Properties

Label 80.2.q.c.29.3
Level $80$
Weight $2$
Character 80.29
Analytic conductor $0.639$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(29,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.29");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.q (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 29.3
Root \(-1.32661 - 0.490008i\) of defining polynomial
Character \(\chi\) \(=\) 80.29
Dual form 80.2.q.c.69.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.490008 - 1.32661i) q^{2} +(-1.99154 + 1.99154i) q^{3} +(-1.51978 + 1.30010i) q^{4} +(-0.569800 + 2.16225i) q^{5} +(3.61786 + 1.66612i) q^{6} -1.09033 q^{7} +(2.46943 + 1.37910i) q^{8} -4.93244i q^{9} +O(q^{10})\) \(q+(-0.490008 - 1.32661i) q^{2} +(-1.99154 + 1.99154i) q^{3} +(-1.51978 + 1.30010i) q^{4} +(-0.569800 + 2.16225i) q^{5} +(3.61786 + 1.66612i) q^{6} -1.09033 q^{7} +(2.46943 + 1.37910i) q^{8} -4.93244i q^{9} +(3.14767 - 0.303617i) q^{10} +(-2.33225 + 2.33225i) q^{11} +(0.437515 - 5.61590i) q^{12} +(1.80775 - 1.80775i) q^{13} +(0.534268 + 1.44644i) q^{14} +(-3.17142 - 5.44098i) q^{15} +(0.619491 - 3.95174i) q^{16} +4.93886i q^{17} +(-6.54342 + 2.41694i) q^{18} +(2.03957 + 2.03957i) q^{19} +(-1.94516 - 4.02695i) q^{20} +(2.17142 - 2.17142i) q^{21} +(4.23680 + 1.95116i) q^{22} +1.45791 q^{23} +(-7.66449 + 2.17142i) q^{24} +(-4.35066 - 2.46410i) q^{25} +(-3.28398 - 1.51236i) q^{26} +(3.84853 + 3.84853i) q^{27} +(1.65706 - 1.41753i) q^{28} +(-0.707323 - 0.707323i) q^{29} +(-5.66403 + 6.87336i) q^{30} +10.1286 q^{31} +(-5.54597 + 1.11456i) q^{32} -9.28951i q^{33} +(6.55193 - 2.42008i) q^{34} +(0.621268 - 2.35756i) q^{35} +(6.41266 + 7.49625i) q^{36} +(4.35066 + 4.35066i) q^{37} +(1.70631 - 3.70512i) q^{38} +7.20039i q^{39} +(-4.38905 + 4.55371i) q^{40} +10.2753i q^{41} +(-3.94465 - 1.81662i) q^{42} +(-2.22457 - 2.22457i) q^{43} +(0.512364 - 6.57666i) q^{44} +(10.6652 + 2.81051i) q^{45} +(-0.714386 - 1.93407i) q^{46} -2.09458i q^{47} +(6.63629 + 9.10377i) q^{48} -5.81119 q^{49} +(-1.13705 + 6.97905i) q^{50} +(-9.83592 - 9.83592i) q^{51} +(-0.397138 + 5.09763i) q^{52} +(0.215297 + 0.215297i) q^{53} +(3.21969 - 6.99131i) q^{54} +(-3.71399 - 6.37182i) q^{55} +(-2.69248 - 1.50367i) q^{56} -8.12376 q^{57} +(-0.591747 + 1.28493i) q^{58} +(-1.16082 + 1.16082i) q^{59} +(11.8937 + 4.14596i) q^{60} +(-3.46410 - 3.46410i) q^{61} +(-4.96309 - 13.4367i) q^{62} +5.37797i q^{63} +(4.19615 + 6.81119i) q^{64} +(2.87875 + 4.93886i) q^{65} +(-12.3236 + 4.55193i) q^{66} +(-5.04189 + 5.04189i) q^{67} +(-6.42100 - 7.50600i) q^{68} +(-2.90348 + 2.90348i) q^{69} +(-3.43198 + 0.331042i) q^{70} -6.40078i q^{71} +(6.80234 - 12.1803i) q^{72} +5.24343 q^{73} +(3.63977 - 7.90348i) q^{74} +(13.5718 - 3.75714i) q^{75} +(-5.75135 - 0.448067i) q^{76} +(2.54291 - 2.54291i) q^{77} +(9.55211 - 3.52825i) q^{78} +2.61504 q^{79} +(8.19166 + 3.59120i) q^{80} -0.531659 q^{81} +(13.6313 - 5.03497i) q^{82} +(5.67856 - 5.67856i) q^{83} +(-0.477033 + 6.12316i) q^{84} +(-10.6790 - 2.81416i) q^{85} +(-1.86108 + 4.04120i) q^{86} +2.81732 q^{87} +(-8.97572 + 2.54291i) q^{88} -6.87875i q^{89} +(-1.49758 - 15.5257i) q^{90} +(-1.97103 + 1.97103i) q^{91} +(-2.21570 + 1.89542i) q^{92} +(-20.1715 + 20.1715i) q^{93} +(-2.77868 + 1.02636i) q^{94} +(-5.57221 + 3.24791i) q^{95} +(8.82531 - 13.2647i) q^{96} -3.77310i q^{97} +(2.84753 + 7.70918i) q^{98} +(11.5037 + 11.5037i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 8 q^{5} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{4} - 8 q^{5} - 4 q^{6} - 12 q^{10} + 8 q^{11} - 4 q^{14} + 16 q^{16} - 8 q^{19} - 4 q^{20} - 16 q^{21} - 32 q^{24} + 32 q^{26} - 16 q^{29} - 36 q^{30} + 16 q^{31} + 48 q^{34} - 24 q^{35} + 60 q^{36} + 24 q^{40} - 8 q^{44} + 8 q^{45} - 28 q^{46} + 16 q^{49} + 24 q^{50} - 16 q^{51} + 40 q^{54} - 56 q^{56} - 24 q^{59} + 48 q^{60} - 16 q^{64} - 72 q^{66} + 32 q^{69} + 20 q^{70} + 48 q^{75} - 88 q^{76} + 16 q^{79} + 16 q^{80} - 16 q^{81} - 80 q^{84} - 28 q^{86} - 84 q^{90} - 16 q^{91} + 12 q^{94} + 32 q^{95} + 56 q^{96} + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.490008 1.32661i −0.346488 0.938054i
\(3\) −1.99154 + 1.99154i −1.14981 + 1.14981i −0.163226 + 0.986589i \(0.552190\pi\)
−0.986589 + 0.163226i \(0.947810\pi\)
\(4\) −1.51978 + 1.30010i −0.759892 + 0.650049i
\(5\) −0.569800 + 2.16225i −0.254822 + 0.966988i
\(6\) 3.61786 + 1.66612i 1.47699 + 0.680192i
\(7\) −1.09033 −0.412104 −0.206052 0.978541i \(-0.566062\pi\)
−0.206052 + 0.978541i \(0.566062\pi\)
\(8\) 2.46943 + 1.37910i 0.873075 + 0.487586i
\(9\) 4.93244i 1.64415i
\(10\) 3.14767 0.303617i 0.995380 0.0960123i
\(11\) −2.33225 + 2.33225i −0.703199 + 0.703199i −0.965096 0.261897i \(-0.915652\pi\)
0.261897 + 0.965096i \(0.415652\pi\)
\(12\) 0.437515 5.61590i 0.126300 1.62117i
\(13\) 1.80775 1.80775i 0.501379 0.501379i −0.410487 0.911866i \(-0.634641\pi\)
0.911866 + 0.410487i \(0.134641\pi\)
\(14\) 0.534268 + 1.44644i 0.142789 + 0.386576i
\(15\) −3.17142 5.44098i −0.818858 1.40486i
\(16\) 0.619491 3.95174i 0.154873 0.987934i
\(17\) 4.93886i 1.19785i 0.800806 + 0.598924i \(0.204405\pi\)
−0.800806 + 0.598924i \(0.795595\pi\)
\(18\) −6.54342 + 2.41694i −1.54230 + 0.569677i
\(19\) 2.03957 + 2.03957i 0.467909 + 0.467909i 0.901237 0.433327i \(-0.142661\pi\)
−0.433327 + 0.901237i \(0.642661\pi\)
\(20\) −1.94516 4.02695i −0.434952 0.900454i
\(21\) 2.17142 2.17142i 0.473844 0.473844i
\(22\) 4.23680 + 1.95116i 0.903289 + 0.415989i
\(23\) 1.45791 0.303995 0.151997 0.988381i \(-0.451430\pi\)
0.151997 + 0.988381i \(0.451430\pi\)
\(24\) −7.66449 + 2.17142i −1.56451 + 0.443240i
\(25\) −4.35066 2.46410i −0.870131 0.492820i
\(26\) −3.28398 1.51236i −0.644042 0.296599i
\(27\) 3.84853 + 3.84853i 0.740650 + 0.740650i
\(28\) 1.65706 1.41753i 0.313155 0.267888i
\(29\) −0.707323 0.707323i −0.131347 0.131347i 0.638377 0.769724i \(-0.279606\pi\)
−0.769724 + 0.638377i \(0.779606\pi\)
