Properties

Label 80.2.q.c.29.2
Level $80$
Weight $2$
Character 80.29
Analytic conductor $0.639$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(29,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.29");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.q (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 29.2
Root \(-0.841995 - 1.13624i\) of defining polynomial
Character \(\chi\) \(=\) 80.29
Dual form 80.2.q.c.69.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13624 - 0.841995i) q^{2} +(1.86033 - 1.86033i) q^{3} +(0.582088 + 1.91342i) q^{4} +(1.90421 + 1.17216i) q^{5} +(-3.68016 + 0.547394i) q^{6} -3.61392 q^{7} +(0.949697 - 2.66422i) q^{8} -3.92163i q^{9} +O(q^{10})\) \(q+(-1.13624 - 0.841995i) q^{2} +(1.86033 - 1.86033i) q^{3} +(0.582088 + 1.91342i) q^{4} +(1.90421 + 1.17216i) q^{5} +(-3.68016 + 0.547394i) q^{6} -3.61392 q^{7} +(0.949697 - 2.66422i) q^{8} -3.92163i q^{9} +(-1.17669 - 2.93520i) q^{10} +(-0.0947876 + 0.0947876i) q^{11} +(4.64246 + 2.47671i) q^{12} +(-2.59462 + 2.59462i) q^{13} +(4.10628 + 3.04290i) q^{14} +(5.72307 - 1.36185i) q^{15} +(-3.32235 + 2.22756i) q^{16} +1.89939i q^{17} +(-3.30199 + 4.45591i) q^{18} +(-2.16418 - 2.16418i) q^{19} +(-1.13442 + 4.32586i) q^{20} +(-6.72307 + 6.72307i) q^{21} +(0.187512 - 0.0278909i) q^{22} +5.08251 q^{23} +(-3.18958 - 6.72307i) q^{24} +(2.25207 + 4.46410i) q^{25} +(5.13277 - 0.763457i) q^{26} +(-1.71452 - 1.71452i) q^{27} +(-2.10362 - 6.91494i) q^{28} +(1.25896 + 1.25896i) q^{29} +(-7.64946 - 3.27140i) q^{30} -1.27453 q^{31} +(5.65058 + 0.266355i) q^{32} +0.352672i q^{33} +(1.59928 - 2.15817i) q^{34} +(-6.88168 - 4.23610i) q^{35} +(7.50371 - 2.28273i) q^{36} +(-2.25207 - 2.25207i) q^{37} +(0.636801 + 4.28125i) q^{38} +9.65368i q^{39} +(4.93133 - 3.96005i) q^{40} -8.52451i q^{41} +(13.2998 - 1.97824i) q^{42} +(-1.61439 - 1.61439i) q^{43} +(-0.236543 - 0.126194i) q^{44} +(4.59679 - 7.46762i) q^{45} +(-5.77495 - 4.27944i) q^{46} -2.53884i q^{47} +(-2.03666 + 10.3246i) q^{48} +6.06040 q^{49} +(1.19986 - 6.96852i) q^{50} +(3.53349 + 3.53349i) q^{51} +(-6.47489 - 3.45430i) q^{52} +(-5.67100 - 5.67100i) q^{53} +(0.504492 + 3.39174i) q^{54} +(-0.291602 + 0.0693893i) q^{55} +(-3.43213 + 9.62828i) q^{56} -8.05215 q^{57} +(-0.370445 - 2.49053i) q^{58} +(-7.81785 + 7.81785i) q^{59} +(5.93713 + 10.1579i) q^{60} +(3.46410 + 3.46410i) q^{61} +(1.44817 + 1.07315i) q^{62} +14.1724i q^{63} +(-6.19615 - 5.06040i) q^{64} +(-7.98203 + 1.89939i) q^{65} +(0.296948 - 0.400720i) q^{66} +(-6.29856 + 6.29856i) q^{67} +(-3.63434 + 1.10561i) q^{68} +(9.45512 - 9.45512i) q^{69} +(4.25246 + 10.6076i) q^{70} -11.3074i q^{71} +(-10.4481 - 3.72436i) q^{72} +16.1786 q^{73} +(0.662661 + 4.45512i) q^{74} +(12.4943 + 4.11511i) q^{75} +(2.88124 - 5.40072i) q^{76} +(0.342555 - 0.342555i) q^{77} +(8.12835 - 10.9689i) q^{78} +1.13575 q^{79} +(-8.93752 + 0.347416i) q^{80} +5.38573 q^{81} +(-7.17759 + 9.68590i) q^{82} +(3.75489 - 3.75489i) q^{83} +(-16.7775 - 8.95062i) q^{84} +(-2.22640 + 3.61685i) q^{85} +(0.475028 + 3.19364i) q^{86} +4.68417 q^{87} +(0.162516 + 0.342555i) q^{88} +3.98203i q^{89} +(-11.5108 + 4.61454i) q^{90} +(9.37674 - 9.37674i) q^{91} +(2.95847 + 9.72496i) q^{92} +(-2.37103 + 2.37103i) q^{93} +(-2.13769 + 2.88473i) q^{94} +(-1.58429 - 6.65783i) q^{95} +(11.0074 - 10.0164i) q^{96} -10.3042i q^{97} +(-6.88608 - 5.10283i) q^{98} +(0.371721 + 0.371721i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 8 q^{5} - 4 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{4} - 8 q^{5} - 4 q^{6} - 12 q^{10} + 8 q^{11} - 4 q^{14} + 16 q^{16} - 8 q^{19} - 4 q^{20} - 16 q^{21} - 32 q^{24} + 32 q^{26} - 16 q^{29} - 36 q^{30} + 16 q^{31} + 48 q^{34} - 24 q^{35} + 60 q^{36} + 24 q^{40} - 8 q^{44} + 8 q^{45} - 28 q^{46} + 16 q^{49} + 24 q^{50} - 16 q^{51} + 40 q^{54} - 56 q^{56} - 24 q^{59} + 48 q^{60} - 16 q^{64} - 72 q^{66} + 32 q^{69} + 20 q^{70} + 48 q^{75} - 88 q^{76} + 16 q^{79} + 16 q^{80} - 16 q^{81} - 80 q^{84} - 28 q^{86} - 84 q^{90} - 16 q^{91} + 12 q^{94} + 32 q^{95} + 56 q^{96} + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13624 0.841995i −0.803444 0.595380i
\(3\) 1.86033 1.86033i 1.07406 1.07406i 0.0770310 0.997029i \(-0.475456\pi\)
0.997029 0.0770310i \(-0.0245441\pi\)
\(4\) 0.582088 + 1.91342i 0.291044 + 0.956710i
\(5\) 1.90421 + 1.17216i 0.851591 + 0.524207i
\(6\) −3.68016 + 0.547394i −1.50242 + 0.223473i
\(7\) −3.61392 −1.36593 −0.682966 0.730450i \(-0.739310\pi\)
−0.682966 + 0.730450i \(0.739310\pi\)
\(8\) 0.949697 2.66422i 0.335768 0.941945i
\(9\) 3.92163i 1.30721i
\(10\) −1.17669 2.93520i −0.372102 0.928192i
\(11\) −0.0947876 + 0.0947876i −0.0285795 + 0.0285795i −0.721252 0.692673i \(-0.756433\pi\)
0.692673 + 0.721252i \(0.256433\pi\)
\(12\) 4.64246 + 2.47671i 1.34016 + 0.714964i
\(13\) −2.59462 + 2.59462i −0.719618 + 0.719618i −0.968527 0.248909i \(-0.919928\pi\)
0.248909 + 0.968527i \(0.419928\pi\)
\(14\) 4.10628 + 3.04290i 1.09745 + 0.813250i
\(15\) 5.72307 1.36185i 1.47769 0.351629i
\(16\) −3.32235 + 2.22756i −0.830587 + 0.556890i
\(17\) 1.89939i 0.460671i 0.973111 + 0.230335i \(0.0739823\pi\)
−0.973111 + 0.230335i \(0.926018\pi\)
\(18\) −3.30199 + 4.45591i −0.778286 + 1.05027i
\(19\) −2.16418 2.16418i −0.496496 0.496496i 0.413849 0.910345i \(-0.364184\pi\)
−0.910345 + 0.413849i \(0.864184\pi\)
\(20\) −1.13442 + 4.32586i −0.253664 + 0.967292i
\(21\) −6.72307 + 6.72307i −1.46709 + 1.46709i
\(22\) 0.187512 0.0278909i 0.0399777 0.00594636i
\(23\) 5.08251 1.05978 0.529888 0.848068i \(-0.322234\pi\)
0.529888 + 0.848068i \(0.322234\pi\)
\(24\) −3.18958 6.72307i −0.651069 1.37234i
\(25\) 2.25207 + 4.46410i 0.450413 + 0.892820i
\(26\) 5.13277 0.763457i 1.00662 0.149726i
