3.88027 - 6.22896i) q^{52} +(0.481758 + 0.481758i) q^{53} +(4.49551 - 5.65968i) q^{54} +(-8.69642 - 2.06939i) q^{55} +(1.62828 + 4.56787i) q^{56} +4.25336 q^{57} +(-8.36311 + 10.5289i) q^{58} +(3.08580 - 3.08580i) q^{59} +(4.64401 + 0.0247681i) q^{60} +(3.46410 + 3.46410i) q^{61} +(1.14645 + 10.0006i) q^{62} +3.29468i q^{63} +(-6.19615 + 5.06040i) q^{64} +(7.98203 + 1.89939i) q^{65} +(-5.83285 + 0.668669i) q^{66} +(1.80454 - 1.80454i) q^{67} +(-0.859677 - 3.70023i) q^{68} +(1.47309 - 1.47309i) q^{69} +(-4.26341 + 3.34952i) q^{70} +0.379150i q^{71} +(-5.11964 + 1.82496i) q^{72} +8.37718 q^{73} +(2.80144 - 3.52691i) q^{74} +(1.62428 + 4.93164i) q^{75} +(-6.95303 - 4.33133i) q^{76} +(4.84668 - 4.84668i) q^{77} +(5.35369 - 0.613739i) q^{78} +11.2566 q^{79} +(-7.56641 - 4.76963i) q^{80} -0.457524 q^{81} +(2.24282 - 0.257114i) q^{82} +(-8.24890 + 8.24890i) q^{83} +(-1.88279 + 3.02242i) q^{84} +(3.61685 - 2.22640i) q^{85} +(-10.0372 + 12.6365i) q^{86} -9.87341 q^{87} +(10.2160 + 4.84668i) q^{88} -11.9820i q^{89} +(-3.75411 - 4.77840i) q^{90} +(-4.44854 + 4.44854i) q^{91} +(-3.90816 + 0.907986i) q^{92} +(-5.22654 + 5.22654i) q^{93} +(6.23577 - 0.714859i) q^{94} +(2.12019 - 8.90989i) q^{95} +(-5.73948 - 1.25154i) q^{96} +6.50543i q^{97} +(0.654003 + 5.70491i) q^{98} +(5.43213 + 5.43213i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 8 q^{5} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{4} - 8 q^{5} - 4 q^{6} - 12 q^{10} + 8 q^{11} - 4 q^{14} + 16 q^{16} - 8 q^{19} - 4 q^{20} - 16 q^{21} - 32 q^{24} + 32 q^{26} - 16 q^{29} - 36 q^{30} + 16 q^{31} + 48 q^{34} - 24 q^{35} + 60 q^{36} + 24 q^{40} - 8 q^{44} + 8 q^{45} - 28 q^{46} + 16 q^{49} + 24 q^{50} - 16 q^{51} + 40 q^{54} - 56 q^{56} - 24 q^{59} + 48 q^{60} - 16 q^{64} - 72 q^{66} + 32 q^{69} + 20 q^{70} + 48 q^{75} - 88 q^{76} + 16 q^{79} + 16 q^{80} - 16 q^{81} - 80 q^{84} - 28 q^{86} - 84 q^{90} - 16 q^{91} + 12 q^{94} + 32 q^{95} + 56 q^{96} + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.161069 1.40501i −0.113893 0.993493i
\(3\) 0.734294 0.734294i 0.423945 0.423945i −0.462615 0.886559i \(-0.653089\pi\)
0.886559 + 0.462615i \(0.153089\pi\)
\(4\) −1.94811 + 0.452606i −0.974057 + 0.226303i
\(5\) −1.17216 1.90421i −0.524207 0.851591i
\(6\) −1.14996 0.913419i −0.469470 0.372902i
\(7\) 1.71452 0.648029 0.324015 0.946052i \(-0.394967\pi\)
0.324015 + 0.946052i \(0.394967\pi\)
\(8\) 0.949697 + 2.66422i 0.335768 + 0.941945i
\(9\) 1.92163i 0.640542i
\(10\) −2.48664 + 1.95361i −0.786346 + 0.617786i
\(11\) 2.82684 2.82684i 0.852324 0.852324i −0.138095 0.990419i \(-0.544098\pi\)
0.990419 + 0.138095i \(0.0440980\pi\)
\(12\) −1.09814 + 1.76283i −0.317006 + 0.508886i
\(13\) −2.59462 + 2.59462i −0.719618 + 0.719618i −0.968527 0.248909i \(-0.919928\pi\)
0.248909 + 0.968527i \(0.419928\pi\)
\(14\) −0.276156 2.40893i −0.0738058 0.643813i
\(15\) −2.25896 0.537540i −0.583262 0.138792i
\(16\) 3.59030 1.76346i 0.897574 0.440864i
\(17\) 1.89939i 0.460671i 0.973111 + 0.230335i \(0.0739823\pi\)
−0.973111 + 0.230335i \(0.926018\pi\)
\(18\) 2.69991 0.309513i 0.636374 0.0729530i
\(19\) 2.89623 + 2.89623i 0.664440 + 0.664440i 0.956423 0.291983i \(-0.0943151\pi\)
−0.291983 + 0.956423i \(0.594315\pi\)
\(20\) 3.14537 + 3.17910i 0.703326 + 0.710868i
\(21\) 1.25896 1.25896i 0.274729 0.274729i
\(22\) −4.42705 3.51643i −0.943851 0.749704i
\(23\) 2.00613 0.418306 0.209153 0.977883i \(-0.432929\pi\)
0.209153 + 0.977883i \(0.432929\pi\)
\(24\) 2.65368 + 1.25896i 0.541680 + 0.256985i
\(25\) −2.25207 + 4.46410i −0.450413 + 0.892820i
\(26\) 4.06338 + 3.22756i 0.796895 + 0.632976i
\(27\) 3.61392 + 3.61392i 0.695499 + 0.695499i
\(28\) −3.34009 + 0.776005i −0.631218 + 0.146651i
\(29\) −6.72307 6.72307i −1.24844 1.24844i −0.956408 0.292034i \(-0.905668\pi\)
−0.292034 0.956408i \(-0.594332\pi\)
\(30\) −0.391402 + 3.26045i −0.0714599 + 0.595274i
\(31\) −7.11778 −1.27839 −0.639195 0.769044i \(-0.720732\pi\)
−0.639195 + 0.769044i \(0.720732\pi\)
\(32\) −3.05596 4.76037i −0.540223 0.841522i
\(33\) 4.15146i 0.722676i
\(34\) 2.66867 0.305932i 0.457673 0.0524670i
\(35\) −2.00970 3.26482i −0.339702 0.551856i
\(36\) −0.869740 3.74355i −0.144957 0.623924i
\(37\) 2.25207 + 2.25207i 0.370237 + 0.370237i 0.867564 0.497326i \(-0.165685\pi\)
−0.497326 + 0.867564i \(0.665685\pi\)
\(38\) 3.60274 4.53572i 0.584442 0.735792i
\(39\) 3.81042i 0.610156i
\(40\) 3.96005 4.93133i 0.626139 0.779712i
\(41\) 1.59630i 0.249301i 0.992201 + 0.124650i \(0.0397809\pi\)
−0.992201 + 0.124650i \(0.960219\pi\)
\(42\) −1.97164 1.56608i −0.304231 0.241651i
\(43\) −8.06886 8.06886i −1.23049 1.23049i −0.963776 0.266715i \(-0.914062\pi\)
−0.266715 0.963776i \(-0.585938\pi\)
\(44\) −4.22756 + 6.78645i −0.637328 + 1.02310i
\(45\) 3.65919 2.25246i 0.545480 0.335777i
\(46\) −0.323124 2.81863i −0.0476420 0.415585i
\(47\) 4.43823i 0.647383i 0.946163 + 0.323691i \(0.104924\pi\)
−0.946163 + 0.323691i \(0.895076\pi\)
\(48\) 1.34144 3.93123i 0.193620 0.567424i
\(49\) −4.06040 −0.580058
\(50\) 6.63485 + 2.44515i 0.938310 + 0.345797i
\(51\) 1.39471 + 1.39471i 0.195299 + 0.195299i
\(52\) 3.88027 6.22896i 0.538097 0.863801i
\(53\) 0.481758 + 0.481758i 0.0661746 + 0.0661746i 0.739420 0.673245i \(-0.235100\pi\)
−0.673245 + 0.739420i \(0.735100\pi\)
\(54\) 4.49551 5.65968i 0.611761 0.770186i
\(55\) −8.69642 2.06939i −1.17263 0.279036i
\(56\) 1.62828 + 4.56787i 0.217588 + 0.610408i
\(57\) 4.25336 0.563372
\(58\) −8.36311 + 10.5289i −1.09813 + 1.38251i
\(59\) 3.08580 3.08580i 0.401737 0.401737i −0.477108 0.878845i \(-0.658315\pi\)
0.878845 + 0.477108i \(0.158315\pi\)
\(60\) 4.64401 + 0.0247681i 0.599540 + 0.00319755i