\(30\) −5.66403 + 6.87336i −1.03411 + 1.25490i
\(31\) 10.1286 1.81915 0.909575 0.415541i \(-0.136408\pi\)
0.909575 + 0.415541i \(0.136408\pi\)
\(32\) −5.54597 + 1.11456i −0.980398 + 0.197028i
\(33\) 9.28951i 1.61710i
\(34\) 6.55193 2.42008i 1.12365 0.415040i
\(35\) 0.621268 2.35756i 0.105013 0.398500i
\(36\) 6.41266 + 7.49625i 1.06878 + 1.24938i
\(37\) 4.35066 + 4.35066i 0.715243 + 0.715243i 0.967627 0.252384i \(-0.0812146\pi\)
−0.252384 + 0.967627i \(0.581215\pi\)
\(38\) 1.70631 3.70512i 0.276800 0.601049i
\(39\) 7.20039i 1.15299i
\(40\) −4.38905 + 4.55371i −0.693969 + 0.720005i
\(41\) 10.2753i 1.60473i 0.596833 + 0.802365i \(0.296425\pi\)
−0.596833 + 0.802365i \(0.703575\pi\)
\(42\) −3.94465 1.81662i −0.608672 0.280310i
\(43\) −2.22457 2.22457i −0.339244 0.339244i 0.516839 0.856083i \(-0.327109\pi\)
−0.856083 + 0.516839i \(0.827109\pi\)
\(44\) 0.512364 6.57666i 0.0772418 0.991469i
\(45\) 10.6652 + 2.81051i 1.58987 + 0.418966i
\(46\) −0.714386 1.93407i −0.105330 0.285163i
\(47\) 2.09458i 0.305525i −0.988263 0.152763i \(-0.951183\pi\)
0.988263 0.152763i \(-0.0488170\pi\)
\(48\) 6.63629 + 9.10377i 0.957866 + 1.31402i
\(49\) −5.81119 −0.830170
\(50\) −1.13705 + 6.97905i −0.160802 + 0.986987i
\(51\) −9.83592 9.83592i −1.37730 1.37730i
\(52\) −0.397138 + 5.09763i −0.0550732 + 0.706915i
\(53\) 0.215297 + 0.215297i 0.0295733 + 0.0295733i 0.721739 0.692166i \(-0.243343\pi\)
−0.692166 + 0.721739i \(0.743343\pi\)
\(54\) 3.21969 6.99131i 0.438144 0.951396i
\(55\) −3.71399 6.37182i −0.500794 0.859175i
\(56\) −2.69248 1.50367i −0.359798 0.200936i
\(57\) −8.12376 −1.07602
\(58\) −0.591747 + 1.28493i −0.0777002 + 0.168720i
\(59\) −1.16082 + 1.16082i −0.151126 + 0.151126i −0.778621 0.627495i \(-0.784080\pi\)
0.627495 + 0.778621i \(0.284080\pi\)
\(60\) 11.8937 + 4.14596i 1.53547 + 0.535241i
\(61\) −3.46410 3.46410i −0.443533 0.443533i 0.449665 0.893197i \(-0.351543\pi\)
−0.893197 + 0.449665i \(0.851543\pi\)
\(62\) −4.96309 13.4367i −0.630313 1.70646i
\(63\) 5.37797i 0.677560i
\(64\) 4.19615 + 6.81119i 0.524519 + 0.851399i
\(65\) 2.87875 + 4.93886i 0.357065 + 0.612590i
\(66\) −12.3236 + 4.55193i −1.51692 + 0.560304i
\(67\) −5.04189 + 5.04189i −0.615965 + 0.615965i −0.944494 0.328529i \(-0.893447\pi\)
0.328529 + 0.944494i \(0.393447\pi\)
\(68\) −6.42100 7.50600i −0.778660 0.910236i
\(69\) −2.90348 + 2.90348i −0.349537 + 0.349537i
\(70\) −3.43198 + 0.331042i −0.410201 + 0.0395671i
\(71\) 6.40078i 0.759633i −0.925062 0.379817i \(-0.875987\pi\)
0.925062 0.379817i \(-0.124013\pi\)
\(72\) 6.80234 12.1803i 0.801664 1.43546i
\(73\) 5.24343 0.613696 0.306848 0.951758i \(-0.400726\pi\)
0.306848 + 0.951758i \(0.400726\pi\)
\(74\) 3.63977 7.90348i 0.423114 0.918760i
\(75\) 13.5718 3.75714i 1.56714 0.433837i
\(76\) −5.75135 0.448067i −0.659725 0.0513968i
\(77\) 2.54291 2.54291i 0.289791 0.289791i
\(78\) 9.55211 3.52825i 1.08156 0.399495i
\(79\) 2.61504 0.294215 0.147107 0.989121i \(-0.453004\pi\)
0.147107 + 0.989121i \(0.453004\pi\)
\(80\) 8.19166 + 3.59120i 0.915856 + 0.401508i
\(81\) −0.531659 −0.0590733
\(82\) 13.6313 5.03497i 1.50532 0.556020i
\(83\) 5.67856 5.67856i 0.623303 0.623303i −0.323071 0.946375i \(-0.604715\pi\)
0.946375 + 0.323071i \(0.104715\pi\)
\(84\) −0.477033 + 6.12316i −0.0520486 + 0.668092i
\(85\) −10.6790 2.81416i −1.15831 0.305239i
\(86\) −1.86108 + 4.04120i −0.200686 + 0.435774i
\(87\) 2.81732 0.302048
\(88\) −8.97572 + 2.54291i −0.956815 + 0.271075i
\(89\) 6.87875i 0.729146i −0.931175 0.364573i \(-0.881215\pi\)
0.931175 0.364573i \(-0.118785\pi\)
\(90\) −1.49758 15.5257i −0.157858 1.63655i
\(91\) −1.97103 + 1.97103i −0.206620 + 0.206620i
\(92\) −2.21570 + 1.89542i −0.231003 + 0.197611i
\(93\) −20.1715 + 20.1715i −2.09168 + 2.09168i
\(94\) −2.77868 + 1.02636i −0.286599 + 0.105861i
\(95\) −5.57221 + 3.24791i −0.571696 + 0.333229i
\(96\) 8.82531 13.2647i 0.900730 1.35382i
\(97\) 3.77310i 0.383100i −0.981483 0.191550i \(-0.938649\pi\)
0.981483 0.191550i \(-0.0613515\pi\)
\(98\) 2.84753 + 7.70918i 0.287644 + 0.778745i
\(99\) 11.5037 + 11.5037i 1.15616 + 1.15616i
\(100\) 9.81563 1.91137i 0.981563 0.191137i
\(101\) −0.707323 + 0.707323i −0.0703813 + 0.0703813i −0.741421 0.671040i \(-0.765848\pi\)
0.671040 + 0.741421i \(0.265848\pi\)
\(102\) −8.22874 + 17.8681i −0.814767 + 1.76921i
\(103\) 12.9320 1.27422 0.637112 0.770771i \(-0.280129\pi\)
0.637112 + 0.770771i \(0.280129\pi\)
\(104\) 6.95717 1.97103i 0.682207 0.193276i
\(105\) 3.45789 + 5.93244i 0.337455 + 0.578947i
\(106\) 0.180117 0.391111i 0.0174946 0.0379881i
\(107\) 1.56094 + 1.56094i 0.150902 + 0.150902i 0.778521 0.627619i \(-0.215970\pi\)
−0.627619 + 0.778521i \(0.715970\pi\)
\(108\) −10.8524 0.845472i −1.04427 0.0813556i
\(109\) −7.13283 7.13283i −0.683202 0.683202i 0.277519 0.960720i \(-0.410488\pi\)
−0.960720 + 0.277519i \(0.910488\pi\)
\(110\) −6.63303 + 8.04925i −0.632434 + 0.767466i
\(111\) −17.3290 −1.64479
\(112\) −0.675447 + 4.30868i −0.0638238 + 0.407132i
\(113\) 9.23949i 0.869178i 0.900629 + 0.434589i \(0.143106\pi\)
−0.900629 + 0.434589i \(0.856894\pi\)
\(114\) 3.98070 + 10.7771i 0.372827 + 1.00936i
\(115\) −0.830715 + 3.15236i −0.0774646 + 0.293959i
\(116\) 1.99457 + 0.155390i 0.185191 + 0.0144276i
\(117\) −8.91661 8.91661i −0.824341 0.824341i
\(118\) 2.10877 + 0.971145i 0.194128 + 0.0894012i
\(119\) 5.38496i 0.493639i
\(120\) −0.327935 17.8098i −0.0299362 1.62581i
\(121\) 0.121253i 0.0110230i
\(122\) −2.89807 + 6.29295i −0.262379 + 0.569737i
\(123\) −20.4636 20.4636i −1.84514 1.84514i
\(124\) −15.3933 + 13.1682i −1.38236 + 1.18254i
\(125\) 7.80701 8.00316i 0.698280 0.715825i
\(126\) 7.13446 2.63525i 0.635589 0.234766i
\(127\) 1.99608i 0.177124i 0.996071 + 0.0885618i \(0.0282271\pi\)
−0.996071 + 0.0885618i \(0.971773\pi\)
\(128\) 6.97964 8.90419i 0.616919 0.787027i
\(129\) 8.86065 0.780136
\(130\) 5.14132 6.23905i 0.450924 0.547201i
\(131\) 11.2894 + 11.2894i 0.986361 + 0.986361i 0.999908 0.0135473i \(-0.00431238\pi\)