\(27\) −1.71452 1.71452i −0.329960 0.329960i
\(28\) −2.10362 6.91494i −0.397547 1.30680i
\(29\) 1.25896 + 1.25896i 0.233784 + 0.233784i 0.814270 0.580486i \(-0.197137\pi\)
−0.580486 + 0.814270i \(0.697137\pi\)
\(30\) −7.64946 3.27140i −1.39659 0.597273i
\(31\) −1.27453 −0.228912 −0.114456 0.993428i \(-0.536512\pi\)
−0.114456 + 0.993428i \(0.536512\pi\)
\(32\) 5.65058 + 0.266355i 0.998891 + 0.0470854i
\(33\) 0.352672i 0.0613923i
\(34\) 1.59928 2.15817i 0.274274 0.370123i
\(35\) −6.88168 4.23610i −1.16322 0.716032i
\(36\) 7.50371 2.28273i 1.25062 0.380456i
\(37\) −2.25207 2.25207i −0.370237 0.370237i 0.497326 0.867564i \(-0.334315\pi\)
−0.867564 + 0.497326i \(0.834315\pi\)
\(38\) 0.636801 + 4.28125i 0.103303 + 0.694511i
\(39\) 9.65368i 1.54583i
\(40\) 4.93133 3.96005i 0.779712 0.626139i
\(41\) 8.52451i 1.33130i −0.746262 0.665652i \(-0.768153\pi\)
0.746262 0.665652i \(-0.231847\pi\)
\(42\) 13.2998 1.97824i 2.05221 0.305249i
\(43\) −1.61439 1.61439i −0.246192 0.246192i 0.573214 0.819406i \(-0.305696\pi\)
−0.819406 + 0.573214i \(0.805696\pi\)
\(44\) −0.236543 0.126194i −0.0356602 0.0190244i
\(45\) 4.59679 7.46762i 0.685249 1.11321i
\(46\) −5.77495 4.27944i −0.851470 0.630970i
\(47\) 2.53884i 0.370328i −0.982708 0.185164i \(-0.940718\pi\)
0.982708 0.185164i \(-0.0592816\pi\)
\(48\) −2.03666 + 10.3246i −0.293967 + 1.49023i
\(49\) 6.06040 0.865772
\(50\) 1.19986 6.96852i 0.169686 0.985498i
\(51\) 3.53349 + 3.53349i 0.494788 + 0.494788i
\(52\) −6.47489 3.45430i −0.897906 0.479025i
\(53\) −5.67100 5.67100i −0.778971 0.778971i 0.200684 0.979656i \(-0.435683\pi\)
−0.979656 + 0.200684i \(0.935683\pi\)
\(54\) 0.504492 + 3.39174i 0.0686527 + 0.461557i
\(55\) −0.291602 + 0.0693893i −0.0393197 + 0.00935646i
\(56\) −3.43213 + 9.62828i −0.458637 + 1.28663i
\(57\) −8.05215 −1.06653
\(58\) −0.370445 2.49053i −0.0486419 0.327023i
\(59\) −7.81785 + 7.81785i −1.01780 + 1.01780i −0.0179591 + 0.999839i \(0.505717\pi\)
−0.999839 + 0.0179591i \(0.994283\pi\)
\(60\) 5.93713 + 10.1579i 0.766480 + 1.31138i
\(61\) 3.46410 + 3.46410i 0.443533 + 0.443533i 0.893197 0.449665i \(-0.148457\pi\)
−0.449665 + 0.893197i \(0.648457\pi\)
\(62\) 1.44817 + 1.07315i 0.183918 + 0.136290i
\(63\) 14.1724i 1.78556i
\(64\) −6.19615 5.06040i −0.774519 0.632551i
\(65\) −7.98203 + 1.89939i −0.990049 + 0.235591i
\(66\) 0.296948 0.400720i 0.0365517 0.0493252i
\(67\) −6.29856 + 6.29856i −0.769491 + 0.769491i −0.978017 0.208526i \(-0.933134\pi\)
0.208526 + 0.978017i \(0.433134\pi\)
\(68\) −3.63434 + 1.10561i −0.440728 + 0.134076i
\(69\) 9.45512 9.45512i 1.13826 1.13826i
\(70\) 4.25246 + 10.6076i 0.508267 + 1.26785i
\(71\) 11.3074i 1.34194i −0.741486 0.670968i \(-0.765879\pi\)
0.741486 0.670968i \(-0.234121\pi\)
\(72\) −10.4481 3.72436i −1.23132 0.438919i
\(73\) 16.1786 1.89356 0.946779 0.321885i \(-0.104316\pi\)
0.946779 + 0.321885i \(0.104316\pi\)
\(74\) 0.662661 + 4.45512i 0.0770328 + 0.517897i
\(75\) 12.4943 + 4.11511i 1.44271 + 0.475172i
\(76\) 2.88124 5.40072i 0.330500 0.619505i
\(77\) 0.342555 0.342555i 0.0390377 0.0390377i
\(78\) 8.12835 10.9689i 0.920354 1.24198i
\(79\) 1.13575 0.127782 0.0638908 0.997957i \(-0.479649\pi\)
0.0638908 + 0.997957i \(0.479649\pi\)
\(80\) −8.93752 + 0.347416i −0.999245 + 0.0388423i
\(81\) 5.38573 0.598414
\(82\) −7.17759 + 9.68590i −0.792633 + 1.06963i
\(83\) 3.75489 3.75489i 0.412153 0.412153i −0.470335 0.882488i \(-0.655867\pi\)
0.882488 + 0.470335i \(0.155867\pi\)
\(84\) −16.7775 8.95062i −1.83057 0.976593i
\(85\) −2.22640 + 3.61685i −0.241487 + 0.392303i
\(86\) 0.475028 + 3.19364i 0.0512235 + 0.344379i
\(87\) 4.68417 0.502196
\(88\) 0.162516 + 0.342555i 0.0173242 + 0.0365164i
\(89\) 3.98203i 0.422094i 0.977476 + 0.211047i \(0.0676874\pi\)
−0.977476 + 0.211047i \(0.932313\pi\)
\(90\) −11.5108 + 4.61454i −1.21334 + 0.486415i
\(91\) 9.37674 9.37674i 0.982950 0.982950i
\(92\) 2.95847 + 9.72496i 0.308442 + 1.01390i
\(93\) −2.37103 + 2.37103i −0.245865 + 0.245865i
\(94\) −2.13769 + 2.88473i −0.220486 + 0.297537i
\(95\) −1.58429 6.65783i −0.162544 0.683079i
\(96\) 11.0074 10.0164i 1.12344 1.02230i
\(97\) 10.3042i 1.04623i −0.852261 0.523117i \(-0.824769\pi\)
0.852261 0.523117i \(-0.175231\pi\)
\(98\) −6.88608 5.10283i −0.695599 0.515464i
\(99\) 0.371721 + 0.371721i 0.0373594 + 0.0373594i
\(100\) −7.23080 + 6.90765i −0.723080 + 0.690765i
\(101\) 1.25896 1.25896i 0.125272 0.125272i −0.641691 0.766963i \(-0.721767\pi\)
0.766963 + 0.641691i \(0.221767\pi\)
\(102\) −1.03972 6.99008i −0.102947 0.692121i
\(103\) −10.8655 −1.07061 −0.535306 0.844658i \(-0.679804\pi\)
−0.535306 + 0.844658i \(0.679804\pi\)
\(104\) 4.44854 + 9.37674i 0.436215 + 0.919465i
\(105\) −20.6827 + 4.92163i −2.01842 + 0.480302i
\(106\) 1.66867 + 11.2186i 0.162075 + 1.08964i
\(107\) 9.48167 + 9.48167i 0.916628 + 0.916628i 0.996782 0.0801549i \(-0.0255415\pi\)
−0.0801549 + 0.996782i \(0.525541\pi\)
\(108\) 2.28260 4.27861i 0.219643 0.411709i
\(109\) −8.57530 8.57530i −0.821365 0.821365i 0.164939 0.986304i \(-0.447257\pi\)
−0.986304 + 0.164939i \(0.947257\pi\)
\(110\) 0.389756 + 0.166685i 0.0371618 + 0.0158928i
\(111\) −8.37915 −0.795314
\(112\) 12.0067 8.05021i 1.13453 0.760674i
\(113\) 12.5286i 1.17860i −0.807916 0.589298i \(-0.799405\pi\)
0.807916 0.589298i \(-0.200595\pi\)
\(114\) 9.14918 + 6.77987i 0.856900 + 0.634993i
\(115\) 9.67818 + 5.95753i 0.902495 + 0.555542i
\(116\) −1.67610 + 3.14176i −0.155622 + 0.291705i
\(117\) 10.1751 + 10.1751i 0.940691 + 0.940691i
\(118\) 15.4656 2.30037i 1.42372 0.211767i
\(119\) 6.86425i 0.629245i
\(120\) 1.80690 16.5409i 0.164946 1.50997i
\(121\) 10.9820i 0.998366i
\(122\) −1.01930 6.85281i −0.0922830 0.620424i