\(61\) 3.46410 + 3.46410i 0.443533 + 0.443533i 0.893197 0.449665i \(-0.148457\pi\)
−0.449665 + 0.893197i \(0.648457\pi\)
\(62\) 1.14645 + 10.0006i 0.145599 + 1.27007i
\(63\) 3.29468i 0.415090i
\(64\) −6.19615 + 5.06040i −0.774519 + 0.632551i
\(65\) 7.98203 + 1.89939i 0.990049 + 0.235591i
\(66\) −5.83285 + 0.668669i −0.717974 + 0.0823075i
\(67\) 1.80454 1.80454i 0.220460 0.220460i −0.588232 0.808692i \(-0.700176\pi\)
0.808692 + 0.588232i \(0.200176\pi\)
\(68\) −0.859677 3.70023i −0.104251 0.448719i
\(69\) 1.47309 1.47309i 0.177339 0.177339i
\(70\) −4.26341 + 3.34952i −0.509575 + 0.400344i
\(71\) 0.379150i 0.0449969i 0.999747 + 0.0224984i \(0.00716208\pi\)
−0.999747 + 0.0224984i \(0.992838\pi\)
\(72\) −5.11964 + 1.82496i −0.603355 + 0.215074i
\(73\) 8.37718 0.980475 0.490237 0.871589i \(-0.336910\pi\)
0.490237 + 0.871589i \(0.336910\pi\)
\(74\) 2.80144 3.52691i 0.325661 0.409995i
\(75\) 1.62428 + 4.93164i 0.187556 + 0.569456i
\(76\) −6.95303 4.33133i −0.797567 0.496838i
\(77\) 4.84668 4.84668i 0.552331 0.552331i
\(78\) 5.35369 0.613739i 0.606186 0.0694923i
\(79\) 11.2566 1.26646 0.633231 0.773963i \(-0.281728\pi\)
0.633231 + 0.773963i \(0.281728\pi\)
\(80\) −7.56641 4.76963i −0.845951 0.533261i
\(81\) −0.457524 −0.0508360
\(82\) 2.24282 0.257114i 0.247678 0.0283935i
\(83\) −8.24890 + 8.24890i −0.905435 + 0.905435i −0.995900 0.0904649i \(-0.971165\pi\)
0.0904649 + 0.995900i \(0.471165\pi\)
\(84\) −1.88279 + 3.02242i −0.205429 + 0.329773i
\(85\) 3.61685 2.22640i 0.392303 0.241487i
\(86\) −10.0372 + 12.6365i −1.08234 + 1.36263i
\(87\) −9.87341 −1.05854
\(88\) 10.2160 + 4.84668i 1.08903 + 0.516658i
\(89\) 11.9820i 1.27009i −0.772474 0.635046i \(-0.780981\pi\)
0.772474 0.635046i \(-0.219019\pi\)
\(90\) −3.75411 4.77840i −0.395718 0.503688i
\(91\) −4.44854 + 4.44854i −0.466334 + 0.466334i
\(92\) −3.90816 + 0.907986i −0.407454 + 0.0946640i
\(93\) −5.22654 + 5.22654i −0.541967 + 0.541967i
\(94\) 6.23577 0.714859i 0.643170 0.0737321i
\(95\) 2.12019 8.90989i 0.217526 0.914136i
\(96\) −5.73948 1.25154i −0.585783 0.127734i
\(97\) 6.50543i 0.660526i 0.943889 + 0.330263i \(0.107137\pi\)
−0.943889 + 0.330263i \(0.892863\pi\)
\(98\) 0.654003 + 5.70491i 0.0660643 + 0.576283i
\(99\) 5.43213 + 5.43213i 0.545949 + 0.545949i
\(100\) 2.36680 9.71588i 0.236680 0.971588i
\(101\) −6.72307 + 6.72307i −0.668970 + 0.668970i −0.957478 0.288508i \(-0.906841\pi\)
0.288508 + 0.957478i \(0.406841\pi\)
\(102\) 1.73494 2.18423i 0.171785 0.216271i
\(103\) 15.1733 1.49506 0.747532 0.664225i \(-0.231238\pi\)
0.747532 + 0.664225i \(0.231238\pi\)
\(104\) −9.37674 4.44854i −0.919465 0.436215i
\(105\) −3.87305 0.921626i −0.377971 0.0899415i
\(106\) 0.599280 0.754472i 0.0582072 0.0732808i
\(107\) −1.69781 1.69781i −0.164134 0.164134i 0.620262 0.784395i \(-0.287026\pi\)
−0.784395 + 0.620262i \(0.787026\pi\)
\(108\) −8.67601 5.40464i −0.834849 0.520062i
\(109\) 3.11120 + 3.11120i 0.297999 + 0.297999i 0.840230 0.542231i \(-0.182420\pi\)
−0.542231 + 0.840230i \(0.682420\pi\)
\(110\) −1.50680 + 12.5519i −0.143667 + 1.19678i
\(111\) 3.30735 0.313920
\(112\) 6.15565 3.02349i 0.581654 0.285693i
\(113\) 15.8259i 1.48877i −0.667748 0.744387i \(-0.732742\pi\)
0.667748 0.744387i \(-0.267258\pi\)
\(114\) −0.685083 5.97602i −0.0641639 0.559706i
\(115\) −2.35151 3.82010i −0.219279 0.356226i
\(116\) 16.1402 + 10.0544i 1.49858 + 0.933527i
\(117\) −4.98589 4.98589i −0.460946 0.460946i
\(118\) −4.83261 3.83856i −0.444878 0.353368i
\(119\) 3.25656i 0.298528i
\(120\) −0.713205 6.52888i −0.0651064 0.596003i
\(121\) 4.98203i 0.452912i
\(122\) 4.30914 5.42506i 0.390132 0.491162i
\(123\) 1.17216 + 1.17216i 0.105690 + 0.105690i
\(124\) 13.8662 3.22155i 1.24523 0.289304i
\(125\) 11.1404 0.944243i 0.996427 0.0844556i
\(126\) 4.62906 0.530669i 0.412389 0.0472757i
\(127\) 18.3239i 1.62598i −0.582276 0.812991i \(-0.697838\pi\)
0.582276 0.812991i \(-0.302162\pi\)
\(128\) 8.10793 + 7.89059i 0.716647 + 0.697436i
\(129\) −11.8498 −1.04332
\(130\) 1.38302 11.5208i 0.121298 1.01044i
\(131\) −10.2036 10.2036i −0.891491 0.891491i 0.103172 0.994663i \(-0.467101\pi\)
−0.994663 + 0.103172i \(0.967101\pi\)
\(132\) 1.87898 + 8.08751i 0.163544 + 0.703928i
\(133\) 4.96565 + 4.96565i 0.430577 + 0.430577i
\(134\) −2.82606 2.24475i −0.244134 0.193917i
\(135\) 2.64557 11.1178i 0.227695 0.956866i
\(136\) −5.06040 + 1.80385i −0.433926 + 0.154679i
\(137\) −14.9845 −1.28021 −0.640107 0.768286i \(-0.721110\pi\)
−0.640107 + 0.768286i \(0.721110\pi\)
\(138\) −2.30697 1.83244i −0.196382 0.155987i
\(139\) −8.29094 + 8.29094i −0.703228 + 0.703228i −0.965102 0.261874i \(-0.915660\pi\)
0.261874 + 0.965102i \(0.415660\pi\)
\(140\) 5.39281 + 5.45064i 0.455776 + 0.460663i
\(141\) 3.25896 + 3.25896i 0.274454 + 0.274454i
\(142\) 0.532711 0.0610692i 0.0447041 0.00512481i
\(143\) 14.6691i 1.22670i
\(144\) 3.38870 + 6.89920i 0.282392 + 0.574934i
\(145\) −4.92163 + 20.6827i −0.408719 + 1.71760i
\(146\) −1.34930 11.7700i −0.111669 0.974095i
\(147\) −2.98153 + 2.98153i −0.245912 + 0.245912i
\(148\) −5.40658 3.36798i −0.444418 0.276846i
\(149\) −7.30735 + 7.30735i −0.598642 + 0.598642i −0.939951 0.341309i \(-0.889130\pi\)
0.341309 + 0.939951i \(0.389130\pi\)
\(150\) 6.66739 3.07647i 0.544390 0.251193i
\(151\) 4.56873i 0.371798i −0.982569 0.185899i \(-0.940480\pi\)
0.982569 0.185899i \(-0.0595197\pi\)
\(152\) −4.96565 + 10.4667i −0.402768 + 0.848964i
\(153\) −3.64992 −0.295079
\(154\) −7.59030 6.02900i −0.611643 0.485831i
\(155\) 8.34320 + 13.5538i 0.670142 + 1.08867i
\(156\) −1.72462 7.42314i −0.138080 0.594327i
\(157\) −1.52966 + 1.52966i −0.122080 + 0.122080i −0.765507 0.643427i \(-0.777512\pi\)
0.643427 + 0.765507i \(0.277512\pi\)