−0.0135473 + 0.999908i \(0.504312\pi\)
\(132\) 12.0773 + 14.1181i 1.05119 + 1.22882i
\(133\) −2.22380 2.22380i −0.192827 0.192827i
\(134\) 9.15919 + 4.21806i 0.791234 + 0.364385i
\(135\) −10.5144 + 6.12859i −0.904934 + 0.527465i
\(136\) −6.81119 + 12.1962i −0.584055 + 1.04581i
\(137\) 15.9429 1.36210 0.681049 0.732238i \(-0.261524\pi\)
0.681049 + 0.732238i \(0.261524\pi\)
\(138\) 5.27450 + 2.42905i 0.448996 + 0.206775i
\(139\) 3.79635 3.79635i 0.322002 0.322002i −0.527533 0.849535i \(-0.676883\pi\)
0.849535 + 0.527533i \(0.176883\pi\)
\(140\) 2.12086 + 4.39069i 0.179246 + 0.371081i
\(141\) 4.17142 + 4.17142i 0.351297 + 0.351297i
\(142\) −8.49134 + 3.13643i −0.712577 + 0.263204i
\(143\) 8.43222i 0.705138i
\(144\) −19.4917 3.05560i −1.62431 0.254634i
\(145\) 1.93244 1.12638i 0.160481 0.0935405i
\(146\) −2.56932 6.95598i −0.212638 0.575681i
\(147\) 11.5732 11.5732i 0.954542 0.954542i
\(148\) −12.2683 0.955782i −1.00845 0.0785648i
\(149\) 13.3290 13.3290i 1.09195 1.09195i 0.0966330 0.995320i \(-0.469193\pi\)
0.995320 0.0966330i \(-0.0308073\pi\)
\(150\) −11.6346 16.1635i −0.949959 1.31974i
\(151\) 5.60117i 0.455817i 0.973683 + 0.227909i \(0.0731887\pi\)
−0.973683 + 0.227909i \(0.926811\pi\)
\(152\) 2.22380 + 7.84935i 0.180374 + 0.636666i
\(153\) 24.3606 1.96944
\(154\) −4.61949 2.12740i −0.372249 0.171431i
\(155\) −5.77128 + 21.9006i −0.463560 + 1.75910i
\(156\) −9.36121 10.9430i −0.749497 0.876145i
\(157\) 7.11951 7.11951i 0.568199 0.568199i −0.363425 0.931624i \(-0.618393\pi\)
0.931624 + 0.363425i \(0.118393\pi\)
\(158\) −1.28139 3.46913i −0.101942 0.275989i
\(159\) −0.857542 −0.0680075
\(160\) 0.750136 12.6268i 0.0593035 0.998240i
\(161\) −1.58959 −0.125277
\(162\) 0.260517 + 0.705304i 0.0204682 + 0.0554139i
\(163\) 0.546047 0.546047i 0.0427697 0.0427697i −0.685398 0.728168i \(-0.740372\pi\)
0.728168 + 0.685398i \(0.240372\pi\)
\(164\) −13.3589 15.6162i −1.04315 1.21942i
\(165\) 20.0863 + 5.29317i 1.56371 + 0.412072i
\(166\) −10.3158 4.75069i −0.800659 0.368725i
\(167\) −21.3103 −1.64904 −0.824519 0.565834i \(-0.808554\pi\)
−0.824519 + 0.565834i \(0.808554\pi\)
\(168\) 8.35679 2.36756i 0.644741 0.182661i
\(169\) 6.46410i 0.497239i
\(170\) 1.49952 + 15.5459i 0.115008 + 1.19231i
\(171\) 10.0601 10.0601i 0.769312 0.769312i
\(172\) 6.27304 + 0.488710i 0.478315 + 0.0372638i
\(173\) −2.64673 + 2.64673i −0.201227 + 0.201227i −0.800525 0.599299i \(-0.795446\pi\)
0.599299 + 0.800525i \(0.295446\pi\)
\(174\) −1.38051 3.73748i −0.104656 0.283338i
\(175\) 4.74363 + 2.68667i 0.358585 + 0.203093i
\(176\) 7.77162 + 10.6612i 0.585808 + 0.803621i
\(177\) 4.62364i 0.347534i
\(178\) −9.12541 + 3.37064i −0.683978 + 0.252640i
\(179\) −13.4747 13.4747i −1.00715 1.00715i −0.999974 0.00717240i \(-0.997717\pi\)
−0.00717240 0.999974i \(-0.502283\pi\)
\(180\) −19.8627 + 9.59441i −1.48048 + 0.715125i
\(181\) −1.63553 + 1.63553i −0.121568 + 0.121568i −0.765273 0.643706i \(-0.777396\pi\)
0.643706 + 0.765273i \(0.277396\pi\)
\(182\) 3.58061 + 1.64897i 0.265413 + 0.122230i
\(183\) 13.7978 1.01996
\(184\) 3.60020 + 2.01060i 0.265410 + 0.148224i
\(185\) −11.8862 + 6.92820i −0.873892 + 0.509372i
\(186\) 36.6438 + 16.8755i 2.68686 + 1.23737i
\(187\) −11.5186 11.5186i −0.842326 0.842326i
\(188\) 2.72315 + 3.18330i 0.198606 + 0.232166i
\(189\) −4.19615 4.19615i −0.305225 0.305225i
\(190\) 7.03914 + 5.80064i 0.510673 + 0.420823i
\(191\) 5.07180 0.366982 0.183491 0.983021i \(-0.441260\pi\)
0.183491 + 0.983021i \(0.441260\pi\)
\(192\) −21.9215 5.20794i −1.58205 0.375851i
\(193\) 22.0369i 1.58625i −0.609058 0.793126i \(-0.708452\pi\)
0.609058 0.793126i \(-0.291548\pi\)
\(194\) −5.00543 + 1.84885i −0.359369 + 0.132740i
\(195\) −15.5691 4.10278i −1.11492 0.293806i
\(196\) 8.83176 7.55512i 0.630840 0.539651i
\(197\) −8.06997 8.06997i −0.574961 0.574961i 0.358549 0.933511i \(-0.383271\pi\)
−0.933511 + 0.358549i \(0.883271\pi\)
\(198\) 9.62399 20.8978i 0.683947 1.48514i
\(199\) 21.8564i 1.54936i 0.632354 + 0.774680i \(0.282089\pi\)
−0.632354 + 0.774680i \(0.717911\pi\)
\(200\) −7.34538 12.0849i −0.519397 0.854533i
\(201\) 20.0822i 1.41649i
\(202\) 1.28493 + 0.591747i 0.0904077 + 0.0416352i
\(203\) 0.771212 + 0.771212i 0.0541285 + 0.0541285i
\(204\) 27.7361 + 2.16082i 1.94192 + 0.151288i
\(205\) −22.2178 5.85486i −1.55176 0.408921i
\(206\) −6.33676 17.1557i −0.441503 1.19529i
\(207\) 7.19104i 0.499812i
\(208\) −6.02386 8.26363i −0.417679 0.572979i
\(209\) −9.51356 −0.658067
\(210\) 6.17564 7.49421i 0.426160 0.517149i
\(211\) 5.18203 + 5.18203i 0.356745 + 0.356745i 0.862612 0.505866i \(-0.168827\pi\)
−0.505866 + 0.862612i \(0.668827\pi\)
\(212\) −0.607111 0.0472978i −0.0416966 0.00324843i
\(213\) 12.7474 + 12.7474i 0.873437 + 0.873437i
\(214\) 1.30589 2.83564i 0.0892687 0.193840i
\(215\) 6.07765 3.54252i 0.414492 0.241598i
\(216\) 4.19615 + 14.8112i 0.285512 + 1.00777i
\(217\) −11.0435 −0.749679
\(218\) −5.96734 + 12.9576i −0.404159 + 0.877601i
\(219\) −10.4425 + 10.4425i −0.705637 + 0.705637i
\(220\) 13.9284 + 4.85524i 0.939056 + 0.327340i
\(221\) 8.92820 + 8.92820i 0.600576 + 0.600576i
\(222\) 8.49134 + 22.9888i 0.569901 + 1.54291i
\(223\) 18.7097i 1.25289i 0.779465 + 0.626446i \(0.215491\pi\)
−0.779465 + 0.626446i \(0.784509\pi\)
\(224\) 6.04691 1.21523i 0.404026 0.0811962i
\(225\) −12.1540 + 21.4594i −0.810269 + 1.43062i
\(226\) 12.2572 4.52742i 0.815336 0.301160i
\(227\) 8.68435 8.68435i 0.576401 0.576401i −0.357509 0.933910i \(-0.616374\pi\)
0.933910 + 0.357509i \(0.116374\pi\)
\(228\) 12.3464 10.5617i 0.817658 0.699464i
\(229\) −4.22936 + 4.22936i −0.279484 + 0.279484i −0.832903 0.553419i \(-0.813323\pi\)
0.553419 + 0.832903i \(0.313323\pi\)
\(230\) 4.58901 0.442646i 0.302590 0.0291872i
\(231\) 10.1286i 0.666413i
\(232\) −0.771212 2.72215i −0.0506326 0.178718i
\(233\) −19.7054 −1.29094 −0.645472 0.763784i \(-0.723339\pi\)
−0.645472 + 0.763784i \(0.723339\pi\)