\(123\) −15.8584 15.8584i −1.42990 1.42990i
\(124\) −0.741887 2.43870i −0.0666234 0.219002i
\(125\) −0.944243 + 11.1404i −0.0844556 + 0.996427i
\(126\) 11.9331 16.1033i 1.06309 1.43460i
\(127\) 2.94200i 0.261061i −0.991444 0.130530i \(-0.958332\pi\)
0.991444 0.130530i \(-0.0416680\pi\)
\(128\) 2.77949 + 10.9670i 0.245674 + 0.969352i
\(129\) −6.00658 −0.528850
\(130\) 10.6688 + 4.56266i 0.935715 + 0.400172i
\(131\) 6.54333 + 6.54333i 0.571693 + 0.571693i 0.932601 0.360908i \(-0.117533\pi\)
−0.360908 + 0.932601i \(0.617533\pi\)
\(132\) −0.674809 + 0.205286i −0.0587346 + 0.0178679i
\(133\) 7.82116 + 7.82116i 0.678180 + 0.678180i
\(134\) 12.4600 1.85333i 1.07638 0.160103i
\(135\) −1.25512 5.27453i −0.108023 0.453959i
\(136\) 5.06040 + 1.80385i 0.433926 + 0.154679i
\(137\) 1.82513 0.155931 0.0779657 0.996956i \(-0.475158\pi\)
0.0779657 + 0.996956i \(0.475158\pi\)
\(138\) −18.7045 + 2.78213i −1.59223 + 0.236831i
\(139\) −5.36931 + 5.36931i −0.455419 + 0.455419i −0.897148 0.441729i \(-0.854365\pi\)
0.441729 + 0.897148i \(0.354365\pi\)
\(140\) 4.09970 15.6333i 0.346488 1.32126i
\(141\) −4.72307 4.72307i −0.397754 0.397754i
\(142\) −9.52074 + 12.8479i −0.798962 + 1.07817i
\(143\) 0.491875i 0.0411327i
\(144\) 8.73565 + 13.0290i 0.727971 + 1.08575i
\(145\) 0.921626 + 3.87305i 0.0765369 + 0.321639i
\(146\) −18.3828 13.6223i −1.52137 1.12739i
\(147\) 11.2743 11.2743i 0.929891 0.929891i
\(148\) 2.99824 5.62005i 0.246454 0.461965i
\(149\) 4.37915 4.37915i 0.358754 0.358754i −0.504600 0.863354i \(-0.668360\pi\)
0.863354 + 0.504600i \(0.168360\pi\)
\(150\) −10.7316 15.1959i −0.876231 1.24074i
\(151\) 12.9610i 1.05475i 0.849631 + 0.527377i \(0.176824\pi\)
−0.849631 + 0.527377i \(0.823176\pi\)
\(152\) −7.82116 + 3.71054i −0.634380 + 0.300964i
\(153\) 7.44871 0.602193
\(154\) −0.677654 + 0.100795i −0.0546069 + 0.00812232i
\(155\) −2.42697 1.49395i −0.194939 0.119997i
\(156\) −18.4715 + 5.61929i −1.47891 + 0.449904i
\(157\) 9.12723 9.12723i 0.728432 0.728432i −0.241875 0.970307i \(-0.577762\pi\)
0.970307 + 0.241875i \(0.0777624\pi\)
\(158\) −1.29048 0.956294i −0.102665 0.0760787i
\(159\) −21.0998 −1.67332
\(160\) 10.4477 + 7.13060i 0.825964 + 0.563724i
\(161\) −18.3678 −1.44758
\(162\) −6.11949 4.53476i −0.480792 0.356284i
\(163\) −6.15099 + 6.15099i −0.481783 + 0.481783i −0.905701 0.423918i \(-0.860654\pi\)
0.423918 + 0.905701i \(0.360654\pi\)
\(164\) 16.3110 4.96202i 1.27367 0.387468i
\(165\) −0.413389 + 0.671562i −0.0321823 + 0.0522811i
\(166\) −7.42806 + 1.10486i −0.576529 + 0.0857539i
\(167\) 0.710173 0.0549548 0.0274774 0.999622i \(-0.491253\pi\)
0.0274774 + 0.999622i \(0.491253\pi\)
\(168\) 11.5269 + 24.2966i 0.889317 + 1.87452i
\(169\) 0.464102i 0.0357001i
\(170\) 5.57510 2.23500i 0.427591 0.171417i
\(171\) −8.48709 + 8.48709i −0.649024 + 0.649024i
\(172\) 2.14928 4.02872i 0.163881 0.307187i
\(173\) −14.1773 + 14.1773i −1.07788 + 1.07788i −0.0811779 + 0.996700i \(0.525868\pi\)
−0.996700 + 0.0811779i \(0.974132\pi\)
\(174\) −5.32235 3.94405i −0.403486 0.298997i
\(175\) −8.13878 16.1329i −0.615234 1.21953i
\(176\) 0.103772 0.526062i 0.00782213 0.0396534i
\(177\) 29.0875i 2.18635i
\(178\) 3.35285 4.52455i 0.251307 0.339129i
\(179\) 9.00502 + 9.00502i 0.673067 + 0.673067i 0.958422 0.285355i \(-0.0921115\pi\)
−0.285355 + 0.958422i \(0.592111\pi\)
\(180\) 16.9644 + 4.44877i 1.26445 + 0.331592i
\(181\) 14.1872 14.1872i 1.05452 1.05452i 0.0560986 0.998425i \(-0.482134\pi\)
0.998425 0.0560986i \(-0.0178661\pi\)
\(182\) −18.5494 + 2.75907i −1.37497 + 0.204516i
\(183\) 12.8887 0.952761
\(184\) 4.82684 13.5409i 0.355839 0.998250i
\(185\) −1.64863 6.92820i −0.121209 0.509372i
\(186\) 4.69047 0.697668i 0.343922 0.0511555i
\(187\) −0.180039 0.180039i −0.0131657 0.0131657i
\(188\) 4.85786 1.47783i 0.354296 0.107782i
\(189\) 6.19615 + 6.19615i 0.450704 + 0.450704i
\(190\) −3.80572 + 8.89886i −0.276096 + 0.645591i
\(191\) 18.9282 1.36960 0.684798 0.728733i \(-0.259890\pi\)
0.684798 + 0.728733i \(0.259890\pi\)
\(192\) −20.9409 + 2.11286i −1.51128 + 0.152483i
\(193\) 21.3880i 1.53954i 0.638319 + 0.769772i \(0.279630\pi\)
−0.638319 + 0.769772i \(0.720370\pi\)
\(194\) −8.67610 + 11.7081i −0.622908 + 0.840591i
\(195\) −11.3157 + 18.3827i −0.810333 + 1.31641i
\(196\) 3.52769 + 11.5961i 0.251978 + 0.828292i
\(197\) −6.39341 6.39341i −0.455511 0.455511i 0.441667 0.897179i \(-0.354387\pi\)
−0.897179 + 0.441667i \(0.854387\pi\)
\(198\) −0.109378 0.735353i −0.00777313 0.0522593i
\(199\) 5.85641i 0.415150i −0.978219 0.207575i \(-0.933443\pi\)
0.978219 0.207575i \(-0.0665570\pi\)
\(200\) 14.0321 1.76046i 0.992222 0.124483i
\(201\) 23.4347i 1.65296i
\(202\) −2.49053 + 0.370445i −0.175233 + 0.0260645i
\(203\) −4.54979 4.54979i −0.319333 0.319333i
\(204\) −4.70425 + 8.81785i −0.329363 + 0.617373i
\(205\) 9.99212 16.2325i 0.697880 1.13373i
\(206\) 12.3459 + 9.14872i 0.860177 + 0.637421i
\(207\) 19.9317i 1.38535i
\(208\) 2.84056 14.3999i 0.196957 0.998453i
\(209\) 0.410274 0.0283793
\(210\) 27.6445 + 11.8226i 1.90765 + 0.815835i
\(211\) −19.2640 19.2640i −1.32619 1.32619i −0.908668 0.417520i \(-0.862900\pi\)
−0.417520 0.908668i \(-0.637100\pi\)
\(212\) 7.54997 14.1520i 0.518534 0.971965i
\(213\) −21.0354 21.0354i −1.44132 1.44132i
\(214\) −2.78994 18.7570i −0.190717 1.28220i
\(215\) −1.18181 4.96647i −0.0805991 0.338710i
\(216\) −6.19615 + 2.93960i −0.421595 + 0.200014i
\(217\) 4.60603 0.312678
\(218\) 2.52325 + 16.9640i 0.170896 + 1.14895i
\(219\) 30.0974 30.0974i 2.03379 2.03379i
\(220\) −0.302509 0.517567i −0.0203952 0.0348944i
\(221\) −4.92820 4.92820i −0.331507 0.331507i
\(222\) 9.52074 + 7.05520i 0.638990 + 0.473514i
\(223\) 20.1117i 1.34678i 0.739287 + 0.673390i \(0.235163\pi\)