\(158\) −1.81308 15.8156i −0.144241 1.25822i
\(159\) 0.707504 0.0561087
\(160\) −5.48268 + 11.3991i −0.433444 + 0.901181i
\(161\) 3.43955 0.271075
\(162\) 0.0736928 + 0.642827i 0.00578985 + 0.0505053i
\(163\) 10.1361 10.1361i 0.793918 0.793918i −0.188211 0.982129i \(-0.560269\pi\)
0.982129 + 0.188211i \(0.0602689\pi\)
\(164\) −0.722497 3.10978i −0.0564175 0.242833i
\(165\) −7.90527 + 4.86619i −0.615424 + 0.378832i
\(166\) 12.9184 + 10.2612i 1.00267 + 0.796421i
\(167\) 2.57967 0.199621 0.0998105 0.995006i \(-0.468176\pi\)
0.0998105 + 0.995006i \(0.468176\pi\)
\(168\) 4.54979 + 2.15853i 0.351024 + 0.166534i
\(169\) 0.464102i 0.0357001i
\(170\) −3.71068 4.72312i −0.284596 0.362246i
\(171\) −5.56547 + 5.56547i −0.425602 + 0.425602i
\(172\) 19.3711 + 12.0670i 1.47703 + 0.920104i
\(173\) −14.1773 + 14.1773i −1.07788 + 1.07788i −0.0811779 + 0.996700i \(0.525868\pi\)
−0.996700 + 0.0811779i \(0.974132\pi\)
\(174\) 1.59030 + 13.8723i 0.120560 + 1.05165i
\(175\) −3.86122 + 7.65381i −0.291881 + 0.578574i
\(176\) 5.16418 15.1342i 0.389264 1.14078i
\(177\) 4.53177i 0.340629i
\(178\) −16.8349 + 1.92993i −1.26183 + 0.144654i
\(179\) −9.88067 9.88067i −0.738516 0.738516i 0.233775 0.972291i \(-0.424892\pi\)
−0.972291 + 0.233775i \(0.924892\pi\)
\(180\) −6.10904 + 6.04422i −0.455341 + 0.450510i
\(181\) 6.20514 6.20514i 0.461224 0.461224i −0.437832 0.899057i \(-0.644254\pi\)
0.899057 + 0.437832i \(0.144254\pi\)
\(182\) 6.96677 + 5.53373i 0.516411 + 0.410187i
\(183\) 5.08733 0.376067
\(184\) 1.90521 + 5.34477i 0.140454 + 0.394021i
\(185\) 1.64863 6.92820i 0.121209 0.509372i
\(186\) 8.18518 + 6.50152i 0.600166 + 0.476714i
\(187\) 5.36928 + 5.36928i 0.392641 + 0.392641i
\(188\) −2.00877 8.64618i −0.146505 0.630587i
\(189\) 6.19615 + 6.19615i 0.450704 + 0.450704i
\(190\) −12.8600 1.54378i −0.932962 0.111998i
\(191\) 18.9282 1.36960 0.684798 0.728733i \(-0.259890\pi\)
0.684798 + 0.728733i \(0.259890\pi\)
\(192\) −0.833972 + 8.26562i −0.0601868 + 0.596520i
\(193\) 4.42987i 0.318869i −0.987209 0.159434i \(-0.949033\pi\)
0.987209 0.159434i \(-0.0509670\pi\)
\(194\) 9.14020 1.04782i 0.656228 0.0752291i
\(195\) 7.25587 4.46644i 0.519603 0.319849i
\(196\) 7.91013 1.83776i 0.565009 0.131269i
\(197\) −6.39341 6.39341i −0.455511 0.455511i 0.441667 0.897179i \(-0.354387\pi\)
−0.897179 + 0.441667i \(0.854387\pi\)
\(198\) 6.75725 8.50714i 0.480217 0.604576i
\(199\) 5.85641i 0.415150i −0.978219 0.207575i \(-0.933443\pi\)
0.978219 0.207575i \(-0.0665570\pi\)
\(200\) −14.0321 1.76046i −0.992222 0.124483i
\(201\) 2.65013i 0.186926i
\(202\) 10.5289 + 8.36311i 0.740808 + 0.588426i
\(203\) −11.5269 11.5269i −0.809027 0.809027i
\(204\) −3.34831 2.08580i −0.234429 0.146035i
\(205\) 3.03970 1.87113i 0.212302 0.130685i
\(206\) −2.44393 21.3186i −0.170277 1.48534i
\(207\) 3.85503i 0.267943i
\(208\) −4.73995 + 13.8910i −0.328656 + 0.963164i
\(209\) 16.3743 1.13264
\(210\) −0.671068 + 5.59013i −0.0463081 + 0.385755i
\(211\) 7.60373 + 7.60373i 0.523462 + 0.523462i 0.918615 0.395153i \(-0.129308\pi\)
−0.395153 + 0.918615i \(0.629308\pi\)
\(212\) −1.15657 0.720473i −0.0794334 0.0494823i
\(213\) 0.278408 + 0.278408i 0.0190762 + 0.0190762i
\(214\) −2.11198 + 2.65891i −0.144372 + 0.181759i
\(215\) −5.90682 + 24.8229i −0.402842 + 1.69291i
\(216\) −6.19615 + 13.0604i −0.421595 + 0.888648i
\(217\) −12.2036 −0.828435
\(218\) 3.87016 4.87239i 0.262120 0.330000i
\(219\) 6.15131 6.15131i 0.415667 0.415667i
\(220\) 17.8782 + 0.0953508i 1.20535 + 0.00642855i
\(221\) −4.92820 4.92820i −0.331507 0.331507i
\(222\) −0.532711 4.64687i −0.0357532 0.311877i
\(223\) 9.22430i 0.617705i −0.951110 0.308853i \(-0.900055\pi\)
0.951110 0.308853i \(-0.0999450\pi\)
\(224\) −5.23952 8.16177i −0.350080 0.545331i
\(225\) −8.57833 4.32763i −0.571889 0.288508i
\(226\) −22.2356 + 2.54905i −1.47909 + 0.169560i
\(227\) 9.21725 9.21725i 0.611770 0.611770i −0.331637 0.943407i \(-0.607601\pi\)
0.943407 + 0.331637i \(0.107601\pi\)
\(228\) −8.28603 + 1.92510i −0.548756 + 0.127493i
\(229\) 1.63811 1.63811i 0.108250 0.108250i −0.650907 0.759157i \(-0.725611\pi\)
0.759157 + 0.650907i \(0.225611\pi\)
\(230\) −4.98852 + 3.91919i −0.328934 + 0.258424i
\(231\) 7.11778i 0.468315i
\(232\) 11.5269 24.2966i 0.756776 1.59515i
\(233\) 12.3798 0.811026 0.405513 0.914089i \(-0.367093\pi\)
0.405513 + 0.914089i \(0.367093\pi\)
\(234\) −6.20216 + 7.80830i −0.405448 + 0.510445i
\(235\) 8.45134 5.20233i 0.551305 0.339363i
\(236\) −4.61484 + 7.40815i −0.300401 + 0.482229i
\(237\) 8.26562 8.26562i 0.536910 0.536910i
\(238\) 4.57550 0.524529i 0.296586 0.0340002i
\(239\) −7.77449 −0.502890 −0.251445 0.967872i \(-0.580906\pi\)
−0.251445 + 0.967872i \(0.580906\pi\)
\(240\) −9.05828 + 2.05366i −0.584709 + 0.132563i
\(241\) −3.47068 −0.223566 −0.111783 0.993733i \(-0.535656\pi\)
−0.111783 + 0.993733i \(0.535656\pi\)
\(242\) −6.99981 + 0.802448i −0.449965 + 0.0515833i
\(243\) −11.1777 + 11.1777i −0.717051 + 0.717051i
\(244\) −8.31634 5.18059i −0.532399 0.331653i
\(245\) 4.75946 + 7.73188i 0.304071 + 0.493972i
\(246\) 1.45809 1.83569i 0.0929647 0.117039i
\(247\) −15.0292 −0.956286
\(248\) −6.75973 18.9633i −0.429243 1.20417i
\(249\) 12.1142i 0.767708i
\(250\) −3.12104 15.5003i −0.197392 0.980325i
\(251\) 8.94765 8.94765i 0.564771 0.564771i −0.365888 0.930659i \(-0.619235\pi\)
0.930659 + 0.365888i \(0.119235\pi\)
\(252\) −1.49119 6.41840i −0.0939362 0.404321i
\(253\) 5.67100 5.67100i 0.356533 0.356533i
\(254\) −25.7453 + 2.95140i −1.61540 + 0.185187i
\(255\) 1.02100 4.29066i 0.0639375 0.268692i
\(256\) 9.78044 12.6627i 0.611277 0.791416i
\(257\) 3.62228i 0.225952i −0.993598 0.112976i \(-0.963962\pi\)
0.993598 0.112976i \(-0.0360383\pi\)