\(234\) −7.45965 + 16.1981i −0.487652 + 1.05890i
\(235\) 4.52900 + 1.19349i 0.295439 + 0.0778547i
\(236\) 0.255017 3.27338i 0.0166002 0.213079i
\(237\) −5.20794 + 5.20794i −0.338292 + 0.338292i
\(238\) −7.14374 + 2.63867i −0.463060 + 0.171040i
\(239\) −0.957886 −0.0619605 −0.0309803 0.999520i \(-0.509863\pi\)
−0.0309803 + 0.999520i \(0.509863\pi\)
\(240\) −23.4660 + 9.16200i −1.51472 + 0.591404i
\(241\) 10.4599 0.673779 0.336889 0.941544i \(-0.390625\pi\)
0.336889 + 0.941544i \(0.390625\pi\)
\(242\) 0.160855 0.0594147i 0.0103401 0.00381932i
\(243\) −10.4868 + 10.4868i −0.672727 + 0.672727i
\(244\) 9.76836 + 0.761018i 0.625355 + 0.0487192i
\(245\) 3.31122 12.5652i 0.211546 0.802764i
\(246\) −17.1199 + 37.1746i −1.09153 + 2.37016i
\(247\) 7.37405 0.469200
\(248\) 25.0118 + 13.9684i 1.58825 + 0.886992i
\(249\) 22.6181i 1.43337i
\(250\) −14.4426 6.43524i −0.913428 0.407000i
\(251\) 7.29013 7.29013i 0.460149 0.460149i −0.438555 0.898704i \(-0.644510\pi\)
0.898704 + 0.438555i \(0.144510\pi\)
\(252\) −6.99189 8.17335i −0.440447 0.514873i
\(253\) −3.40020 + 3.40020i −0.213769 + 0.213769i
\(254\) 2.64802 0.978096i 0.166152 0.0613712i
\(255\) 26.8722 15.6632i 1.68280 0.980868i
\(256\) −15.2325 4.89613i −0.952029 0.306008i
\(257\) 20.2830i 1.26522i 0.774472 + 0.632608i \(0.218016\pi\)
−0.774472 + 0.632608i \(0.781984\pi\)
\(258\) −4.34179 11.7546i −0.270308 0.731810i
\(259\) −4.74363 4.74363i −0.294755 0.294755i
\(260\) −10.7961 3.76335i −0.669544 0.233393i
\(261\) −3.48883 + 3.48883i −0.215953 + 0.215953i
\(262\) 9.44474 20.5085i 0.583498 1.26702i
\(263\) −20.2075 −1.24605 −0.623025 0.782202i \(-0.714096\pi\)
−0.623025 + 0.782202i \(0.714096\pi\)
\(264\) 12.8112 22.9398i 0.788474 1.41185i
\(265\) −0.588201 + 0.342849i −0.0361329 + 0.0210611i
\(266\) −1.86043 + 4.03978i −0.114070 + 0.247695i
\(267\) 13.6993 + 13.6993i 0.838382 + 0.838382i
\(268\) 1.10764 14.2175i 0.0676598 0.868475i
\(269\) 16.2657 + 16.2657i 0.991735 + 0.991735i 0.999966 0.00823090i \(-0.00262000\pi\)
−0.00823090 + 0.999966i \(0.502620\pi\)
\(270\) 13.2824 + 10.9454i 0.808340 + 0.666117i
\(271\) −24.4714 −1.48653 −0.743267 0.668995i \(-0.766725\pi\)
−0.743267 + 0.668995i \(0.766725\pi\)
\(272\) 19.5171 + 3.05958i 1.18340 + 0.185514i
\(273\) 7.85077i 0.475150i
\(274\) −7.81217 21.1501i −0.471950 1.27772i
\(275\) 15.8937 4.39991i 0.958426 0.265324i
\(276\) 0.637855 8.18746i 0.0383944 0.492827i
\(277\) 13.7978 + 13.7978i 0.829028 + 0.829028i 0.987382 0.158354i \(-0.0506188\pi\)
−0.158354 + 0.987382i \(0.550619\pi\)
\(278\) −6.89651 3.17603i −0.413625 0.190486i
\(279\) 49.9587i 2.99095i
\(280\) 4.78549 4.96503i 0.285988 0.296717i
\(281\) 16.5673i 0.988319i −0.869371 0.494160i \(-0.835476\pi\)
0.869371 0.494160i \(-0.164524\pi\)
\(282\) 3.48982 7.57788i 0.207816 0.451256i
\(283\) 13.6823 + 13.6823i 0.813330 + 0.813330i 0.985132 0.171802i \(-0.0549589\pi\)
−0.171802 + 0.985132i \(0.554959\pi\)
\(284\) 8.32164 + 9.72781i 0.493799 + 0.577239i
\(285\) 4.62892 17.5656i 0.274193 1.04050i
\(286\) 11.1863 4.13186i 0.661458 0.244322i
\(287\) 11.2034i 0.661317i
\(288\) 5.49750 + 27.3552i 0.323943 + 1.61192i
\(289\) −7.39230 −0.434841
\(290\) −2.44117 2.01166i −0.143351 0.118129i
\(291\) 7.51427 + 7.51427i 0.440495 + 0.440495i
\(292\) −7.96888 + 6.81697i −0.466343 + 0.398933i
\(293\) −23.0518 23.0518i −1.34670 1.34670i −0.889219 0.457482i \(-0.848751\pi\)
−0.457482 0.889219i \(-0.651249\pi\)
\(294\) −21.0241 9.68216i −1.22615 0.564675i
\(295\) −1.84855 3.17142i −0.107627 0.184647i
\(296\) 4.74363 + 16.7436i 0.275718 + 0.973204i
\(297\) −17.9514 −1.04165
\(298\) −24.2137 11.1511i −1.40266 0.645963i
\(299\) 2.63553 2.63553i 0.152416 0.152416i
\(300\) −15.7416 + 23.3548i −0.908843 + 1.34839i
\(301\) 2.42551 + 2.42551i 0.139804 + 0.139804i
\(302\) 7.43057 2.74462i 0.427581 0.157935i
\(303\) 2.81732i 0.161851i
\(304\) 9.32334 6.79635i 0.534730 0.389797i
\(305\) 9.46410 5.51641i 0.541913 0.315869i
\(306\) −11.9369 32.3170i −0.682387 1.84744i
\(307\) −23.3518 + 23.3518i −1.33276 + 1.33276i −0.429867 + 0.902892i \(0.641440\pi\)
−0.902892 + 0.429867i \(0.858560\pi\)
\(308\) −0.558644 + 7.17070i −0.0318317 + 0.408589i
\(309\) −25.7545 + 25.7545i −1.46512 + 1.46512i
\(310\) 31.8815 3.07522i 1.81075 0.174661i
\(311\) 17.8004i 1.00937i −0.863304 0.504685i \(-0.831609\pi\)
0.863304 0.504685i \(-0.168391\pi\)
\(312\) −9.93008 + 17.7809i −0.562180 + 1.00664i
\(313\) 23.7909 1.34474 0.672370 0.740216i \(-0.265277\pi\)
0.672370 + 0.740216i \(0.265277\pi\)
\(314\) −12.9334 5.95619i −0.729875 0.336127i
\(315\) −11.6285 3.06437i −0.655193 0.172658i
\(316\) −3.97429 + 3.39980i −0.223571 + 0.191254i
\(317\) 13.6940 13.6940i 0.769129 0.769129i −0.208824 0.977953i \(-0.566964\pi\)
0.977953 + 0.208824i \(0.0669635\pi\)
\(318\) 0.420202 + 1.13762i 0.0235638 + 0.0637948i
\(319\) 3.29930 0.184725
\(320\) −17.1185 + 5.19212i −0.956951 + 0.290248i
\(321\) −6.21736 −0.347019
\(322\) 0.778913 + 2.10877i 0.0434071 + 0.117517i
\(323\) −10.0731 + 10.0731i −0.560485 + 0.560485i
\(324\) 0.808008 0.691209i 0.0448893 0.0384005i
\(325\) −12.3194 + 3.41041i −0.683355 + 0.189176i
\(326\) −0.991959 0.456824i −0.0549395 0.0253011i
\(327\) 28.4106 1.57111
\(328\) −14.1707 + 25.3741i −0.782445 + 1.40105i
\(329\) 2.28377i 0.125908i
\(330\) −2.82046 29.2403i −0.155261 1.60963i
\(331\) 1.96043 1.96043i 0.107755 0.107755i −0.651174 0.758929i \(-0.725723\pi\)
0.758929 + 0.651174i \(0.225723\pi\)
\(332\) −1.24751 + 16.0129i −0.0684658 + 0.878821i
\(333\) 21.4594 21.4594i 1.17597 1.17597i
\(334\) 10.4422 + 28.2704i 0.571372 + 1.54689i
\(335\) −8.02897 13.7747i −0.438669 0.752593i
\(336\) −7.23572 9.92608i −0.394741 0.541512i
\(337\) 18.5606i 1.01106i −0.862809 0.505530i \(-0.831297\pi\)
0.862809 0.505530i \(-0.168703\pi\)
\(338\) 8.57534 3.16746i 0.466437 0.172287i
\(339\) −18.4008 18.4008i −0.999393 0.999393i
\(340\) 19.8885 9.60688i 1.07861 0.521006i