−0.739287 + 0.673390i \(0.764837\pi\)
\(224\) −20.4207 0.962586i −1.36442 0.0643155i
\(225\) 17.5065 8.83176i 1.16710 0.588784i
\(226\) −10.5491 + 14.2356i −0.701713 + 0.946935i
\(227\) −4.21430 + 4.21430i −0.279713 + 0.279713i −0.832994 0.553282i \(-0.813375\pi\)
0.553282 + 0.832994i \(0.313375\pi\)
\(228\) −4.68706 15.4071i −0.310408 1.02036i
\(229\) −18.0304 + 18.0304i −1.19148 + 1.19148i −0.214833 + 0.976651i \(0.568921\pi\)
−0.976651 + 0.214833i \(0.931079\pi\)
\(230\) −5.98054 14.9182i −0.394345 0.983675i
\(231\) 1.27453i 0.0838577i
\(232\) 4.54979 2.15853i 0.298709 0.141714i
\(233\) 4.57839 0.299941 0.149970 0.988691i \(-0.452082\pi\)
0.149970 + 0.988691i \(0.452082\pi\)
\(234\) −2.99399 20.1288i −0.195723 1.31586i
\(235\) 2.97593 4.83449i 0.194128 0.315367i
\(236\) −19.5095 10.4081i −1.26996 0.677513i
\(237\) 2.11286 2.11286i 0.137245 0.137245i
\(238\) −5.77967 + 7.79945i −0.374640 + 0.505563i
\(239\) 18.3104 1.18440 0.592200 0.805791i \(-0.298259\pi\)
0.592200 + 0.805791i \(0.298259\pi\)
\(240\) −15.9804 + 17.2730i −1.03153 + 1.11497i
\(241\) −9.31393 −0.599963 −0.299982 0.953945i \(-0.596981\pi\)
−0.299982 + 0.953945i \(0.596981\pi\)
\(242\) 9.24682 12.4782i 0.594408 0.802131i
\(243\) 15.1628 15.1628i 0.972693 0.972693i
\(244\) −4.61186 + 8.64469i −0.295244 + 0.553420i
\(245\) 11.5403 + 7.10379i 0.737283 + 0.453844i
\(246\) 4.66626 + 31.3716i 0.297510 + 2.00018i
\(247\) 11.2304 0.714575
\(248\) −1.21041 + 3.39562i −0.0768613 + 0.215622i
\(249\) 13.9706i 0.885353i
\(250\) 10.4530 11.8631i 0.661109 0.750290i
\(251\) −14.2156 + 14.2156i −0.897281 + 0.897281i −0.995195 0.0979143i \(-0.968783\pi\)
0.0979143 + 0.995195i \(0.468783\pi\)
\(252\) −27.1178 + 8.24961i −1.70826 + 0.519677i
\(253\) −0.481758 + 0.481758i −0.0302879 + 0.0302879i
\(254\) −2.47715 + 3.34283i −0.155430 + 0.209748i
\(255\) 2.58669 + 10.8704i 0.161985 + 0.680728i
\(256\) 6.07597 14.8014i 0.379748 0.925090i
\(257\) 17.1347i 1.06883i −0.845222 0.534416i \(-0.820532\pi\)
0.845222 0.534416i \(-0.179468\pi\)
\(258\) 6.82492 + 5.05751i 0.424901 + 0.314867i
\(259\) 8.13878 + 8.13878i 0.505719 + 0.505719i
\(260\) −8.28058 14.1674i −0.513540 0.878622i
\(261\) 4.93719 4.93719i 0.305604 0.305604i
\(262\) −1.92535 12.9442i −0.118948 0.799698i
\(263\) 5.11593 0.315462 0.157731 0.987482i \(-0.449582\pi\)
0.157731 + 0.987482i \(0.449582\pi\)
\(264\) 0.939595 + 0.334931i 0.0578281 + 0.0206136i
\(265\) −4.15146 17.4461i −0.255022 1.07171i
\(266\) −2.30135 15.4721i −0.141105 0.948655i
\(267\) 7.40788 + 7.40788i 0.453355 + 0.453355i
\(268\) −15.7181 8.38546i −0.960136 0.512224i
\(269\) 19.1506 + 19.1506i 1.16763 + 1.16763i 0.982763 + 0.184870i \(0.0591864\pi\)
0.184870 + 0.982763i \(0.440814\pi\)
\(270\) −3.01501 + 7.04994i −0.183487 + 0.429046i
\(271\) 4.72066 0.286760 0.143380 0.989668i \(-0.454203\pi\)
0.143380 + 0.989668i \(0.454203\pi\)
\(272\) −4.23101 6.31044i −0.256543 0.382627i
\(273\) 34.8876i 2.11149i
\(274\) −2.07379 1.53675i −0.125282 0.0928385i
\(275\) −0.636609 0.209674i −0.0383890 0.0126438i
\(276\) 23.5953 + 12.5879i 1.42027 + 0.757702i
\(277\) 12.8887 + 12.8887i 0.774408 + 0.774408i 0.978874 0.204466i \(-0.0655457\pi\)
−0.204466 + 0.978874i \(0.565546\pi\)
\(278\) 10.6218 1.57990i 0.637052 0.0947561i
\(279\) 4.99822i 0.299235i
\(280\) −17.8214 + 14.3113i −1.06503 + 0.855263i
\(281\) 16.4934i 0.983913i −0.870620 0.491956i \(-0.836282\pi\)
0.870620 0.491956i \(-0.163718\pi\)
\(282\) 1.38974 + 9.34334i 0.0827581 + 0.556388i
\(283\) 7.69771 + 7.69771i 0.457581 + 0.457581i 0.897861 0.440279i \(-0.145121\pi\)
−0.440279 + 0.897861i \(0.645121\pi\)
\(284\) 21.6357 6.58188i 1.28384 0.390563i
\(285\) −15.3330 9.43844i −0.908250 0.559085i
\(286\) −0.414157 + 0.558889i −0.0244896 + 0.0330478i
\(287\) 30.8069i 1.81847i
\(288\) 1.04455 22.1595i 0.0615504 1.30576i
\(289\) 13.3923 0.787783
\(290\) 2.21390 5.17672i 0.130005 0.303988i
\(291\) −19.1692 19.1692i −1.12372 1.12372i
\(292\) 9.41735 + 30.9564i 0.551109 + 1.81158i
\(293\) 5.75538 + 5.75538i 0.336233 + 0.336233i 0.854947 0.518715i \(-0.173589\pi\)
−0.518715 + 0.854947i \(0.673589\pi\)
\(294\) −22.3033 + 3.31743i −1.30075 + 0.193476i
\(295\) −24.0507 + 5.72307i −1.40028 + 0.333210i
\(296\) −8.13878 + 3.86122i −0.473057 + 0.224429i
\(297\) 0.325031 0.0188602
\(298\) −8.66299 + 1.28855i −0.501834 + 0.0746436i
\(299\) −13.1872 + 13.1872i −0.762634 + 0.762634i
\(300\) −0.601165 + 26.3021i −0.0347083 + 1.51855i
\(301\) 5.83427 + 5.83427i 0.336282 + 0.336282i
\(302\) 10.9131 14.7269i 0.627980 0.847435i
\(303\) 4.68417i 0.269098i
\(304\) 12.0110 + 2.36931i 0.688877 + 0.135889i
\(305\) 2.53590 + 10.6569i 0.145205 + 0.610212i
\(306\) −8.46353 6.27178i −0.483828 0.358534i
\(307\) −9.60547 + 9.60547i −0.548213 + 0.548213i −0.925924 0.377711i \(-0.876711\pi\)
0.377711 + 0.925924i \(0.376711\pi\)
\(308\) 0.854848 + 0.456053i 0.0487095 + 0.0259861i
\(309\) −20.2134 + 20.2134i −1.14990 + 1.14990i
\(310\) 1.49972 + 3.74099i 0.0851786 + 0.212474i
\(311\) 20.3415i 1.15346i 0.816934 + 0.576731i \(0.195672\pi\)
−0.816934 + 0.576731i \(0.804328\pi\)
\(312\) 25.7195 + 9.16806i 1.45608 + 0.519039i
\(313\) −25.6414 −1.44934 −0.724669 0.689097i \(-0.758007\pi\)
−0.724669 + 0.689097i \(0.758007\pi\)
\(314\) −18.0558 + 2.68565i −1.01895 + 0.151560i
\(315\) −16.6124 + 26.9874i −0.936003 + 1.52057i
\(316\) 0.661106 + 2.17316i 0.0371901 + 0.122250i
\(317\) −0.945994 + 0.945994i −0.0531323 + 0.0531323i −0.733174 0.680041i \(-0.761962\pi\)
0.680041 + 0.733174i \(0.261962\pi\)
\(318\) 23.9745 + 17.7659i 1.34442 + 0.996264i
\(319\) −0.238668 −0.0133629
\(320\) −5.86718 16.8990i −0.327985 0.944683i
\(321\) 35.2780 1.96903