\(258\) 1.90863 + 16.6491i 0.118826 + 1.03653i
\(259\) 3.86122 + 3.86122i 0.239925 + 0.239925i
\(260\) −16.4096 0.0875179i −1.01768 0.00542763i
\(261\) 12.9192 12.9192i 0.799680 0.799680i
\(262\) −12.6927 + 15.9796i −0.784156 + 0.987224i
\(263\) 13.7416 0.847345 0.423673 0.905815i \(-0.360741\pi\)
0.423673 + 0.905815i \(0.360741\pi\)
\(264\) 11.0604 3.94263i 0.680721 0.242652i
\(265\) 0.352672 1.48207i 0.0216644 0.0910429i
\(266\) 6.17699 7.77661i 0.378736 0.476815i
\(267\) −8.79833 8.79833i −0.538449 0.538449i
\(268\) −2.69871 + 4.33221i −0.164850 + 0.264632i
\(269\) −4.22240 4.22240i −0.257444 0.257444i 0.566570 0.824014i \(-0.308270\pi\)
−0.824014 + 0.566570i \(0.808270\pi\)
\(270\) −16.0467 1.92633i −0.976572 0.117233i
\(271\) −5.40015 −0.328036 −0.164018 0.986457i \(-0.552445\pi\)
−0.164018 + 0.986457i \(0.552445\pi\)
\(272\) 3.34950 + 6.81938i 0.203093 + 0.413486i
\(273\) 6.53307i 0.395399i
\(274\) 2.41353 + 21.0534i 0.145807 + 1.27188i
\(275\) 6.25307 + 18.9855i 0.377074 + 1.14487i
\(276\) −2.20301 + 3.53647i −0.132606 + 0.212870i
\(277\) 5.08733 + 5.08733i 0.305668 + 0.305668i 0.843227 0.537558i \(-0.180653\pi\)
−0.537558 + 0.843227i \(0.680653\pi\)
\(278\) 12.9843 + 10.3135i 0.778745 + 0.618560i
\(279\) 13.6777i 0.818863i
\(280\) 6.78960 8.45489i 0.405756 0.505276i
\(281\) 21.2780i 1.26934i 0.772784 + 0.634669i \(0.218864\pi\)
−0.772784 + 0.634669i \(0.781136\pi\)
\(282\) 4.05397 5.10380i 0.241410 0.303927i
\(283\) −4.08521 4.08521i −0.242840 0.242840i 0.575184 0.818024i \(-0.304931\pi\)
−0.818024 + 0.575184i \(0.804931\pi\)
\(284\) −0.171606 0.738628i −0.0101829 0.0438295i
\(285\) −4.98564 8.09931i −0.295324 0.479762i
\(286\) 20.6103 2.36274i 1.21871 0.139712i
\(287\) 2.73690i 0.161554i
\(288\) 9.14765 5.87241i 0.539030 0.346035i
\(289\) 13.3923 0.787783
\(290\) 29.8521 + 3.58361i 1.75298 + 0.210437i
\(291\) 4.77689 + 4.77689i 0.280026 + 0.280026i
\(292\) −16.3197 + 3.79156i −0.955038 + 0.221884i
\(293\) 7.40400 + 7.40400i 0.432547 + 0.432547i 0.889494 0.456947i \(-0.151057\pi\)
−0.456947 + 0.889494i \(0.651057\pi\)
\(294\) 4.66931 + 3.70885i 0.272320 + 0.216305i
\(295\) −9.49310 2.25896i −0.552709 0.131522i
\(296\) −3.86122 + 8.13878i −0.224429 + 0.473057i
\(297\) 20.4319 1.18558
\(298\) 11.4439 + 9.08993i 0.662927 + 0.526566i
\(299\) −5.20514 + 5.20514i −0.301021 + 0.301021i
\(300\) −5.39638 8.87223i −0.311560 0.512238i
\(301\) −13.8343 13.8343i −0.797394 0.797394i
\(302\) −6.41911 + 0.735878i −0.369378 + 0.0423450i
\(303\) 9.87341i 0.567212i
\(304\) 15.5057 + 5.29094i 0.889312 + 0.303456i
\(305\) 2.53590 10.6569i 0.145205 0.610212i
\(306\) 0.587888 + 5.12818i 0.0336073 + 0.293159i
\(307\) −16.6634 + 16.6634i −0.951030 + 0.951030i −0.998856 0.0478262i \(-0.984771\pi\)
0.0478262 + 0.998856i \(0.484771\pi\)
\(308\) −7.24825 + 11.6355i −0.413008 + 0.662996i
\(309\) 11.1416 11.1416i 0.633825 0.633825i
\(310\) 17.6994 13.9054i 1.00526 0.789772i
\(311\) 21.9072i 1.24224i 0.783714 + 0.621122i \(0.213323\pi\)
−0.783714 + 0.621122i \(0.786677\pi\)
\(312\) −10.1518 + 3.61875i −0.574733 + 0.204871i
\(313\) 12.4820 0.705525 0.352763 0.935713i \(-0.385242\pi\)
0.352763 + 0.935713i \(0.385242\pi\)
\(314\) 2.39556 + 1.90280i 0.135189 + 0.107381i
\(315\) 6.27377 3.86190i 0.353487 0.217593i
\(316\) −21.9291 + 5.09479i −1.23361 + 0.286604i
\(317\) −4.24325 + 4.24325i −0.238324 + 0.238324i −0.816156 0.577832i \(-0.803899\pi\)
0.577832 + 0.816156i \(0.303899\pi\)
\(318\) −0.113957 0.994051i −0.00639037 0.0557436i
\(319\) −38.0100 −2.12815
\(320\) 16.8990 + 5.86718i 0.944683 + 0.327985i
\(321\) −2.49338 −0.139167
\(322\) −0.554004 4.83261i −0.0308734 0.269311i
\(323\) −5.50108 + 5.50108i −0.306088 + 0.306088i
\(324\) 0.891310 0.207078i 0.0495172 0.0115044i
\(325\) −5.73939 17.4259i −0.318364 0.966615i
\(326\) −15.8739 12.6087i −0.879173 0.698330i
\(327\) 4.56907 0.252670
\(328\) −4.25290 + 1.51600i −0.234827 + 0.0837073i
\(329\) 7.60946i 0.419523i
\(330\) 8.11034 + 10.3232i 0.446460 + 0.568273i
\(331\) 1.10377 1.10377i 0.0606688 0.0606688i −0.676121 0.736790i \(-0.736341\pi\)
0.736790 + 0.676121i \(0.236341\pi\)
\(332\) 12.3363 19.8033i 0.677042 1.08685i
\(333\) −4.32763 + 4.32763i −0.237152 + 0.237152i
\(334\) −0.415504 3.62447i −0.0227354 0.198322i
\(335\) −5.55146 1.32102i −0.303309 0.0721749i
\(336\) 2.29992 6.74018i 0.125471 0.367707i
\(337\) 7.47635i 0.407263i 0.979048 + 0.203631i \(0.0652744\pi\)
−0.979048 + 0.203631i \(0.934726\pi\)
\(338\) −0.652068 + 0.0747522i −0.0354678 + 0.00406598i
\(339\) −11.6208 11.6208i −0.631158 0.631158i
\(340\) −6.03836 + 5.97429i −0.327476 + 0.324001i
\(341\) −20.1208 + 20.1208i −1.08960 + 1.08960i
\(342\) 8.71597 + 6.92312i 0.471305 + 0.374360i
\(343\) −18.9633 −1.02392
\(344\) 13.8343 29.1602i 0.745894 1.57221i
\(345\) −4.53177 1.07837i −0.243982 0.0580577i
\(346\) 22.2027 + 17.6357i 1.19363 + 0.948102i
\(347\) 8.56074 + 8.56074i 0.459565 + 0.459565i 0.898512 0.438948i \(-0.144649\pi\)
−0.438948 + 0.898512i \(0.644649\pi\)
\(348\) 19.2345 4.46877i 1.03108 0.239551i
\(349\) 7.91567 + 7.91567i 0.423716 + 0.423716i 0.886481 0.462765i \(-0.153143\pi\)
−0.462765 + 0.886481i \(0.653143\pi\)
\(350\) 11.3756 + 4.19227i 0.608052 + 0.224086i
\(351\) −18.7535 −1.00099
\(352\) −22.0955 4.81809i −1.17769 0.256805i
\(353\) 9.67314i 0.514849i 0.966298 + 0.257425i \(0.0828739\pi\)
−0.966298 + 0.257425i \(0.917126\pi\)
\(354\) −6.36719 + 0.729926i −0.338412 + 0.0387951i
\(355\) 0.721984 0.444426i 0.0383189 0.0235877i
\(356\) 5.42314 + 23.3424i 0.287426 + 1.23714i
\(357\) 2.39127 + 2.39127i 0.126559 + 0.126559i
\(358\) −12.2910 + 15.4739i −0.649599 + 0.817822i