\(341\) −23.6224 + 23.6224i −1.27922 + 1.27922i
\(342\) −18.2753 8.41626i −0.988214 0.455099i
\(343\) 13.9684 0.754221
\(344\) −2.42551 8.56134i −0.130775 0.461597i
\(345\) −4.62364 7.93244i −0.248928 0.427068i
\(346\) 4.80809 + 2.21425i 0.258484 + 0.119039i
\(347\) 8.01007 + 8.01007i 0.430003 + 0.430003i 0.888629 0.458626i \(-0.151658\pi\)
−0.458626 + 0.888629i \(0.651658\pi\)
\(348\) −4.28172 + 3.66279i −0.229524 + 0.196346i
\(349\) 19.2579 + 19.2579i 1.03085 + 1.03085i 0.999509 + 0.0313434i \(0.00997854\pi\)
0.0313434 + 0.999509i \(0.490021\pi\)
\(350\) 1.23975 7.60944i 0.0662674 0.406742i
\(351\) 13.9143 0.742693
\(352\) 10.3351 15.5340i 0.550865 0.827965i
\(353\) 6.05459i 0.322253i −0.986934 0.161127i \(-0.948487\pi\)
0.986934 0.161127i \(-0.0515127\pi\)
\(354\) −6.13376 + 2.26562i −0.326006 + 0.120416i
\(355\) 13.8401 + 3.64717i 0.734556 + 0.193572i
\(356\) 8.94304 + 10.4542i 0.473980 + 0.554072i
\(357\) 10.7244 + 10.7244i 0.567593 + 0.567593i
\(358\) −11.2730 + 24.4784i −0.595794 + 1.29372i
\(359\) 8.74167i 0.461368i 0.973029 + 0.230684i \(0.0740964\pi\)
−0.973029 + 0.230684i \(0.925904\pi\)
\(360\) 22.4609 + 21.6487i 1.18379 + 1.14099i
\(361\) 10.6803i 0.562122i
\(362\) 2.97112 + 1.36828i 0.156159 + 0.0719154i
\(363\) −0.241479 0.241479i −0.0126744 0.0126744i
\(364\) 0.433010 5.55808i 0.0226959 0.291323i
\(365\) −2.98770 + 11.3376i −0.156384 + 0.593437i
\(366\) −6.76102 18.3043i −0.353404 0.956779i
\(367\) 22.7558i 1.18784i −0.804524 0.593920i \(-0.797579\pi\)
0.804524 0.593920i \(-0.202421\pi\)
\(368\) 0.903160 5.76126i 0.0470805 0.300327i
\(369\) 50.6823 2.63841
\(370\) 15.0154 + 12.3735i 0.780611 + 0.643267i
\(371\) −0.234743 0.234743i −0.0121873 0.0121873i
\(372\) 4.43141 56.8812i 0.229758 2.94915i
\(373\) 19.1172 + 19.1172i 0.989851 + 0.989851i 0.999949 0.0100979i \(-0.00321433\pi\)
−0.0100979 + 0.999949i \(0.503214\pi\)
\(374\) −9.63650 + 20.9249i −0.498292 + 1.08200i
\(375\) 0.390645 + 31.4865i 0.0201728 + 1.62596i
\(376\) 2.88863 5.17240i 0.148970 0.266746i
\(377\) −2.55732 −0.131709
\(378\) −3.51051 + 7.62280i −0.180561 + 0.392075i
\(379\) 19.2110 19.2110i 0.986802 0.986802i −0.0131116 0.999914i \(-0.504174\pi\)
0.999914 + 0.0131116i \(0.00417366\pi\)
\(380\) 4.24595 12.1805i 0.217813 0.624849i
\(381\) −3.97527 3.97527i −0.203659 0.203659i
\(382\) −2.48522 6.72829i −0.127155 0.344249i
\(383\) 20.7721i 1.06140i −0.847558 0.530702i \(-0.821928\pi\)
0.847558 0.530702i \(-0.178072\pi\)
\(384\) 3.83281 + 31.6332i 0.195592 + 1.61428i
\(385\) 4.04946 + 6.94736i 0.206379 + 0.354070i
\(386\) −29.2344 + 10.7983i −1.48799 + 0.549617i
\(387\) −10.9726 + 10.9726i −0.557768 + 0.557768i
\(388\) 4.90540 + 5.73430i 0.249034 + 0.291115i
\(389\) 22.9514 22.9514i 1.16368 1.16368i 0.180017 0.983664i \(-0.442385\pi\)
0.983664 0.180017i \(-0.0576152\pi\)
\(390\) 2.18616 + 22.6644i 0.110701 + 1.14766i
\(391\) 7.20039i 0.364139i
\(392\) −14.3503 8.01423i −0.724800 0.404780i
\(393\) −44.9666 −2.26826
\(394\) −6.75135 + 14.6600i −0.340128 + 0.738562i
\(395\) −1.49005 + 5.65437i −0.0749725 + 0.284502i
\(396\) −32.4390 2.52721i −1.63012 0.126997i
\(397\) −19.9562 + 19.9562i −1.00157 + 1.00157i −0.00157311 + 0.999999i \(0.500501\pi\)
−0.999999 + 0.00157311i \(0.999499\pi\)
\(398\) 28.9949 10.7098i 1.45338 0.536834i
\(399\) 8.85754 0.443432
\(400\) −12.4327 + 15.6662i −0.621634 + 0.783308i
\(401\) −35.5367 −1.77462 −0.887310 0.461174i \(-0.847428\pi\)
−0.887310 + 0.461174i \(0.847428\pi\)
\(402\) −26.6413 + 9.84046i −1.32875 + 0.490797i
\(403\) 18.3099 18.3099i 0.912083 0.912083i
\(404\) 0.155390 1.99457i 0.00773092 0.0992334i
\(405\) 0.302940 1.14958i 0.0150532 0.0571231i
\(406\) 0.645198 1.40100i 0.0320206 0.0695303i
\(407\) −20.2936 −1.00592
\(408\) −10.7244 37.8538i −0.530935 1.87404i
\(409\) 6.50932i 0.321865i −0.986965 0.160933i \(-0.948550\pi\)
0.986965 0.160933i \(-0.0514502\pi\)
\(410\) 3.11976 + 32.3432i 0.154074 + 1.59732i
\(411\) −31.7510 + 31.7510i −1.56616 + 1.56616i
\(412\) −19.6538 + 16.8128i −0.968274 + 0.828308i
\(413\) 1.26567 1.26567i 0.0622798 0.0622798i
\(414\) −9.53970 + 3.52367i −0.468851 + 0.173179i
\(415\) 9.04283 + 15.5141i 0.443895 + 0.761558i
\(416\) −8.01086 + 12.0405i −0.392765 + 0.590336i
\(417\) 15.1211i 0.740485i
\(418\) 4.66172 + 12.6208i 0.228012 + 0.617302i
\(419\) 10.8597 + 10.8597i 0.530529 + 0.530529i 0.920730 0.390200i \(-0.127594\pi\)
−0.390200 + 0.920730i \(0.627594\pi\)
\(420\) −12.9680 4.52044i −0.632773 0.220575i
\(421\) 17.0865 17.0865i 0.832744 0.832744i −0.155147 0.987891i \(-0.549585\pi\)
0.987891 + 0.155147i \(0.0495852\pi\)
\(422\) 4.33529 9.41376i 0.211039 0.458255i
\(423\) −10.3314 −0.502328
\(424\) 0.234743 + 0.828575i 0.0114001 + 0.0402392i
\(425\) 12.1698 21.4873i 0.590324 1.04229i
\(426\) 10.6645 23.1571i 0.516696 1.12197i
\(427\) 3.77700 + 3.77700i 0.182782 + 0.182782i
\(428\) −4.40168 0.342919i −0.212763 0.0165756i
\(429\) −16.7931 16.7931i −0.810778 0.810778i
\(430\) −7.67764 6.32680i −0.370249 0.305106i
\(431\) 24.6877 1.18916 0.594581 0.804036i \(-0.297318\pi\)
0.594581 + 0.804036i \(0.297318\pi\)
\(432\) 17.5925 12.8243i 0.846420 0.617007i
\(433\) 34.7872i 1.67176i 0.548909 + 0.835882i \(0.315043\pi\)
−0.548909 + 0.835882i \(0.684957\pi\)
\(434\) 5.41139 + 14.6504i 0.259755 + 0.703240i
\(435\) −1.60531 + 6.09175i −0.0769687 + 0.292077i
\(436\) 20.1138 + 1.56699i 0.963274 + 0.0750452i
\(437\) 2.97350 + 2.97350i 0.142242 + 0.142242i
\(438\) 18.9700 + 8.73619i 0.906421 + 0.417431i
\(439\) 1.12777i 0.0538257i −0.999638 0.0269128i \(-0.991432\pi\)
0.999638 0.0269128i \(-0.00856766\pi\)
\(440\) −0.384037 20.8567i −0.0183082 0.994305i
\(441\) 28.6634i 1.36492i
\(442\) 7.46935 16.2191i 0.355281 0.771465i
\(443\) −1.20401 1.20401i −0.0572043 0.0572043i 0.677926 0.735130i \(-0.262879\pi\)
−0.735130 + 0.677926i \(0.762879\pi\)
\(444\) 26.3363 22.5294i 1.24987 1.06920i