\(322\) 20.8702 + 15.4656i 1.16305 + 0.861862i
\(323\) 4.11062 4.11062i 0.228721 0.228721i
\(324\) 3.13497 + 10.3052i 0.174165 + 0.572509i
\(325\) −17.4259 5.73939i −0.966615 0.318364i
\(326\) 12.1681 1.80990i 0.673929 0.100241i
\(327\) −31.9057 −1.76439
\(328\) −22.7112 8.09570i −1.25401 0.447010i
\(329\) 9.17515i 0.505843i
\(330\) 1.03516 0.414986i 0.0569838 0.0228442i
\(331\) 6.16418 6.16418i 0.338814 0.338814i −0.517107 0.855921i \(-0.672991\pi\)
0.855921 + 0.517107i \(0.172991\pi\)
\(332\) 9.37036 + 4.99900i 0.514265 + 0.274356i
\(333\) −8.83176 + 8.83176i −0.483977 + 0.483977i
\(334\) −0.806928 0.597962i −0.0441531 0.0327190i
\(335\) −19.3767 + 4.61086i −1.05866 + 0.251918i
\(336\) 7.36033 37.3124i 0.401539 2.03556i
\(337\) 28.2333i 1.53797i −0.639269 0.768983i \(-0.720763\pi\)
0.639269 0.768983i \(-0.279237\pi\)
\(338\) −0.390771 + 0.527331i −0.0212552 + 0.0286830i
\(339\) −23.3074 23.3074i −1.26588 1.26588i
\(340\) −8.21652 2.15471i −0.445603 0.116855i
\(341\) 0.120809 0.120809i 0.00654219 0.00654219i
\(342\) 16.7895 2.49729i 0.907871 0.135038i
\(343\) 3.39562 0.183346
\(344\) −5.83427 + 2.76791i −0.314563 + 0.149236i
\(345\) 29.0875 6.92163i 1.56602 0.372648i
\(346\) 28.0460 4.17161i 1.50776 0.224267i
\(347\) −13.0548 13.0548i −0.700816 0.700816i 0.263770 0.964586i \(-0.415034\pi\)
−0.964586 + 0.263770i \(0.915034\pi\)
\(348\) 2.72660 + 8.96278i 0.146161 + 0.480455i
\(349\) −20.3080 20.3080i −1.08706 1.08706i −0.995830 0.0912314i \(-0.970920\pi\)
−0.0912314 0.995830i \(-0.529080\pi\)
\(350\) −4.33621 + 25.1837i −0.231780 + 1.34612i
\(351\) 8.89708 0.474891
\(352\) −0.560852 + 0.510358i −0.0298935 + 0.0272022i
\(353\) 18.6814i 0.994310i 0.867662 + 0.497155i \(0.165622\pi\)
−0.867662 + 0.497155i \(0.834378\pi\)
\(354\) 24.4915 33.0504i 1.30171 1.75661i
\(355\) 13.2541 21.5316i 0.703453 1.14278i
\(356\) −7.61929 + 2.31789i −0.403822 + 0.122848i
\(357\) −12.7697 12.7697i −0.675847 0.675847i
\(358\) −2.64969 17.8141i −0.140041 0.941502i
\(359\) 16.4072i 0.865937i −0.901409 0.432968i \(-0.857466\pi\)
0.901409 0.432968i \(-0.142534\pi\)
\(360\) −15.5298 19.3388i −0.818494 1.01925i
\(361\) 9.63268i 0.506983i
\(362\) −28.0656 + 4.17452i −1.47509 + 0.219408i
\(363\) 20.4302 + 20.4302i 1.07231 + 1.07231i
\(364\) 23.3997 + 12.4835i 1.22648 + 0.654316i
\(365\) 30.8075 + 18.9639i 1.61254 + 0.992617i
\(366\) −14.6447 10.8522i −0.765490 0.567255i
\(367\) 3.58049i 0.186900i −0.995624 0.0934500i \(-0.970210\pi\)
0.995624 0.0934500i \(-0.0297895\pi\)
\(368\) −16.8858 + 11.3216i −0.880235 + 0.590178i
\(369\) −33.4299 −1.74029
\(370\) −3.96028 + 9.26025i −0.205885 + 0.481417i
\(371\) 20.4945 + 20.4945i 1.06402 + 1.06402i
\(372\) −5.91694 3.15663i −0.306779 0.163664i
\(373\) −8.72985 8.72985i −0.452015 0.452015i 0.444008 0.896023i \(-0.353556\pi\)
−0.896023 + 0.444008i \(0.853556\pi\)
\(374\) 0.0529758 + 0.356160i 0.00273931 + 0.0184166i
\(375\) 18.9682 + 22.4814i 0.979512 + 1.16093i
\(376\) −6.76403 2.41113i −0.348828 0.124344i
\(377\) −6.53307 −0.336470
\(378\) −1.82319 12.2575i −0.0937750 0.630455i
\(379\) 6.11276 6.11276i 0.313991 0.313991i −0.532462 0.846454i \(-0.678733\pi\)
0.846454 + 0.532462i \(0.178733\pi\)
\(380\) 11.8170 6.90685i 0.606200 0.354314i
\(381\) −5.47309 5.47309i −0.280395 0.280395i
\(382\) −21.5070 15.9375i −1.10039 0.815431i
\(383\) 7.31434i 0.373745i −0.982384 0.186873i \(-0.940165\pi\)
0.982384 0.186873i \(-0.0598351\pi\)
\(384\) 25.5729 + 15.2314i 1.30501 + 0.777273i
\(385\) 1.05383 0.250767i 0.0537080 0.0127803i
\(386\) 18.0086 24.3020i 0.916615 1.23694i
\(387\) −6.33103 + 6.33103i −0.321824 + 0.321824i
\(388\) 19.7163 5.99796i 1.00094 0.304501i
\(389\) −9.74166 + 9.74166i −0.493922 + 0.493922i −0.909539 0.415618i \(-0.863565\pi\)
0.415618 + 0.909539i \(0.363565\pi\)
\(390\) 28.3355 11.3594i 1.43482 0.575205i
\(391\) 9.65368i 0.488207i
\(392\) 5.75555 16.1463i 0.290699 0.815509i
\(393\) 24.3454 1.22807
\(394\) 1.88124 + 12.6477i 0.0947753 + 0.637180i
\(395\) 2.16271 + 1.33128i 0.108818 + 0.0669841i
\(396\) −0.494884 + 0.927634i −0.0248689 + 0.0466154i
\(397\) −8.04203 + 8.04203i −0.403618 + 0.403618i −0.879506 0.475888i \(-0.842127\pi\)
0.475888 + 0.879506i \(0.342127\pi\)
\(398\) −4.93107 + 6.65429i −0.247172 + 0.333549i
\(399\) 29.0998 1.45681
\(400\) −17.4262 9.81468i −0.871309 0.490734i
\(401\) −6.77627 −0.338391 −0.169195 0.985583i \(-0.554117\pi\)
−0.169195 + 0.985583i \(0.554117\pi\)
\(402\) 19.7319 26.6275i 0.984140 1.32806i
\(403\) 3.30691 3.30691i 0.164729 0.164729i
\(404\) 3.14176 + 1.67610i 0.156308 + 0.0833890i
\(405\) 10.2556 + 6.31295i 0.509604 + 0.313693i
\(406\) 1.33876 + 9.00057i 0.0664415 + 0.446691i
\(407\) 0.426936 0.0211624
\(408\) 12.7697 6.05826i 0.632197 0.299928i
\(409\) 16.2601i 0.804010i 0.915637 + 0.402005i \(0.131687\pi\)
−0.915637 + 0.402005i \(0.868313\pi\)
\(410\) −25.0211 + 10.0307i −1.23571 + 0.495381i
\(411\) 3.39534 3.39534i 0.167480 0.167480i
\(412\) −6.32470 20.7903i −0.311595 1.02426i
\(413\) 28.2531 28.2531i 1.39024 1.39024i
\(414\) −16.7824 + 22.6472i −0.824809 + 1.11305i
\(415\) 11.5515 2.74877i 0.567039 0.134932i
\(416\) −15.3522 + 13.9700i −0.752703 + 0.684936i
\(417\) 19.9773i 0.978295i
\(418\) −0.466171 0.345449i −0.0228011 0.0168965i
\(419\) −10.1408 10.1408i −0.495409 0.495409i 0.414596 0.910005i \(-0.363923\pi\)
−0.910005 + 0.414596i \(0.863923\pi\)
\(420\) −21.4563 36.7098i −1.04696 1.79126i
\(421\) −13.5849 + 13.5849i −0.662088 + 0.662088i −0.955872 0.293784i \(-0.905085\pi\)
0.293784 + 0.955872i \(0.405085\pi\)
\(422\) 5.66835 + 38.1087i 0.275931 + 1.85510i
\(423\) −9.95637 −0.484095
\(424\) −20.4945 + 9.72307i −0.995302 + 0.472194i
\(425\) −8.47908 + 4.27756i −0.411296 + 0.207492i