\(359\) 17.0867i 0.901799i 0.892575 + 0.450900i \(0.148897\pi\)
−0.892575 + 0.450900i \(0.851103\pi\)
\(360\) 9.47617 + 7.60973i 0.499438 + 0.401068i
\(361\) 2.22373i 0.117038i
\(362\) −9.71774 7.71884i −0.510753 0.405693i
\(363\) −3.65827 3.65827i −0.192010 0.192010i
\(364\) 6.65283 10.6797i 0.348703 0.559768i
\(365\) −9.81943 15.9519i −0.513972 0.834963i
\(366\) −0.819410 7.14776i −0.0428312 0.373620i
\(367\) 13.4500i 0.702086i 0.936359 + 0.351043i \(0.114173\pi\)
−0.936359 + 0.351043i \(0.885827\pi\)
\(368\) 7.20259 3.53772i 0.375461 0.184416i
\(369\) −3.06750 −0.159688
\(370\) −9.99975 1.20042i −0.519862 0.0624070i
\(371\) 0.825987 + 0.825987i 0.0428831 + 0.0428831i
\(372\) 7.81633 12.5475i 0.405258 0.650555i
\(373\) −12.0271 12.0271i −0.622740 0.622740i 0.323491 0.946231i \(-0.395143\pi\)
−0.946231 + 0.323491i \(0.895143\pi\)
\(374\) 6.67908 8.40872i 0.345367 0.434804i
\(375\) 7.48697 8.87367i 0.386625 0.458234i
\(376\) −11.8244 + 4.21497i −0.609798 + 0.217371i
\(377\) 34.8876 1.79680
\(378\) 7.70766 9.70367i 0.396439 0.499103i
\(379\) 19.1552 19.1552i 0.983936 0.983936i −0.0159369 0.999873i \(-0.505073\pi\)
0.999873 + 0.0159369i \(0.00507308\pi\)
\(380\) −0.0976914 + 18.3171i −0.00501146 + 0.939647i
\(381\) −13.4551 13.4551i −0.689327 0.689327i
\(382\) −3.04874 26.5943i −0.155987 1.36068i
\(383\) 17.7503i 0.907000i −0.891256 0.453500i \(-0.850175\pi\)
0.891256 0.453500i \(-0.149825\pi\)
\(384\) 11.7476 0.159590i 0.599493 0.00814406i
\(385\) −14.9102 3.54802i −0.759896 0.180824i
\(386\) −6.22401 + 0.713512i −0.316794 + 0.0363168i
\(387\) 15.5053 15.5053i 0.788181 0.788181i
\(388\) −2.94440 12.6733i −0.149479 0.643390i
\(389\) −1.18654 + 1.18654i −0.0601602 + 0.0601602i −0.736547 0.676387i \(-0.763545\pi\)
0.676387 + 0.736547i \(0.263545\pi\)
\(390\) −7.44409 9.47517i −0.376946 0.479794i
\(391\) 3.81042i 0.192701i
\(392\) −3.85615 10.8178i −0.194765 0.546382i
\(393\) −14.9848 −0.755886
\(394\) −7.95303 + 10.0126i −0.400668 + 0.504427i
\(395\) −13.1945 21.4349i −0.663889 1.07851i
\(396\) −13.0410 8.12379i −0.655336 0.408236i
\(397\) −4.74478 + 4.74478i −0.238134 + 0.238134i −0.816077 0.577943i \(-0.803855\pi\)
0.577943 + 0.816077i \(0.303855\pi\)
\(398\) −8.22832 + 0.943283i −0.412448 + 0.0472825i
\(399\) 7.29250 0.365081
\(400\) −0.213328 + 19.9989i −0.0106664 + 0.999943i
\(401\) 0.632677 0.0315944 0.0157972 0.999875i \(-0.494971\pi\)
0.0157972 + 0.999875i \(0.494971\pi\)
\(402\) −3.72346 + 0.426853i −0.185709 + 0.0212895i
\(403\) 18.4679 18.4679i 0.919953 0.919953i
\(404\) 10.0544 16.1402i 0.500225 0.803005i
\(405\) 0.536293 + 0.871224i 0.0266486 + 0.0432915i
\(406\) −14.3388 + 18.0520i −0.711621 + 0.895905i
\(407\) 12.7324 0.631124
\(408\) −2.39127 + 5.04038i −0.118385 + 0.249536i
\(409\) 26.3809i 1.30445i 0.758024 + 0.652226i \(0.226165\pi\)
−0.758024 + 0.652226i \(0.773835\pi\)
\(410\) −3.11856 3.96944i −0.154015 0.196037i
\(411\) −11.0030 + 11.0030i −0.542739 + 0.542739i
\(412\) −29.5592 + 6.86751i −1.45628 + 0.338338i
\(413\) 5.29069 5.29069i 0.260338 0.260338i
\(414\) 5.41636 0.620923i 0.266199 0.0305167i
\(415\) 25.3767 + 6.03862i 1.24570 + 0.296424i
\(416\) 20.2804 + 4.42229i 0.994328 + 0.216821i
\(417\) 12.1760i 0.596260i
\(418\) −2.63739 23.0061i −0.128999 1.12527i
\(419\) −1.37589 1.37589i −0.0672167 0.0672167i 0.672699 0.739916i \(-0.265135\pi\)
−0.739916 + 0.672699i \(0.765135\pi\)
\(420\) 7.96228 + 0.0424656i 0.388519 + 0.00207211i
\(421\) 6.65671 6.65671i 0.324428 0.324428i −0.526035 0.850463i \(-0.676322\pi\)
0.850463 + 0.526035i \(0.176322\pi\)
\(422\) 9.45861 11.9081i 0.460438 0.579675i
\(423\) −8.52862 −0.414676
\(424\) −0.825987 + 1.74104i −0.0401135 + 0.0845522i
\(425\) −8.47908 4.27756i −0.411296 0.207492i
\(426\) 0.346323 0.436009i 0.0167794 0.0211247i
\(427\) 5.93929 + 5.93929i 0.287422 + 0.287422i
\(428\) 4.07597 + 2.53909i 0.197019 + 0.122731i
\(429\) 10.7715 + 10.7715i 0.520051 + 0.520051i
\(430\) 35.8278 + 4.30096i 1.72777 + 0.207411i
\(431\) 4.08798 0.196911 0.0984556 0.995141i \(-0.468610\pi\)
0.0984556 + 0.995141i \(0.468610\pi\)
\(432\) 19.3480 + 6.60204i 0.930882 + 0.317641i
\(433\) 29.2913i 1.40765i −0.710373 0.703826i \(-0.751474\pi\)
0.710373 0.703826i \(-0.248526\pi\)
\(434\) 1.96562 + 17.1462i 0.0943526 + 0.823044i
\(435\) 11.5732 + 18.8011i 0.554895 + 0.901443i
\(436\) −7.46912 4.65283i −0.357706 0.222830i
\(437\) 5.81020 + 5.81020i 0.277940 + 0.277940i
\(438\) −9.63344 7.65188i −0.460304 0.365621i
\(439\) 26.9790i 1.28764i −0.765178 0.643819i \(-0.777349\pi\)
0.765178 0.643819i \(-0.222651\pi\)
\(440\) −2.74565 25.1345i −0.130894 1.19824i
\(441\) 7.80258i 0.371551i
\(442\) −6.13040 + 7.71796i −0.291594 + 0.367106i
\(443\) 14.5286 + 14.5286i 0.690276 + 0.690276i 0.962293 0.272017i \(-0.0876906\pi\)
−0.272017 + 0.962293i \(0.587691\pi\)
\(444\) −6.44310 + 1.49693i −0.305776 + 0.0710411i
\(445\) −22.8164 + 14.0449i −1.08160 + 0.665792i
\(446\) −12.9603 + 1.48575i −0.613686 + 0.0703521i
\(447\) 10.7315i 0.507582i
\(448\) −10.6235 + 8.67619i −0.501911 + 0.409911i
\(449\) 23.1572 1.09286 0.546428 0.837506i \(-0.315987\pi\)
0.546428 + 0.837506i \(0.315987\pi\)
\(450\) −4.69867 + 12.7497i −0.221497 + 0.601027i
\(451\) 4.51249 + 4.51249i 0.212485 + 0.212485i
\(452\) 7.16290 + 30.8306i 0.336914 + 1.45015i
\(453\) −3.35479 3.35479i −0.157622 0.157622i
\(454\) −14.4349 11.4657i −0.677466 0.538113i
\(455\) 13.6854 + 3.25656i 0.641581 + 0.152670i
\(456\) 4.03940 + 11.3319i 0.189162 + 0.530665i
\(457\) −37.7026 −1.76365 −0.881827 0.471572i \(-0.843687\pi\)
−0.881827 + 0.471572i \(0.843687\pi\)
\(458\) −2.56542 2.03772i −0.119874 0.0952165i
\(459\) −6.86425 + 6.86425i −0.320396 + 0.320396i