\(445\) 14.8736 + 3.91951i 0.705075 + 0.185803i
\(446\) 24.8204 9.16788i 1.17528 0.434112i
\(447\) 53.0903i 2.51109i
\(448\) −4.57517 7.42642i −0.216157 0.350865i
\(449\) −18.1896 −0.858422 −0.429211 0.903204i \(-0.641208\pi\)
−0.429211 + 0.903204i \(0.641208\pi\)
\(450\) 34.4238 + 5.60841i 1.62275 + 0.264383i
\(451\) −23.9645 23.9645i −1.12844 1.12844i
\(452\) −12.0122 14.0420i −0.565008 0.660482i
\(453\) −11.1549 11.1549i −0.524105 0.524105i
\(454\) −15.7761 7.26534i −0.740411 0.340979i
\(455\) −3.13877 5.38496i −0.147148 0.252451i
\(456\) −20.0610 11.2035i −0.939444 0.524652i
\(457\) 4.25060 0.198835 0.0994174 0.995046i \(-0.468302\pi\)
0.0994174 + 0.995046i \(0.468302\pi\)
\(458\) 7.68312 + 3.53829i 0.359009 + 0.165333i
\(459\) −19.0073 + 19.0073i −0.887187 + 0.887187i
\(460\) −2.83587 5.87092i −0.132223 0.273733i
\(461\) −25.7081 25.7081i −1.19735 1.19735i −0.974958 0.222390i \(-0.928614\pi\)
−0.222390 0.974958i \(-0.571386\pi\)
\(462\) 13.4367 4.96309i 0.625131 0.230904i
\(463\) 32.8289i 1.52569i −0.646582 0.762844i \(-0.723802\pi\)
0.646582 0.762844i \(-0.276198\pi\)
\(464\) −3.23334 + 2.35697i −0.150104 + 0.109420i
\(465\) −32.1221 55.1095i −1.48963 2.55564i
\(466\) 9.65580 + 26.1414i 0.447296 + 1.21098i
\(467\) 17.1611 17.1611i 0.794123 0.794123i −0.188039 0.982162i \(-0.560213\pi\)
0.982162 + 0.188039i \(0.0602130\pi\)
\(468\) 25.1438 + 1.95886i 1.16227 + 0.0905484i
\(469\) 5.49731 5.49731i 0.253842 0.253842i
\(470\) −0.635949 6.59303i −0.0293342 0.304114i
\(471\) 28.3575i 1.30665i
\(472\) −4.46746 + 1.26567i −0.205631 + 0.0582574i
\(473\) 10.3765 0.477112
\(474\) 9.46084 + 4.35697i 0.434551 + 0.200122i
\(475\) −3.84776 13.8992i −0.176547 0.637738i
\(476\) 7.00098 + 8.18398i 0.320889 + 0.375112i
\(477\) 1.06194 1.06194i 0.0486228 0.0486228i
\(478\) 0.469372 + 1.27074i 0.0214686 + 0.0581223i
\(479\) −25.2711 −1.15466 −0.577332 0.816510i \(-0.695906\pi\)
−0.577332 + 0.816510i \(0.695906\pi\)
\(480\) 23.6529 + 26.6408i 1.07960 + 1.21598i
\(481\) 15.7298 0.717216
\(482\) −5.12541 13.8762i −0.233456 0.632041i
\(483\) 3.16573 3.16573i 0.144046 0.144046i
\(484\) −0.157640 0.184278i −0.00716546 0.00837626i
\(485\) 8.15839 + 2.14991i 0.370454 + 0.0976226i
\(486\) 19.0505 + 8.77325i 0.864146 + 0.397963i
\(487\) −12.9056 −0.584807 −0.292404 0.956295i \(-0.594455\pi\)
−0.292404 + 0.956295i \(0.594455\pi\)
\(488\) −3.77700 13.3317i −0.170977 0.603498i
\(489\) 2.17495i 0.0983545i
\(490\) −18.2917 + 1.76438i −0.826335 + 0.0797065i
\(491\) 10.3909 10.3909i 0.468935 0.468935i −0.432635 0.901569i \(-0.642416\pi\)
0.901569 + 0.432635i \(0.142416\pi\)
\(492\) 57.7050 + 4.49559i 2.60154 + 0.202677i
\(493\) 3.49337 3.49337i 0.157333 0.157333i
\(494\) −3.61334 9.78249i −0.162572 0.440135i
\(495\) −31.4286 + 18.3190i −1.41261 + 0.823379i
\(496\) 6.27458 40.0255i 0.281737 1.79720i
\(497\) 6.97894i 0.313048i
\(498\) 30.0054 11.0831i 1.34458 0.496644i
\(499\) −19.8755 19.8755i −0.889749 0.889749i 0.104750 0.994499i \(-0.466596\pi\)
−0.994499 + 0.104750i \(0.966596\pi\)
\(500\) −1.46008 + 22.3130i −0.0652968 + 0.997866i
\(501\) 42.4402 42.4402i 1.89609 1.89609i
\(502\) −13.2434 6.09894i −0.591081 0.272209i
\(503\) −12.8059 −0.570989 −0.285494 0.958380i \(-0.592158\pi\)
−0.285494 + 0.958380i \(0.592158\pi\)
\(504\) −7.41677 + 13.2805i −0.330369 + 0.591561i
\(505\) −1.12638 1.93244i −0.0501231 0.0859925i
\(506\) 6.17686 + 2.84461i 0.274595 + 0.126458i
\(507\) −12.8735 12.8735i −0.571732 0.571732i
\(508\) −2.59510 3.03362i −0.115139 0.134595i
\(509\) 5.77064 + 5.77064i 0.255779 + 0.255779i 0.823335 0.567556i \(-0.192111\pi\)
−0.567556 + 0.823335i \(0.692111\pi\)
\(510\) −33.9466 27.9739i −1.50318 1.23870i
\(511\) −5.71704 −0.252907
\(512\) 0.968769 + 22.6067i 0.0428139 + 0.999083i
\(513\) 15.6987i 0.693114i
\(514\) 26.9076 9.93881i 1.18684 0.438382i
\(515\) −7.36864 + 27.9622i −0.324701 + 1.23216i
\(516\) −13.4663 + 11.5197i −0.592820 + 0.507127i
\(517\) 4.88507 + 4.88507i 0.214845 + 0.214845i
\(518\) −3.96853 + 8.61736i −0.174367 + 0.378625i
\(519\) 10.5421i 0.462747i
\(520\) 0.297671 + 16.1662i 0.0130537 + 0.708937i
\(521\) 18.9514i 0.830274i 0.909759 + 0.415137i \(0.136266\pi\)
−0.909759 + 0.415137i \(0.863734\pi\)
\(522\) 6.33787 + 2.91876i 0.277401 + 0.127751i
\(523\) −7.32161 7.32161i −0.320152 0.320152i 0.528674 0.848825i \(-0.322690\pi\)
−0.848825 + 0.528674i \(0.822690\pi\)
\(524\) −31.8348 2.48014i −1.39071 0.108345i
\(525\) −14.7977 + 4.09651i −0.645826 + 0.178786i
\(526\) 9.90185 + 26.8075i 0.431741 + 1.16886i
\(527\) 50.0237i 2.17907i
\(528\) −36.7097 5.75477i −1.59759 0.250444i
\(529\) −20.8745 −0.907587
\(530\) 0.743050 + 0.612314i 0.0322760 + 0.0265972i
\(531\) 5.72569 + 5.72569i 0.248474 + 0.248474i
\(532\) 6.27084 + 0.488539i 0.271875 + 0.0211808i
\(533\) 18.5751 + 18.5751i 0.804578 + 0.804578i
\(534\) 11.4608 24.8864i 0.495959 1.07694i
\(535\) −4.26458 + 2.48573i −0.184374 + 0.107467i
\(536\) −19.4039 + 5.49731i −0.838120 + 0.237448i
\(537\) 53.6708 2.31606
\(538\) 13.6079 29.5485i 0.586677 1.27393i
\(539\) 13.5531 13.5531i 0.583774 0.583774i
\(540\) 8.01182 22.9839i 0.344774 0.989068i
\(541\) −6.08576 6.08576i −0.261647 0.261647i 0.564076 0.825723i \(-0.309233\pi\)
−0.825723 + 0.564076i \(0.809233\pi\)
\(542\) 11.9912 + 32.4640i 0.515066 + 1.39445i
\(543\) 6.51442i 0.279561i
\(544\) −5.50465 27.3907i −0.236010 1.17437i
\(545\) 19.4873 11.3587i 0.834743 0.486553i
\(546\) −10.4149 + 3.84694i −0.445717 + 0.164634i
\(547\) −3.68638 + 3.68638i −0.157618 + 0.157618i −0.781510 0.623892i \(-0.785550\pi\)
0.623892 + 0.781510i \(0.285550\pi\)
\(548\) −24.2298 + 20.7274i −1.03505 + 0.885430i
\(549\) −17.0865 + 17.0865i −0.729233 + 0.729233i
\(550\) −13.6250 18.9287i −0.580972 0.807124i
\(551\) 2.88527i 0.122917i
\(552\) −11.1741 + 3.16573i −0.475602 + 0.134743i
\(553\) −2.85124 −0.121247
\(554\) 11.5432 25.0653i 0.490425 1.06492i
\(555\) 9.87406 37.4696i 0.419130 1.59050i