\(426\) 6.18958 + 41.6129i 0.299886 + 2.01615i
\(427\) −12.5190 12.5190i −0.605836 0.605836i
\(428\) −12.6232 + 23.6616i −0.610167 + 1.14373i
\(429\) −0.915049 0.915049i −0.0441790 0.0441790i
\(430\) −2.83892 + 6.63819i −0.136905 + 0.320122i
\(431\) 1.37612 0.0662853 0.0331427 0.999451i \(-0.489448\pi\)
0.0331427 + 0.999451i \(0.489448\pi\)
\(432\) 9.51545 + 1.87704i 0.457812 + 0.0903092i
\(433\) 19.9307i 0.957810i 0.877867 + 0.478905i \(0.158966\pi\)
−0.877867 + 0.478905i \(0.841034\pi\)
\(434\) −5.23357 3.87826i −0.251219 0.186162i
\(435\) 8.91966 + 5.49061i 0.427665 + 0.263255i
\(436\) 11.4166 21.3997i 0.546754 1.02486i
\(437\) −10.9994 10.9994i −0.526175 0.526175i
\(438\) −59.5398 + 8.85604i −2.84492 + 0.423158i
\(439\) 25.4133i 1.21291i −0.795117 0.606455i \(-0.792591\pi\)
0.795117 0.606455i \(-0.207409\pi\)
\(440\) −0.0920653 + 0.842792i −0.00438904 + 0.0401785i
\(441\) 23.7666i 1.13174i
\(442\) 1.45010 + 9.74915i 0.0689745 + 0.463720i
\(443\) −24.7208 24.7208i −1.17452 1.17452i −0.981120 0.193402i \(-0.938048\pi\)
−0.193402 0.981120i \(-0.561952\pi\)
\(444\) −4.87741 16.0328i −0.231471 0.760884i
\(445\) −4.66759 + 7.58264i −0.221265 + 0.359452i
\(446\) 16.9340 22.8518i 0.801847 1.08206i
\(447\) 16.2933i 0.770646i
\(448\) 22.3924 + 18.2879i 1.05794 + 0.864022i
\(449\) 5.62743 0.265575 0.132787 0.991145i \(-0.457607\pi\)
0.132787 + 0.991145i \(0.457607\pi\)
\(450\) −27.3279 4.70541i −1.28825 0.221815i
\(451\) 0.808017 + 0.808017i 0.0380481 + 0.0380481i
\(452\) 23.9725 7.29278i 1.12757 0.343023i
\(453\) 24.1117 + 24.1117i 1.13287 + 1.13287i
\(454\) 8.33687 1.24004i 0.391269 0.0581980i
\(455\) 28.8464 6.86425i 1.35234 0.321801i
\(456\) −7.64710 + 21.4527i −0.358108 + 1.00462i
\(457\) −26.6040 −1.24448 −0.622241 0.782825i \(-0.713778\pi\)
−0.622241 + 0.782825i \(0.713778\pi\)
\(458\) 35.6684 5.30538i 1.66668 0.247904i
\(459\) 3.25656 3.25656i 0.152003 0.152003i
\(460\) −5.76569 + 21.9862i −0.268827 + 1.02511i
\(461\) 11.9468 + 11.9468i 0.556418 + 0.556418i 0.928286 0.371868i \(-0.121283\pi\)
−0.371868 + 0.928286i \(0.621283\pi\)
\(462\) −1.07315 + 1.44817i −0.0499272 + 0.0673749i
\(463\) 0.530134i 0.0246374i 0.999924 + 0.0123187i \(0.00392127\pi\)
−0.999924 + 0.0123187i \(0.996079\pi\)
\(464\) −6.98713 1.37830i −0.324369 0.0639859i
\(465\) −7.29420 + 1.73572i −0.338260 + 0.0804920i
\(466\) −5.20216 3.85499i −0.240985 0.178579i
\(467\) 11.4219 11.4219i 0.528542 0.528542i −0.391595 0.920138i \(-0.628077\pi\)
0.920138 + 0.391595i \(0.128077\pi\)
\(468\) −13.5465 + 25.3921i −0.626185 + 1.17375i
\(469\) 22.7625 22.7625i 1.05107 1.05107i
\(470\) −7.45200 + 2.98743i −0.343735 + 0.137800i
\(471\) 33.9592i 1.56476i
\(472\) 13.4039 + 28.2531i 0.616965 + 1.30045i
\(473\) 0.306048 0.0140721
\(474\) −4.17974 + 0.621701i −0.191982 + 0.0285557i
\(475\) 4.78724 14.5350i 0.219654 0.666910i
\(476\) 13.1342 3.99560i 0.602005 0.183138i
\(477\) −22.2395 + 22.2395i −1.01828 + 1.01828i
\(478\) −20.8050 15.4173i −0.951599 0.705169i
\(479\) 6.37434 0.291251 0.145625 0.989340i \(-0.453481\pi\)
0.145625 + 0.989340i \(0.453481\pi\)
\(480\) 32.7014 6.17089i 1.49261 0.281661i
\(481\) 11.6865 0.532859
\(482\) 10.5829 + 7.84228i 0.482037 + 0.357206i
\(483\) −34.1700 + 34.1700i −1.55479 + 1.55479i
\(484\) −21.0132 + 6.39251i −0.955147 + 0.290569i
\(485\) 12.0782 19.6214i 0.548444 0.890963i
\(486\) −29.9956 + 4.46159i −1.36063 + 0.202382i
\(487\) 31.3203 1.41926 0.709629 0.704575i \(-0.248862\pi\)
0.709629 + 0.704575i \(0.248862\pi\)
\(488\) 12.5190 5.93929i 0.566708 0.268859i
\(489\) 22.8857i 1.03493i
\(490\) −7.13122 17.7885i −0.322156 0.803602i
\(491\) 14.0893 14.0893i 0.635843 0.635843i −0.313684 0.949527i \(-0.601563\pi\)
0.949527 + 0.313684i \(0.101563\pi\)
\(492\) 21.1127 39.5747i 0.951835 1.78416i
\(493\) −2.39127 + 2.39127i −0.107697 + 0.107697i
\(494\) −12.7605 9.45597i −0.574121 0.425444i
\(495\) 0.272119 + 1.14356i 0.0122308 + 0.0513990i
\(496\) 4.23442 2.83908i 0.190131 0.127479i
\(497\) 40.8639i 1.83299i
\(498\) −11.7632 + 15.8740i −0.527122 + 0.711332i
\(499\) −2.30233 2.30233i −0.103067 0.103067i 0.653693 0.756760i \(-0.273219\pi\)
−0.756760 + 0.653693i \(0.773219\pi\)
\(500\) −21.8659 + 4.67796i −0.977872 + 0.209205i
\(501\) 1.32115 1.32115i 0.0590248 0.0590248i
\(502\) 28.1218 4.18288i 1.25514 0.186691i
\(503\) −14.7556 −0.657921 −0.328961 0.944344i \(-0.606698\pi\)
−0.328961 + 0.944344i \(0.606698\pi\)
\(504\) 37.7585 + 13.4595i 1.68190 + 0.599534i
\(505\) 3.87305 0.921626i 0.172348 0.0410118i
\(506\) 0.953032 0.141756i 0.0423674 0.00630180i
\(507\) −0.863380 0.863380i −0.0383441 0.0383441i
\(508\) 5.62929 1.71251i 0.249759 0.0759802i
\(509\) −8.03042 8.03042i −0.355942 0.355942i 0.506373 0.862315i \(-0.330986\pi\)
−0.862315 + 0.506373i \(0.830986\pi\)
\(510\) 6.21368 14.5293i 0.275146 0.643370i
\(511\) −58.4680 −2.58647
\(512\) −19.3665 + 11.7021i −0.855887 + 0.517163i
\(513\) 7.42107i 0.327648i
\(514\) −14.4273 + 19.4691i −0.636361 + 0.858746i
\(515\) −20.6903 12.7362i −0.911723 0.561223i
\(516\) −3.49636 11.4931i −0.153919 0.505956i
\(517\) 0.240650 + 0.240650i 0.0105838 + 0.0105838i
\(518\) −2.39480 16.1004i −0.105222 0.707412i
\(519\) 52.7487i 2.31541i
\(520\) −2.52010 + 23.0697i −0.110514 + 1.01168i
\(521\) 13.7417i 0.602033i −0.953619 0.301017i \(-0.902674\pi\)
0.953619 0.301017i \(-0.0973259\pi\)
\(522\) −9.76692 + 1.45275i −0.427487 + 0.0635851i
\(523\) 6.77116 + 6.77116i 0.296082 + 0.296082i 0.839477 0.543395i \(-0.182861\pi\)
−0.543395 + 0.839477i \(0.682861\pi\)
\(524\) −8.71133 + 16.3289i −0.380556 + 0.713332i
\(525\) −45.1532 14.8717i −1.97065 0.649053i
\(526\) −5.81294 4.30759i −0.253456 0.187820i