\(460\) 6.31001 + 6.37768i 0.294206 + 0.297361i
\(461\) 11.3737 + 11.3737i 0.529727 + 0.529727i 0.920491 0.390764i \(-0.127789\pi\)
−0.390764 + 0.920491i \(0.627789\pi\)
\(462\) −10.0006 + 1.14645i −0.465268 + 0.0533377i
\(463\) 7.94895i 0.369419i 0.982793 + 0.184710i \(0.0591344\pi\)
−0.982793 + 0.184710i \(0.940866\pi\)
\(464\) −35.9936 12.2820i −1.67096 0.570175i
\(465\) 16.0788 + 3.82609i 0.745637 + 0.177431i
\(466\) −1.99399 17.3937i −0.0923699 0.805749i
\(467\) 5.34999 5.34999i 0.247568 0.247568i −0.572404 0.819972i \(-0.693989\pi\)
0.819972 + 0.572404i \(0.193989\pi\)
\(468\) 11.9697 + 7.45643i 0.553301 + 0.344674i
\(469\) 3.09394 3.09394i 0.142865 0.142865i
\(470\) −8.67058 11.0363i −0.399944 0.509067i
\(471\) 2.24643i 0.103510i
\(472\) 11.1518 + 5.29069i 0.513305 + 0.243524i
\(473\) −45.6187 −2.09755
\(474\) −12.9446 10.2820i −0.594566 0.472266i
\(475\) −19.4515 + 6.40656i −0.892498 + 0.293953i
\(476\) −1.47394 6.34414i −0.0675578 0.290783i
\(477\) −0.925759 + 0.925759i −0.0423876 + 0.0423876i
\(478\) 1.25222 + 10.9232i 0.0572754 + 0.499617i
\(479\) −9.58973 −0.438166 −0.219083 0.975706i \(-0.570307\pi\)
−0.219083 + 0.975706i \(0.570307\pi\)
\(480\) 4.34442 + 12.3962i 0.198295 + 0.565807i
\(481\) −11.6865 −0.532859
\(482\) 0.559017 + 4.87634i 0.0254625 + 0.222111i
\(483\) 2.52564 2.52564i 0.114921 0.114921i
\(484\) 2.25490 + 9.70556i 0.102495 + 0.441162i
\(485\) 12.3877 7.62543i 0.562498 0.346253i
\(486\) 17.5052 + 13.9044i 0.794052 + 0.630718i
\(487\) 36.6487 1.66071 0.830357 0.557232i \(-0.188137\pi\)
0.830357 + 0.557232i \(0.188137\pi\)
\(488\) −5.93929 + 12.5190i −0.268859 + 0.566708i
\(489\) 14.8857i 0.673154i
\(490\) 10.0968 7.93246i 0.456126 0.358352i
\(491\) 23.4273 23.4273i 1.05726 1.05726i 0.0590019 0.998258i \(-0.481208\pi\)
0.998258 0.0590019i \(-0.0187918\pi\)
\(492\) −2.81402 1.75297i −0.126866 0.0790298i
\(493\) 12.7697 12.7697i 0.575120 0.575120i
\(494\) 2.42073 + 21.1162i 0.108914 + 0.950064i
\(495\) 3.97659 16.7113i 0.178735 0.751116i
\(496\) −25.5549 + 12.5519i −1.14745 + 0.563597i
\(497\) 0.650063i 0.0291593i
\(498\) 17.0206 1.95122i 0.762713 0.0874363i
\(499\) −9.50152 9.50152i −0.425346 0.425346i 0.461693 0.887040i \(-0.347242\pi\)
−0.887040 + 0.461693i \(0.847242\pi\)
\(500\) −21.2754 + 6.88170i −0.951464 + 0.307759i
\(501\) 1.89424 1.89424i 0.0846283 0.0846283i
\(502\) −14.0127 11.1304i −0.625419 0.496772i
\(503\) −20.6875 −0.922411 −0.461206 0.887293i \(-0.652583\pi\)
−0.461206 + 0.887293i \(0.652583\pi\)
\(504\) −8.77775 + 3.12894i −0.390992 + 0.139374i
\(505\) 20.6827 + 4.92163i 0.920368 + 0.219009i
\(506\) −8.88124 7.05440i −0.394819 0.313606i
\(507\) −0.340787 0.340787i −0.0151349 0.0151349i
\(508\) 8.29351 + 35.6970i 0.367965 + 1.58380i
\(509\) 11.6381 + 11.6381i 0.515850 + 0.515850i 0.916313 0.400463i \(-0.131151\pi\)
−0.400463 + 0.916313i \(0.631151\pi\)
\(510\) −6.19288 0.743426i −0.274225 0.0329195i
\(511\) 14.3629 0.635377
\(512\) −19.3665 11.7021i −0.855887 0.517163i
\(513\) 20.9335i 0.924235i
\(514\) −5.08935 + 0.583436i −0.224482 + 0.0257343i
\(515\) −17.7855 28.8931i −0.783724 1.27318i
\(516\) 23.0848 5.36331i 1.01625 0.236106i
\(517\) 12.5462 + 12.5462i 0.551780 + 0.551780i
\(518\) 4.80314 6.04698i 0.211038 0.265689i
\(519\) 20.8205i 0.913921i
\(520\) 2.52010 + 23.0697i 0.110514 + 1.01168i
\(521\) 5.18654i 0.227227i −0.993525 0.113613i \(-0.963758\pi\)
0.993525 0.113613i \(-0.0362425\pi\)
\(522\) −20.2325 16.0708i −0.885554 0.703398i
\(523\) 26.9589 + 26.9589i 1.17883 + 1.17883i 0.980043 + 0.198788i \(0.0637004\pi\)
0.198788 + 0.980043i \(0.436300\pi\)
\(524\) 24.4959 + 15.2595i 1.07011 + 0.666616i
\(525\) 2.78488 + 8.45542i 0.121542 + 0.369025i
\(526\) −2.21334 19.3071i −0.0965064 0.841832i
\(527\) 13.5195i 0.588917i
\(528\) −7.32092 14.9050i −0.318602 0.648655i
\(529\) −18.9755 −0.825020
\(530\) −2.13913 0.256793i −0.0929179 0.0111544i
\(531\) 5.92976 + 5.92976i 0.257330 + 0.257330i
\(532\) −11.9211 7.42617i −0.516847 0.321965i
\(533\) −4.14180 4.14180i −0.179401 0.179401i
\(534\) −10.9446 + 13.7789i −0.473620 + 0.596271i
\(535\) −1.24288 + 5.22311i −0.0537345 + 0.225815i
\(536\) 6.52148 + 3.09394i 0.281685 + 0.133638i
\(537\) −14.5106 −0.626179
\(538\) −5.25243 + 6.61262i −0.226448 + 0.285090i
\(539\) −11.4781 + 11.4781i −0.494397 + 0.494397i
\(540\) −0.121899 + 22.8561i −0.00524572 + 0.983570i
\(541\) 27.4945 + 27.4945i 1.18208 + 1.18208i 0.979204 + 0.202878i \(0.0650294\pi\)
0.202878 + 0.979204i \(0.434971\pi\)
\(542\) 0.869794 + 7.58727i 0.0373609 + 0.325901i
\(543\) 9.11278i 0.391067i
\(544\) 9.04181 5.80447i 0.387664 0.248865i
\(545\) 2.27756 9.57123i 0.0975598 0.409986i
\(546\) 9.17903 1.05227i 0.392826 0.0450331i
\(547\) −22.5197 + 22.5197i −0.962873 + 0.962873i −0.999335 0.0364619i \(-0.988391\pi\)
0.0364619 + 0.999335i \(0.488391\pi\)
\(548\) 29.1915 6.78208i 1.24700 0.289716i
\(549\) −6.65671 + 6.65671i −0.284101 + 0.284101i
\(550\) 25.6677 11.8436i 1.09447 0.505013i
\(551\) 38.9431i 1.65903i
\(552\) 5.32361 + 2.52564i 0.226588 + 0.107499i
\(553\) 19.2996 0.820704
\(554\) 6.32835 7.96717i 0.268866 0.338493i
\(555\) −3.87676 6.29791i −0.164559 0.267331i
\(556\) 12.3992 19.9042i 0.525842 0.844127i
\(557\) −13.7333 + 13.7333i −0.581897 + 0.581897i −0.935424 0.353527i \(-0.884982\pi\)
0.353527 + 0.935424i \(0.384982\pi\)
\(558\) −19.2173 + 2.20305i −0.813535 + 0.0932625i
\(559\) 41.8713 1.77097
\(560\) −12.9728 8.17765i −0.548201 0.345569i
\(561\) 7.88525 0.332916
\(562\) 29.8958 3.42721i 1.26108 0.144568i
\(563\) 0.229223 0.229223i 0.00966061 0.00966061i −0.702260 0.711921i \(-0.747826\pi\)
0.711921 + 0.702260i \(0.247826\pi\)