\(556\) −0.834008 + 10.7053i −0.0353698 + 0.454004i
\(557\) −3.92396 + 3.92396i −0.166264 + 0.166264i −0.785335 0.619071i \(-0.787509\pi\)
0.619071 + 0.785335i \(0.287509\pi\)
\(558\) −66.2757 + 24.4802i −2.80567 + 1.03633i
\(559\) −8.04293 −0.340180
\(560\) −8.93158 3.91557i −0.377428 0.165463i
\(561\) 45.8796 1.93704
\(562\) −21.9783 + 8.11808i −0.927097 + 0.342441i
\(563\) 2.42213 2.42213i 0.102081 0.102081i −0.654222 0.756303i \(-0.727004\pi\)
0.756303 + 0.654222i \(0.227004\pi\)
\(564\) −11.7629 0.916407i −0.495309 0.0385877i
\(565\) −19.9781 5.26466i −0.840484 0.221486i
\(566\) 11.4467 24.8555i 0.481139 1.04476i
\(567\) 0.579682 0.0243444
\(568\) 8.82734 15.8063i 0.370387 0.663217i
\(569\) 0.577163i 0.0241959i −0.999927 0.0120980i \(-0.996149\pi\)
0.999927 0.0120980i \(-0.00385099\pi\)
\(570\) −25.5709 + 2.46651i −1.07105 + 0.103311i
\(571\) −18.5485 + 18.5485i −0.776229 + 0.776229i −0.979187 0.202959i \(-0.934944\pi\)
0.202959 + 0.979187i \(0.434944\pi\)
\(572\) −10.9627 12.8152i −0.458374 0.535829i
\(573\) −10.1007 + 10.1007i −0.421962 + 0.421962i
\(574\) −14.8626 + 5.48976i −0.620351 + 0.229138i
\(575\) −6.34285 3.59243i −0.264515 0.149815i
\(576\) 33.5958 20.6973i 1.39982 0.862387i
\(577\) 9.63346i 0.401046i −0.979689 0.200523i \(-0.935736\pi\)
0.979689 0.200523i \(-0.0642642\pi\)
\(578\) 3.62229 + 9.80670i 0.150667 + 0.407905i
\(579\) 43.8873 + 43.8873i 1.82390 + 1.82390i
\(580\) −1.47250 + 4.22421i −0.0611421 + 0.175401i
\(581\) −6.19148 + 6.19148i −0.256866 + 0.256866i
\(582\) 6.28645 13.6506i 0.260582 0.565834i
\(583\) −1.00425 −0.0415918
\(584\) 12.9483 + 7.23122i 0.535803 + 0.299230i
\(585\) 24.3606 14.1993i 1.00719 0.587067i
\(586\) −19.2852 + 41.8763i −0.796663 + 1.72989i
\(587\) −17.5202 17.5202i −0.723136 0.723136i 0.246107 0.969243i \(-0.420849\pi\)
−0.969243 + 0.246107i \(0.920849\pi\)
\(588\) −2.54248 + 32.6351i −0.104850 + 1.34585i
\(589\) 20.6580 + 20.6580i 0.851197 + 0.851197i
\(590\) −3.30144 + 4.00633i −0.135918 + 0.164938i
\(591\) 32.1433 1.32220
\(592\) 19.8878 14.4975i 0.817385 0.595842i
\(593\) 15.7065i 0.644988i 0.946571 + 0.322494i \(0.104521\pi\)
−0.946571 + 0.322494i \(0.895479\pi\)
\(594\) 8.79635 + 23.8146i 0.360919 + 0.977123i
\(595\) 11.6436 + 3.06835i 0.477343 + 0.125790i
\(596\) −2.92820 + 37.5862i −0.119944 + 1.53959i
\(597\) −43.5279 43.5279i −1.78148 1.78148i
\(598\) −4.78774 2.20489i −0.195785 0.0901645i
\(599\) 29.6865i 1.21296i 0.795099 + 0.606479i \(0.207419\pi\)
−0.795099 + 0.606479i \(0.792581\pi\)
\(600\) 38.6962 + 9.43897i 1.57976 + 0.385344i
\(601\) 13.3688i 0.545325i 0.962110 + 0.272663i \(0.0879043\pi\)
−0.962110 + 0.272663i \(0.912096\pi\)
\(602\) 2.02919 4.40622i 0.0827034 0.179584i
\(603\) 24.8689 + 24.8689i 1.01274 + 1.01274i
\(604\) −7.28207 8.51258i −0.296303 0.346372i
\(605\) −0.262178 0.0690897i −0.0106591 0.00280890i
\(606\) −3.73748 + 1.38051i −0.151825 + 0.0560793i
\(607\) 39.5508i 1.60532i −0.596439 0.802659i \(-0.703418\pi\)
0.596439 0.802659i \(-0.296582\pi\)
\(608\) −13.5846 9.03816i −0.550929 0.366546i
\(609\) −3.07180 −0.124475
\(610\) −11.9556 9.85208i −0.484068 0.398899i
\(611\) −3.78646 3.78646i −0.153184 0.153184i
\(612\) −37.0229 + 31.6712i −1.49656 + 1.28023i
\(613\) −15.1788 15.1788i −0.613067 0.613067i 0.330677 0.943744i \(-0.392723\pi\)
−0.943744 + 0.330677i \(0.892723\pi\)
\(614\) 42.4213 + 19.5362i 1.71199 + 0.788416i
\(615\) 55.9077 32.5873i 2.25441 1.31405i
\(616\) 9.78646 2.77260i 0.394308 0.111711i
\(617\) 18.6184 0.749549 0.374774 0.927116i \(-0.377720\pi\)
0.374774 + 0.927116i \(0.377720\pi\)
\(618\) 46.7861 + 21.5463i 1.88201 + 0.866717i
\(619\) −15.6388 + 15.6388i −0.628576 + 0.628576i −0.947710 0.319134i \(-0.896608\pi\)
0.319134 + 0.947710i \(0.396608\pi\)
\(620\) −19.7018 40.7874i −0.791242 1.63806i
\(621\) 5.61080 + 5.61080i 0.225154 + 0.225154i
\(622\) −23.6142 + 8.72235i −0.946844 + 0.349734i
\(623\) 7.50008i 0.300484i
\(624\) 28.4541 + 4.46058i 1.13907 + 0.178566i
\(625\) 12.8564 + 21.4409i 0.514256 + 0.857637i
\(626\) −11.6577 31.5612i −0.465936 1.26144i
\(627\) 18.9466 18.9466i 0.756655 0.756655i
\(628\) −1.56406 + 20.0762i −0.0624129 + 0.801127i
\(629\) −21.4873 + 21.4873i −0.856753 + 0.856753i
\(630\) 1.63284 + 16.9281i 0.0650541 + 0.674430i
\(631\) 32.2591i 1.28422i −0.766614 0.642108i \(-0.778060\pi\)
0.766614 0.642108i \(-0.221940\pi\)
\(632\) 6.45765 + 3.60640i 0.256871 + 0.143455i
\(633\) −20.6404 −0.820382
\(634\) −24.8767 11.4564i −0.987979 0.454991i
\(635\) −4.31603 1.13737i −0.171276 0.0451351i
\(636\) 1.30328 1.11489i 0.0516784 0.0442082i
\(637\) −10.5052 + 10.5052i −0.416230 + 0.416230i
\(638\) −1.61668 4.37689i −0.0640051 0.173283i
\(639\) −31.5715 −1.24895
\(640\) 15.2761 + 20.1653i 0.603841 + 0.797105i
\(641\) −8.87760 −0.350644 −0.175322 0.984511i \(-0.556097\pi\)
−0.175322 + 0.984511i \(0.556097\pi\)
\(642\) 3.04655 + 8.24800i 0.120238 + 0.325523i
\(643\) 19.5500 19.5500i 0.770977 0.770977i −0.207301 0.978277i \(-0.566468\pi\)
0.978277 + 0.207301i \(0.0664678\pi\)
\(644\) 2.41584 2.06663i 0.0951974 0.0814365i
\(645\) −5.04880 + 19.1589i −0.198796 + 0.754382i
\(646\) 18.2990 + 8.42721i 0.719966 + 0.331564i
\(647\) 33.1992 1.30519 0.652597 0.757705i \(-0.273679\pi\)
0.652597 + 0.757705i \(0.273679\pi\)
\(648\) −1.31289 0.733213i −0.0515754 0.0288033i
\(649\) 5.41465i 0.212543i
\(650\) 10.5609 + 14.6718i 0.414231 + 0.575477i
\(651\) 21.9935 21.9935i 0.861992 0.861992i
\(652\) −0.119959 + 1.53979i −0.00469797 + 0.0603028i
\(653\) 10.3869 10.3869i 0.406472 0.406472i −0.474034 0.880506i \(-0.657203\pi\)
0.880506 + 0.474034i \(0.157203\pi\)
\(654\) −13.9214 37.6898i −0.544371 1.47379i
\(655\) −30.8433 + 17.9778i −1.20515 + 0.702452i
\(656\) 40.6053 + 6.36545i 1.58537 + 0.248529i
\(657\) 25.8629i 1.00901i
\(658\) 3.02967 1.11906i 0.118109 0.0436257i
\(659\) 3.29013 + 3.29013i 0.128165 + 0.128165i 0.768280 0.640114i \(-0.221113\pi\)