\(527\) 2.42083i 0.105453i
\(528\) −0.785597 1.17170i −0.0341887 0.0509916i
\(529\) 2.83186 0.123124
\(530\) −9.97250 + 23.3185i −0.433178 + 1.01289i
\(531\) 30.6587 + 30.6587i 1.33047 + 1.33047i
\(532\) −10.4125 + 19.5178i −0.451441 + 0.846202i
\(533\) 22.1179 + 22.1179i 0.958030 + 0.958030i
\(534\) −2.17974 14.6545i −0.0943265 0.634163i
\(535\) 6.94106 + 29.1692i 0.300088 + 1.26109i
\(536\) 10.7990 + 22.7625i 0.466447 + 0.983189i
\(537\) 33.5046 1.44583
\(538\) −5.63499 37.8844i −0.242942 1.63331i
\(539\) −0.574451 + 0.574451i −0.0247434 + 0.0247434i
\(540\) 9.36179 5.47181i 0.402867 0.235469i
\(541\) 7.82599 + 7.82599i 0.336465 + 0.336465i 0.855035 0.518570i \(-0.173535\pi\)
−0.518570 + 0.855035i \(0.673535\pi\)
\(542\) −5.36381 3.97477i −0.230395 0.170731i
\(543\) 52.7855i 2.26524i
\(544\) −0.505913 + 10.7327i −0.0216909 + 0.460160i
\(545\) −6.27756 26.3809i −0.268901 1.13003i
\(546\) −29.3752 + 39.6407i −1.25714 + 1.69647i
\(547\) 16.1263 16.1263i 0.689511 0.689511i −0.272613 0.962124i \(-0.587888\pi\)
0.962124 + 0.272613i \(0.0878878\pi\)
\(548\) 1.06239 + 3.49224i 0.0453829 + 0.149181i
\(549\) 13.5849 13.5849i 0.579790 0.579790i
\(550\) 0.546798 + 0.774262i 0.0233155 + 0.0330146i
\(551\) 5.44924i 0.232146i
\(552\) −16.2110 34.1700i −0.689987 1.45437i
\(553\) −4.10450 −0.174541
\(554\) −3.79246 25.4969i −0.161126 1.08326i
\(555\) −15.9557 9.82174i −0.677282 0.416909i
\(556\) −13.3992 7.14833i −0.568251 0.303157i
\(557\) 13.7333 13.7333i 0.581897 0.581897i −0.353527 0.935424i \(-0.615018\pi\)
0.935424 + 0.353527i \(0.115018\pi\)
\(558\) 4.20847 5.67918i 0.178159 0.240419i
\(559\) 8.37745 0.354328
\(560\) 32.2995 1.25553i 1.36490 0.0530559i
\(561\) −0.669862 −0.0282816
\(562\) −13.8873 + 18.7405i −0.585802 + 0.790519i
\(563\) −13.2023 + 13.2023i −0.556412 + 0.556412i −0.928284 0.371872i \(-0.878716\pi\)
0.371872 + 0.928284i \(0.378716\pi\)
\(564\) 6.28796 11.7864i 0.264771 0.496299i
\(565\) 14.6856 23.8572i 0.617828 1.00368i
\(566\) −2.26502 15.2279i −0.0952060 0.640076i
\(567\) −19.4636 −0.817393
\(568\) −30.1253 10.7386i −1.26403 0.450580i
\(569\) 7.32481i 0.307072i 0.988143 + 0.153536i \(0.0490661\pi\)
−0.988143 + 0.153536i \(0.950934\pi\)
\(570\) 9.47489 + 23.6347i 0.396860 + 0.989947i
\(571\) −22.1916 + 22.1916i −0.928688 + 0.928688i −0.997621 0.0689332i \(-0.978040\pi\)
0.0689332 + 0.997621i \(0.478040\pi\)
\(572\) 0.941164 0.286315i 0.0393520 0.0119714i
\(573\) 35.2126 35.2126i 1.47103 1.47103i
\(574\) 25.9392 35.0040i 1.08268 1.46104i
\(575\) 11.4461 + 22.6888i 0.477337 + 0.946189i
\(576\) −19.8450 + 24.2990i −0.826876 + 1.01246i
\(577\) 9.39473i 0.391108i −0.980693 0.195554i \(-0.937350\pi\)
0.980693 0.195554i \(-0.0626504\pi\)
\(578\) −15.2169 11.2763i −0.632939 0.469030i
\(579\) 39.7887 + 39.7887i 1.65356 + 1.65356i
\(580\) −6.87430 + 4.01791i −0.285440 + 0.166835i
\(581\) −13.5699 + 13.5699i −0.562973 + 0.562973i
\(582\) 5.64046 + 37.9212i 0.233805 + 1.57188i
\(583\) 1.07508 0.0445253
\(584\) 15.3647 43.1033i 0.635797 1.78363i
\(585\) 7.44871 + 31.3025i 0.307966 + 1.29420i
\(586\) −1.69350 11.3855i −0.0699578 0.470331i
\(587\) 10.7246 + 10.7246i 0.442650 + 0.442650i 0.892902 0.450252i \(-0.148666\pi\)
−0.450252 + 0.892902i \(0.648666\pi\)
\(588\) 28.1352 + 15.0099i 1.16027 + 0.618996i
\(589\) 2.75830 + 2.75830i 0.113654 + 0.113654i
\(590\) 32.1462 + 13.7478i 1.32344 + 0.565987i
\(591\) −23.7876 −0.978493
\(592\) 12.4987 + 2.46553i 0.513695 + 0.101333i
\(593\) 38.2253i 1.56973i −0.619670 0.784863i \(-0.712733\pi\)
0.619670 0.784863i \(-0.287267\pi\)
\(594\) −0.369314 0.273675i −0.0151531 0.0112290i
\(595\) 8.04603 13.0710i 0.329855 0.535859i
\(596\) 10.9282 + 5.83010i 0.447637 + 0.238810i
\(597\) −10.8948 10.8948i −0.445896 0.445896i
\(598\) 26.0873 3.88027i 1.06679 0.158676i
\(599\) 41.5801i 1.69892i −0.527656 0.849458i \(-0.676929\pi\)
0.527656 0.849458i \(-0.323071\pi\)
\(600\) 22.8293 29.3794i 0.932003 1.19941i
\(601\) 23.1081i 0.942599i 0.881973 + 0.471299i \(0.156215\pi\)
−0.881973 + 0.471299i \(0.843785\pi\)
\(602\) −1.71671 11.5416i −0.0699679 0.470399i
\(603\) 24.7006 + 24.7006i 1.00589 + 1.00589i
\(604\) −24.7999 + 7.54447i −1.00909 + 0.306980i
\(605\) −12.8727 + 20.9121i −0.523351 + 0.850199i
\(606\) −3.94405 + 5.32235i −0.160216 + 0.216206i
\(607\) 15.1150i 0.613500i 0.951790 + 0.306750i \(0.0992415\pi\)
−0.951790 + 0.306750i \(0.900759\pi\)
\(608\) −11.6524 12.8053i −0.472568 0.519323i
\(609\) −16.9282 −0.685965
\(610\) 6.09165 14.2440i 0.246644 0.576723i
\(611\) 6.58732 + 6.58732i 0.266494 + 0.266494i
\(612\) 4.33581 + 14.2525i 0.175265 + 0.576123i
\(613\) 1.18710 + 1.18710i 0.0479466 + 0.0479466i 0.730674 0.682727i \(-0.239206\pi\)
−0.682727 + 0.730674i \(0.739206\pi\)
\(614\) 19.0019 2.82637i 0.766854 0.114063i
\(615\) −11.6091 48.7863i −0.468125 1.96725i
\(616\) −0.587318 1.23796i −0.0236637 0.0498790i
\(617\) −5.23711 −0.210838 −0.105419 0.994428i \(-0.533618\pi\)
−0.105419 + 0.994428i \(0.533618\pi\)
\(618\) 39.9869 5.94772i 1.60851 0.239252i
\(619\) −6.52847 + 6.52847i −0.262401 + 0.262401i −0.826029 0.563628i \(-0.809405\pi\)
0.563628 + 0.826029i \(0.309405\pi\)
\(620\) 1.44585 5.51343i 0.0580666 0.221425i
\(621\) −8.71408 8.71408i −0.349684 0.349684i
\(622\) 17.1275 23.1129i 0.686748 0.926741i
\(623\) 14.3907i 0.576553i
\(624\) −21.5041 32.0729i −0.860854 1.28394i
\(625\) −14.8564 + 20.1069i −0.594256 + 0.804276i
\(626\) 29.1348 + 21.5899i 1.16446 + 0.862907i
\(627\) 0.763244 0.763244i 0.0304810 0.0304810i
\(628\) 22.7771 + 12.1514i 0.908904 + 0.484892i
\(629\) 4.27756 4.27756i 0.170557 0.170557i
\(630\) 41.5989 16.6766i 1.65734 0.664411i
\(631\) 21.7193i 0.864633i −0.901722 0.432316i \(-0.857696\pi\)