\(564\) −7.82386 4.87381i −0.329444 0.205224i
\(565\) −30.1359 + 18.5505i −1.26783 + 0.780427i
\(566\) −5.08177 + 6.39776i −0.213603 + 0.268918i
\(567\) −0.784437 −0.0329433
\(568\) −1.01014 + 0.360078i −0.0423846 + 0.0151085i
\(569\) 23.0376i 0.965787i −0.875679 0.482894i \(-0.839586\pi\)
0.875679 0.482894i \(-0.160414\pi\)
\(570\) −10.5766 + 8.30942i −0.443005 + 0.348043i
\(571\) −11.8610 + 11.8610i −0.496367 + 0.496367i −0.910305 0.413938i \(-0.864153\pi\)
0.413938 + 0.910305i \(0.364153\pi\)
\(572\) −6.63934 28.5772i −0.277605 1.19487i
\(573\) 13.8989 13.8989i 0.580633 0.580633i
\(574\) 3.84538 0.440829i 0.160503 0.0183998i
\(575\) −4.51793 + 8.95556i −0.188411 + 0.373473i
\(576\) −9.72421 11.9067i −0.405175 0.496112i
\(577\) 39.7168i 1.65343i −0.562621 0.826715i \(-0.690207\pi\)
0.562621 0.826715i \(-0.309793\pi\)
\(578\) −2.15708 18.8163i −0.0897226 0.782657i
\(579\) −3.25282 3.25282i −0.135183 0.135183i
\(580\) 0.226773 42.5198i 0.00941622 1.76554i
\(581\) −14.1429 + 14.1429i −0.586748 + 0.586748i
\(582\) 5.94218 7.48100i 0.246311 0.310097i
\(583\) 2.72371 0.112804
\(584\) 7.95578 + 22.3187i 0.329213 + 0.923553i
\(585\) −3.64992 + 15.3385i −0.150906 + 0.634168i
\(586\) 9.21016 11.5953i 0.380468 0.478996i
\(587\) −8.63887 8.63887i −0.356564 0.356564i 0.505980 0.862545i \(-0.331131\pi\)
−0.862545 + 0.505980i \(0.831131\pi\)
\(588\) 4.45890 7.15782i 0.183882 0.295183i
\(589\) −20.6147 20.6147i −0.849414 0.849414i
\(590\) −1.64483 + 13.7018i −0.0677167 + 0.564092i
\(591\) −9.38927 −0.386223
\(592\) 12.0570 + 4.11416i 0.495540 + 0.169091i
\(593\) 45.8229i 1.88172i 0.338795 + 0.940860i \(0.389981\pi\)
−0.338795 + 0.940860i \(0.610019\pi\)
\(594\) −3.29094 28.7071i −0.135029 1.17787i
\(595\) 6.20118 3.81722i 0.254224 0.156491i
\(596\) 10.9282 17.5429i 0.447637 0.718586i
\(597\) −4.30032 4.30032i −0.176000 0.176000i
\(598\) 8.15166 + 6.47489i 0.333346 + 0.264778i
\(599\) 17.0609i 0.697090i −0.937292 0.348545i \(-0.886676\pi\)
0.937292 0.348545i \(-0.113324\pi\)
\(600\) −11.5964 + 9.01101i −0.473421 + 0.367873i
\(601\) 38.0363i 1.55153i −0.631020 0.775766i \(-0.717364\pi\)
0.631020 0.775766i \(-0.282636\pi\)
\(602\) −17.2090 + 21.6656i −0.701388 + 0.883023i
\(603\) 3.46766 + 3.46766i 0.141214 + 0.141214i
\(604\) 2.06783 + 8.90040i 0.0841390 + 0.362152i
\(605\) −9.48685 + 5.83975i −0.385695 + 0.237420i
\(606\) 13.8723 1.59030i 0.563522 0.0646013i
\(607\) 8.67169i 0.351973i −0.984393 0.175987i \(-0.943688\pi\)
0.984393 0.175987i \(-0.0563115\pi\)
\(608\) 4.93635 22.6379i 0.200196 0.918087i
\(609\) −16.9282 −0.685965
\(610\) −15.3815 1.84648i −0.622779 0.0747617i
\(611\) −11.5155 11.5155i −0.465868 0.465868i
\(612\) 7.11047 1.65198i 0.287424 0.0667773i
\(613\) −13.9739 13.9739i −0.564401 0.564401i 0.366153 0.930554i \(-0.380675\pi\)
−0.930554 + 0.366153i \(0.880675\pi\)
\(614\) 26.0962 + 20.7283i 1.05316 + 0.836526i
\(615\) 0.858077 3.60599i 0.0346010 0.145408i
\(616\) 17.5155 + 8.30976i 0.705720 + 0.334810i
\(617\) 37.3904 1.50528 0.752641 0.658431i \(-0.228780\pi\)
0.752641 + 0.658431i \(0.228780\pi\)
\(618\) −17.4487 13.8595i −0.701888 0.557512i
\(619\) −23.2754 + 23.2754i −0.935516 + 0.935516i −0.998043 0.0625269i \(-0.980084\pi\)
0.0625269 + 0.998043i \(0.480084\pi\)
\(620\) −22.3880 22.6281i −0.899125 0.908767i
\(621\) 7.24998 + 7.24998i 0.290932 + 0.290932i
\(622\) 30.7799 3.52856i 1.23416 0.141482i
\(623\) 20.5435i 0.823058i
\(624\) 6.71952 + 13.6806i 0.268996 + 0.547660i
\(625\) −14.8564 20.1069i −0.594256 0.804276i
\(626\) −2.01046 17.5374i −0.0803541 0.700934i
\(627\) 12.0236 12.0236i 0.480175 0.480175i
\(628\) 2.28761 3.67228i 0.0912857 0.146540i
\(629\) −4.27756 + 4.27756i −0.170557 + 0.170557i
\(630\) −6.43652 8.19269i −0.256437 0.326404i
\(631\) 19.1834i 0.763680i 0.924228 + 0.381840i \(0.124710\pi\)
−0.924228 + 0.381840i \(0.875290\pi\)
\(632\) 10.6903 + 29.9900i 0.425238 + 1.19294i
\(633\) 11.1667 0.443838
\(634\) 6.64526 + 5.27835i 0.263917 + 0.209630i
\(635\) −34.8926 + 21.4786i −1.38467 + 0.852352i
\(636\) −1.37830 + 0.320221i −0.0546531 + 0.0126976i
\(637\) 10.5352 10.5352i 0.417420 0.417420i
\(638\) 6.12222 + 53.4045i 0.242381 + 2.11431i
\(639\) −0.728585 −0.0288224
\(640\) 5.52156 24.6883i 0.218259 0.975891i
\(641\) −16.1765 −0.638933 −0.319466 0.947598i \(-0.603504\pi\)
−0.319466 + 0.947598i \(0.603504\pi\)
\(642\) 0.401605 + 3.50323i 0.0158501 + 0.138261i
\(643\) −15.0289 + 15.0289i −0.592681 + 0.592681i −0.938355 0.345674i \(-0.887650\pi\)
0.345674 + 0.938355i \(0.387650\pi\)
\(644\) −6.70064 + 1.55676i −0.264042 + 0.0613451i
\(645\) 13.8899 + 22.5646i 0.546916 + 0.888481i
\(646\) 8.61512 + 6.84302i 0.338958 + 0.269235i
\(647\) −49.3812 −1.94138 −0.970688 0.240345i \(-0.922739\pi\)
−0.970688 + 0.240345i \(0.922739\pi\)
\(648\) −0.434509 1.21895i −0.0170691 0.0478847i
\(649\) 17.4461i 0.684821i
\(650\) −23.5591 + 10.8707i −0.924066 + 0.426383i
\(651\) −8.96103 + 8.96103i −0.351210 + 0.351210i
\(652\) −15.1586 + 24.3338i −0.593655 + 0.952987i
\(653\) 19.8685 19.8685i 0.777514 0.777514i −0.201893 0.979408i \(-0.564709\pi\)
0.979408 + 0.201893i \(0.0647094\pi\)
\(654\) −0.735933 6.41960i −0.0287773 0.251026i
\(655\) −7.46954 + 31.3901i −0.291859 + 1.22651i
\(656\) 2.81501 + 5.73120i 0.109908 + 0.223766i
\(657\) 16.0978i 0.628035i
\(658\) 10.6914 1.22564i 0.416793 0.0477806i
\(659\) 4.94765 + 4.94765i 0.192733 + 0.192733i 0.796876 0.604143i \(-0.206484\pi\)
−0.604143 + 0.796876i \(0.706484\pi\)
\(660\) 13.1979 13.0579i 0.513727 0.508277i
\(661\) 12.1602 12.1602i 0.472977 0.472977i −0.429899 0.902877i \(-0.641451\pi\)
0.902877 + 0.429899i \(0.141451\pi\)
\(662\) −1.72860 1.37303i −0.0671838 0.0533643i