−0.640114 + 0.768280i \(0.721113\pi\)
\(660\) −37.4084 + 18.0696i −1.45612 + 0.703359i
\(661\) −8.43866 + 8.43866i −0.328226 + 0.328226i −0.851912 0.523686i \(-0.824557\pi\)
0.523686 + 0.851912i \(0.324557\pi\)
\(662\) −3.56135 1.64010i −0.138416 0.0637443i
\(663\) −35.5617 −1.38110
\(664\) 21.8541 6.19148i 0.848105 0.240276i
\(665\) 6.07552 3.54128i 0.235599 0.137325i
\(666\) −38.9834 17.9529i −1.51058 0.695662i
\(667\) −1.03121 1.03121i −0.0399286 0.0399286i
\(668\) 32.3870 27.7054i 1.25309 1.07196i
\(669\) −37.2610 37.2610i −1.44059 1.44059i
\(670\) −14.3394 + 17.4010i −0.553980 + 0.672260i
\(671\) 16.1583 0.623783
\(672\) −9.62247 + 14.4628i −0.371195 + 0.557916i
\(673\) 7.49618i 0.288956i −0.989508 0.144478i \(-0.953850\pi\)
0.989508 0.144478i \(-0.0461504\pi\)
\(674\) −24.6226 + 9.09483i −0.948429 + 0.350320i
\(675\) −7.26046 26.2268i −0.279455 1.00947i
\(676\) −8.40396 9.82404i −0.323229 0.377848i
\(677\) −11.2336 11.2336i −0.431741 0.431741i 0.457479 0.889220i \(-0.348752\pi\)
−0.889220 + 0.457479i \(0.848752\pi\)
\(678\) −15.3941 + 33.4272i −0.591208 + 1.28376i
\(679\) 4.11391i 0.157877i
\(680\) −22.4901 21.6769i −0.862457 0.831270i
\(681\) 34.5904i 1.32551i
\(682\) 42.9128 + 19.7625i 1.64322 + 0.756746i
\(683\) 24.1607 + 24.1607i 0.924482 + 0.924482i 0.997342 0.0728605i \(-0.0232128\pi\)
−0.0728605 + 0.997342i \(0.523213\pi\)
\(684\) −2.21006 + 28.3682i −0.0845039 + 1.08468i
\(685\) −9.08429 + 34.4726i −0.347093 + 1.31713i
\(686\) −6.84461 18.5306i −0.261328 0.707500i
\(687\) 16.8458i 0.642709i
\(688\) −10.1690 + 7.41283i −0.387691 + 0.282611i
\(689\) 0.778403 0.0296548
\(690\) −8.25763 + 10.0207i −0.314363 + 0.381482i
\(691\) 20.6744 + 20.6744i 0.786490 + 0.786490i 0.980917 0.194427i \(-0.0622846\pi\)
−0.194427 + 0.980917i \(0.562285\pi\)
\(692\) 0.581451 7.46345i 0.0221034 0.283718i
\(693\) −12.5427 12.5427i −0.476460 0.476460i
\(694\) 6.70124 14.5512i 0.254376 0.552357i
\(695\) 6.04550 + 10.3718i 0.229319 + 0.393425i
\(696\) 6.95717 + 3.88537i 0.263711 + 0.147275i
\(697\) −50.7482 −1.92222
\(698\) 16.1112 34.9842i 0.609818 1.32417i
\(699\) 39.2440 39.2440i 1.48435 1.48435i
\(700\) −10.7022 + 2.08402i −0.404507 + 0.0787686i
\(701\) −5.10967 5.10967i −0.192990 0.192990i 0.603997 0.796987i \(-0.293574\pi\)
−0.796987 + 0.603997i \(0.793574\pi\)
\(702\) −6.81814 18.4589i −0.257334 0.696686i
\(703\) 17.7469i 0.669338i
\(704\) −25.6718 6.09891i −0.967544 0.229861i
\(705\) −11.3965 + 6.64279i −0.429219 + 0.250182i
\(706\) −8.03207 + 2.96679i −0.302291 + 0.111657i
\(707\) 0.771212 0.771212i 0.0290044 0.0290044i
\(708\) 6.01119 + 7.02694i 0.225914 + 0.264089i
\(709\) 13.7429 13.7429i 0.516126 0.516126i −0.400271 0.916397i \(-0.631084\pi\)
0.916397 + 0.400271i \(0.131084\pi\)
\(710\) −1.94339 20.1475i −0.0729341 0.756124i
\(711\) 12.8985i 0.483732i
\(712\) 9.48650 16.9866i 0.355522 0.636599i
\(713\) 14.7665 0.553011
\(714\) 8.97201 19.4820i 0.335769 0.729097i
\(715\) −18.2326 4.80468i −0.681860 0.179685i
\(716\) 37.9971 + 2.96022i 1.42002 + 0.110628i
\(717\) 1.90767 1.90767i 0.0712431 0.0712431i
\(718\) 11.5968 4.28349i 0.432788 0.159858i
\(719\) 23.0266 0.858747 0.429373 0.903127i \(-0.358734\pi\)
0.429373 + 0.903127i \(0.358734\pi\)
\(720\) 17.7134 40.4049i 0.660138 1.50580i
\(721\) −14.1001 −0.525114
\(722\) −14.1686 + 5.23344i −0.527301 + 0.194768i
\(723\) −20.8312 + 20.8312i −0.774721 + 0.774721i
\(724\) 0.359304 4.61199i 0.0133534 0.171403i
\(725\) 1.33440 + 4.82023i 0.0495585 + 0.179019i
\(726\) −0.202022 + 0.438675i −0.00749773 + 0.0162807i
\(727\) 43.6601 1.61926 0.809631 0.586939i \(-0.199667\pi\)
0.809631 + 0.586939i \(0.199667\pi\)
\(728\) −7.58558 + 2.14907i −0.281140 + 0.0796498i
\(729\) 43.3646i 1.60610i
\(730\) 16.5046 1.59200i 0.610861 0.0589224i
\(731\) 10.9869 10.9869i 0.406363 0.406363i
\(732\) −20.9696 + 17.9385i −0.775061 + 0.663025i
\(733\) 20.4799 20.4799i 0.756444 0.756444i −0.219229 0.975673i \(-0.570354\pi\)
0.975673 + 0.219229i \(0.0703543\pi\)
\(734\) −30.1880 + 11.1505i −1.11426 + 0.411572i
\(735\) 18.4297 + 31.6186i 0.679792 + 1.16627i
\(736\) −8.08550 + 1.62492i −0.298036 + 0.0598955i
\(737\) 23.5179i 0.866292i
\(738\) −24.8347 67.2356i −0.914178 2.47498i
\(739\) −5.57362 5.57362i −0.205029 0.205029i 0.597122 0.802151i \(-0.296311\pi\)
−0.802151 + 0.597122i \(0.796311\pi\)
\(740\) 9.05714 25.9826i 0.332947 0.955140i
\(741\) −14.6857 + 14.6857i −0.539493 + 0.539493i
\(742\) −0.196387 + 0.426439i −0.00720958 + 0.0156551i
\(743\) 13.1917 0.483957 0.241978 0.970282i \(-0.422204\pi\)
0.241978 + 0.970282i \(0.422204\pi\)
\(744\) −77.6305 + 21.9935i −2.84607 + 0.806320i
\(745\) 21.2257 + 36.4155i 0.777651 + 1.33416i
\(746\) 15.9935 34.7286i 0.585563 1.27151i
\(747\) −28.0092 28.0092i −1.02480 1.02480i
\(748\) 32.4812 + 2.53049i 1.18763 + 0.0925240i
\(749\) −1.70194 1.70194i −0.0621875 0.0621875i
\(750\) 41.5789 15.9469i 1.51825 0.582298i
\(751\) −16.1003 −0.587510 −0.293755 0.955881i \(-0.594905\pi\)
−0.293755 + 0.955881i \(0.594905\pi\)
\(752\) −8.27721 1.29757i −0.301839 0.0473175i
\(753\) 29.0371i 1.05817i
\(754\) 1.25311 + 3.39257i 0.0456355 + 0.123550i
\(755\) −12.1111 3.19155i −0.440770 0.116152i
\(756\) 11.8327 + 0.921840i 0.430350 + 0.0335270i
\(757\) 23.2342 + 23.2342i 0.844463 + 0.844463i 0.989436 0.144973i \(-0.0463094\pi\)
−0.144973 + 0.989436i \(0.546309\pi\)
\(758\) −34.8990 16.0719i −1.26759 0.583759i
\(759\) 13.5432i 0.491588i
\(760\) −18.2394 + 0.335844i −0.661612 + 0.0121823i
\(761\) 15.4641i 0.560573i 0.959916 + 0.280287i \(0.0904295\pi\)
−0.959916 + 0.280287i \(0.909570\pi\)
\(762\) −3.32572 + 7.22155i −0.120478 + 0.261609i
\(763\) 7.77711 + 7.77711i 0.281550 + 0.281550i
\(764\) −7.70804 + 6.59383i −0.278867 + 0.238556i
\(765\) −13.8807 + 52.6738i −0.501857 + 1.90442i
\(766\) −27.5565 + 10.1785i −0.995655 + 0.367764i
\(767\) 4.19694i 0.151543i
\(768\) 40.0868 20.5852i 1.44651 0.742804i