\(663\) −7.23750 −0.281081
\(664\) −29.8109 14.1429i −1.15689 0.548853i
\(665\) 3.63511 15.2762i 0.140964 0.592387i
\(666\) 6.77741 + 5.38332i 0.262619 + 0.208599i
\(667\) −13.4873 13.4873i −0.522231 0.522231i
\(668\) −5.02550 + 1.16758i −0.194442 + 0.0451749i
\(669\) −6.77335 6.77335i −0.261873 0.261873i
\(670\) −0.961880 + 8.01264i −0.0371607 + 0.309555i
\(671\) 19.5849 0.756067
\(672\) −9.84048 2.14579i −0.379605 0.0827756i
\(673\) 32.9882i 1.27160i 0.771853 + 0.635801i \(0.219330\pi\)
−0.771853 + 0.635801i \(0.780670\pi\)
\(674\) 10.5044 1.20420i 0.404613 0.0463842i
\(675\) −24.2717 + 7.99412i −0.934217 + 0.307694i
\(676\) 0.210055 + 0.904123i 0.00807905 + 0.0347740i
\(677\) −18.4610 18.4610i −0.709513 0.709513i 0.256920 0.966433i \(-0.417292\pi\)
−0.966433 + 0.256920i \(0.917292\pi\)
\(678\) −14.4557 + 18.1992i −0.555167 + 0.698935i
\(679\) 11.1537i 0.428040i
\(680\) 9.36653 + 7.52169i 0.359190 + 0.288444i
\(681\) 13.5363i 0.518713i
\(682\) 31.5108 + 25.0291i 1.20661 + 0.958415i
\(683\) 12.2374 + 12.2374i 0.468251 + 0.468251i 0.901347 0.433097i \(-0.142579\pi\)
−0.433097 + 0.901347i \(0.642579\pi\)
\(684\) 8.32320 13.3611i 0.318245 0.510875i
\(685\) 17.5643 + 28.5337i 0.671097 + 1.09022i
\(686\) 3.05440 + 26.6437i 0.116617 + 1.01726i
\(687\) 2.40571i 0.0917837i
\(688\) −43.1987 14.7405i −1.64693 0.561977i
\(689\) −2.49996 −0.0952409
\(690\) −0.785202 + 6.54088i −0.0298921 + 0.249007i
\(691\) −9.46014 9.46014i −0.359881 0.359881i 0.503888 0.863769i \(-0.331902\pi\)
−0.863769 + 0.503888i \(0.831902\pi\)
\(692\) 21.2022 34.0356i 0.805987 1.29384i
\(693\) 9.31352 + 9.31352i 0.353791 + 0.353791i
\(694\) 10.6491 13.4068i 0.404233 0.508915i
\(695\) 25.5061 + 6.06939i 0.967500 + 0.230225i
\(696\) −9.37674 26.3049i −0.355425 0.997086i
\(697\) −3.03201 −0.114845
\(698\) 9.84664 12.3966i 0.372701 0.469217i
\(699\) 9.09039 9.09039i 0.343830 0.343830i
\(700\) 4.05794 16.6581i 0.153376 0.629617i
\(701\) −5.14714 5.14714i −0.194405 0.194405i 0.603192 0.797596i \(-0.293895\pi\)
−0.797596 + 0.603192i \(0.793895\pi\)
\(702\) 3.02060 + 26.3489i 0.114005 + 0.994474i
\(703\) 13.0450i 0.492001i
\(704\) −3.21058 + 31.8205i −0.121003 + 1.19928i
\(705\) 2.38573 10.0258i 0.0898517 0.377594i
\(706\) 13.5909 1.55804i 0.511499 0.0586375i
\(707\) −11.5269 + 11.5269i −0.433512 + 0.433512i
\(708\) 2.05111 + 8.82840i 0.0770853 + 0.331792i
\(709\) −18.0125 + 18.0125i −0.676472 + 0.676472i −0.959200 0.282728i \(-0.908761\pi\)
0.282728 + 0.959200i \(0.408761\pi\)
\(710\) −0.740713 0.942812i −0.0277985 0.0353831i
\(711\) 21.6309i 0.811222i
\(712\) 31.9228 11.3793i 1.19636 0.426457i
\(713\) −14.2792 −0.534759
\(714\) 2.97460 3.74492i 0.111322 0.140150i
\(715\) 27.9332 17.1946i 1.04464 0.643043i
\(716\) 23.7207 + 14.7766i 0.886485 + 0.552228i
\(717\) −5.70875 + 5.70875i −0.213197 + 0.213197i
\(718\) 24.0069 2.75212i 0.895931 0.102708i
\(719\) 34.5017 1.28669 0.643347 0.765574i \(-0.277545\pi\)
0.643347 + 0.765574i \(0.277545\pi\)
\(720\) 9.16545 14.5398i 0.341576 0.541867i
\(721\) 26.0149 0.968846
\(722\) −3.12437 + 0.358173i −0.116277 + 0.0133298i
\(723\) −2.54850 + 2.54850i −0.0947796 + 0.0947796i
\(724\) −9.27983 + 14.8968i −0.344882 + 0.553635i
\(725\) 45.1532 14.8717i 1.67695 0.552320i
\(726\) −4.55068 + 5.72915i −0.168892 + 0.212629i
\(727\) 12.8421 0.476288 0.238144 0.971230i \(-0.423461\pi\)
0.238144 + 0.971230i \(0.423461\pi\)
\(728\) −16.0767 7.62713i −0.595841 0.282680i
\(729\) 15.0429i 0.557143i
\(730\) −20.8311 + 16.3658i −0.770992 + 0.605724i
\(731\) 15.3259 15.3259i 0.566851 0.566851i
\(732\) −9.91071 + 2.30256i −0.366310 + 0.0851050i
\(733\) 24.1490 24.1490i 0.891965 0.891965i −0.102743 0.994708i \(-0.532762\pi\)
0.994708 + 0.102743i \(0.0327618\pi\)
\(734\) 18.8974 2.16638i 0.697517 0.0799624i
\(735\) 9.17231 + 2.18263i 0.338326 + 0.0805075i
\(736\) −6.13065 9.54990i −0.225979 0.352014i
\(737\) 10.2023i 0.375807i
\(738\) 0.494077 + 4.30987i 0.0181872 + 0.158648i
\(739\) 35.9398 + 35.9398i 1.32207 + 1.32207i 0.912101 + 0.409966i \(0.134460\pi\)
0.409966 + 0.912101i \(0.365540\pi\)
\(740\) −0.0759634 + 14.2431i −0.00279247 + 0.523587i
\(741\) −11.0359 + 11.0359i −0.405412 + 0.405412i
\(742\) 1.02748 1.29356i 0.0377200 0.0474881i
\(743\) −45.9502 −1.68575 −0.842875 0.538109i \(-0.819139\pi\)
−0.842875 + 0.538109i \(0.819139\pi\)
\(744\) −18.8883 8.96103i −0.692478 0.328527i
\(745\) 22.4802 + 5.34935i 0.823610 + 0.195985i
\(746\) −14.9610 + 18.8354i −0.547762 + 0.689613i
\(747\) −15.8513 15.8513i −0.579969 0.579969i
\(748\) −12.8901 8.02980i −0.471310 0.293598i
\(749\) −2.91094 2.91094i −0.106363 0.106363i
\(750\) −13.6735 9.09001i −0.499287 0.331920i
\(751\) −24.4820 −0.893361 −0.446680 0.894694i \(-0.647394\pi\)
−0.446680 + 0.894694i \(0.647394\pi\)
\(752\) 7.82663 + 15.9346i 0.285408 + 0.581074i
\(753\) 13.1404i 0.478863i
\(754\) −5.61929 49.0175i −0.204643 1.78511i
\(755\) −8.69983 + 5.35529i −0.316619 + 0.194899i
\(756\) −14.8752 9.26639i −0.541007 0.337015i
\(757\) 17.0328 + 17.0328i 0.619067 + 0.619067i 0.945292 0.326225i \(-0.105777\pi\)
−0.326225 + 0.945292i \(0.605777\pi\)
\(758\) −29.9986 23.8280i −1.08960 0.865471i
\(759\) 8.32835i 0.302300i
\(760\) 25.7515 2.81305i 0.934104 0.102040i
\(761\) 8.53590i 0.309426i 0.987959 + 0.154713i \(0.0494453\pi\)
−0.987959 + 0.154713i \(0.950555\pi\)
\(762\) −16.7374 + 21.0718i −0.606332 + 0.763350i
\(763\) 5.33423 + 5.33423i 0.193112 + 0.193112i
\(764\) −36.8743 + 8.56702i −1.33407 + 0.309944i
\(765\) 4.27831 + 6.95024i 0.154683 + 0.251286i
\(766\) −24.9394 + 2.85902i −0.901099 + 0.103301i
\(767\) 16.0130i 0.578195i
\(768\) −2.11640 16.4798i −0.0763689 0.594664i