0.901722 0.432316i \(-0.142304\pi\)
\(632\) 1.07862 3.02588i 0.0429050 0.120363i
\(633\) −71.6746 −2.84881
\(634\) 1.87140 0.278355i 0.0743227 0.0110549i
\(635\) 3.44851 5.60221i 0.136850 0.222317i
\(636\) −12.2820 40.3728i −0.487011 1.60088i
\(637\) −15.7244 + 15.7244i −0.623025 + 0.623025i
\(638\) 0.271185 + 0.200958i 0.0107363 + 0.00795599i
\(639\) −44.3432 −1.75419
\(640\) −7.56234 + 24.1415i −0.298928 + 0.954276i
\(641\) −45.3927 −1.79291 −0.896453 0.443139i \(-0.853865\pi\)
−0.896453 + 0.443139i \(0.853865\pi\)
\(642\) −40.0843 29.7039i −1.58200 1.17232i
\(643\) 20.5408 20.5408i 0.810049 0.810049i −0.174592 0.984641i \(-0.555861\pi\)
0.984641 + 0.174592i \(0.0558607\pi\)
\(644\) −10.6917 35.1452i −0.421310 1.38492i
\(645\) −11.4378 7.04069i −0.450363 0.277227i
\(646\) −8.13178 + 1.20954i −0.319941 + 0.0475885i
\(647\) −31.7472 −1.24811 −0.624056 0.781379i \(-0.714516\pi\)
−0.624056 + 0.781379i \(0.714516\pi\)
\(648\) 5.11481 14.3488i 0.200929 0.563673i
\(649\) 1.48207i 0.0581764i
\(650\) 14.9675 + 21.1939i 0.587073 + 0.831291i
\(651\) 8.56873 8.56873i 0.335835 0.335835i
\(652\) −15.3498 8.18900i −0.601146 0.320706i
\(653\) −4.30078 + 4.30078i −0.168302 + 0.168302i −0.786233 0.617930i \(-0.787971\pi\)
0.617930 + 0.786233i \(0.287971\pi\)
\(654\) 36.2526 + 26.8645i 1.41759 + 1.05048i
\(655\) 4.79005 + 20.1297i 0.187163 + 0.786534i
\(656\) 18.9888 + 28.3214i 0.741389 + 1.10576i
\(657\) 63.4463i 2.47527i
\(658\) 7.72543 10.4252i 0.301169 0.406416i
\(659\) −18.2156 18.2156i −0.709579 0.709579i 0.256868 0.966447i \(-0.417310\pi\)
−0.966447 + 0.256868i \(0.917310\pi\)
\(660\) −1.52561 0.400077i −0.0593843 0.0155730i
\(661\) −19.7679 + 19.7679i −0.768883 + 0.768883i −0.977910 0.209027i \(-0.932970\pi\)
0.209027 + 0.977910i \(0.432970\pi\)
\(662\) −12.1942 + 1.81379i −0.473941 + 0.0704948i
\(663\) −18.3361 −0.712116
\(664\) −6.43785 13.5699i −0.249837 0.526613i
\(665\) 5.72549 + 24.0608i 0.222025 + 0.933039i
\(666\) 17.4713 2.59871i 0.676999 0.100698i
\(667\) 6.39869 + 6.39869i 0.247758 + 0.247758i
\(668\) 0.413383 + 1.35886i 0.0159943 + 0.0525758i
\(669\) 37.4144 + 37.4144i 1.44652 + 1.44652i
\(670\) 25.8990 + 11.0761i 1.00056 + 0.427906i
\(671\) −0.656708 −0.0253519
\(672\) −39.7799 + 36.1985i −1.53454 + 1.39639i
\(673\) 8.43246i 0.325047i −0.986705 0.162524i \(-0.948037\pi\)
0.986705 0.162524i \(-0.0519634\pi\)
\(674\) −23.7723 + 32.0798i −0.915675 + 1.23567i
\(675\) 3.79259 11.5150i 0.145977 0.443214i
\(676\) 0.888021 0.270148i 0.0341547 0.0103903i
\(677\) 20.8693 + 20.8693i 0.802073 + 0.802073i 0.983419 0.181346i \(-0.0580455\pi\)
−0.181346 + 0.983419i \(0.558046\pi\)
\(678\) 6.85810 + 46.1075i 0.263384 + 1.77075i
\(679\) 37.2386i 1.42909i
\(680\) 7.52169 + 9.36653i 0.288444 + 0.359190i
\(681\) 15.6799i 0.600856i
\(682\) −0.238989 + 0.0355477i −0.00915137 + 0.00136119i
\(683\) 16.4398 + 16.4398i 0.629051 + 0.629051i 0.947829 0.318778i \(-0.103272\pi\)
−0.318778 + 0.947829i \(0.603272\pi\)
\(684\) −21.1796 11.2991i −0.809822 0.432033i
\(685\) 3.47544 + 2.13935i 0.132790 + 0.0817404i
\(686\) −3.85824 2.85910i −0.147308 0.109161i
\(687\) 67.0849i 2.55945i
\(688\) 8.95970 + 1.76741i 0.341585 + 0.0673820i
\(689\) 29.4282 1.12112
\(690\) −38.8784 16.6269i −1.48008 0.632976i
\(691\) 17.4076 + 17.4076i 0.662216 + 0.662216i 0.955902 0.293686i \(-0.0948821\pi\)
−0.293686 + 0.955902i \(0.594882\pi\)
\(692\) −35.3795 18.8746i −1.34493 0.717506i
\(693\) −1.34337 1.34337i −0.0510304 0.0510304i
\(694\) 3.84131 + 25.8254i 0.145814 + 0.980318i
\(695\) −16.5180 + 3.93061i −0.626565 + 0.149097i
\(696\) 4.44854 12.4797i 0.168621 0.473040i
\(697\) 16.1914 0.613293
\(698\) 5.97554 + 40.1740i 0.226178 + 1.52061i
\(699\) 8.51731 8.51731i 0.322154 0.322154i
\(700\) 26.1315 24.9637i 0.987678 0.943538i
\(701\) −25.3888 25.3888i −0.958920 0.958920i 0.0402687 0.999189i \(-0.487179\pi\)
−0.999189 + 0.0402687i \(0.987179\pi\)
\(702\) −10.1092 7.49130i −0.381548 0.282741i
\(703\) 9.74773i 0.367643i
\(704\) 1.06698 0.107655i 0.0402134 0.00405739i
\(705\) −3.45752 14.5299i −0.130218 0.547229i
\(706\) 15.7296 21.2266i 0.591993 0.798873i
\(707\) −4.54979 + 4.54979i −0.171113 + 0.171113i
\(708\) −55.6566 + 16.9315i −2.09170 + 0.636325i
\(709\) 17.6201 17.6201i 0.661738 0.661738i −0.294051 0.955790i \(-0.595004\pi\)
0.955790 + 0.294051i \(0.0950036\pi\)
\(710\) −33.1893 + 13.3053i −1.24557 + 0.499338i
\(711\) 4.45398i 0.167037i
\(712\) 10.6090 + 3.78172i 0.397590 + 0.141726i
\(713\) −6.47779 −0.242595
\(714\) 3.75745 + 25.2616i 0.140619 + 0.945391i
\(715\) 0.576559 0.936636i 0.0215621 0.0350282i
\(716\) −11.9887 + 22.4721i −0.448037 + 0.839822i
\(717\) 34.0633 34.0633i 1.27212 1.27212i
\(718\) −13.8148 + 18.6425i −0.515562 + 0.695732i
\(719\) −42.6068 −1.58896 −0.794482 0.607287i \(-0.792258\pi\)
−0.794482 + 0.607287i \(0.792258\pi\)
\(720\) 1.36243 + 35.0496i 0.0507750 + 1.30622i
\(721\) 39.2671 1.46238
\(722\) −8.11067 + 10.9450i −0.301848 + 0.407332i
\(723\) −17.3269 + 17.3269i −0.644396 + 0.644396i
\(724\) 35.4042 + 18.8878i 1.31579 + 0.701960i
\(725\) −2.78488 + 8.45542i −0.103428 + 0.314026i
\(726\) −6.01150 40.4157i −0.223108 1.49997i
\(727\) 50.5830 1.87602 0.938010 0.346609i \(-0.112667\pi\)
0.938010 + 0.346609i \(0.112667\pi\)
\(728\) −16.0767 33.8868i −0.595841 1.25593i
\(729\) 40.2583i 1.49105i
\(730\) −19.0372 47.4873i −0.704597 1.75758i
\(731\) 3.06636 3.06636i 0.113413 0.113413i
\(732\) 7.50237 + 24.6615i 0.277296 + 0.911516i
\(733\) −6.17299 + 6.17299i −0.228005 + 0.228005i −0.811859 0.583854i \(-0.801544\pi\)
0.583854 + 0.811859i \(0.301544\pi\)
\(734\) −3.01475 + 4.06830i −0.111277 + 0.150164i
\(735\) 34.6841 8.25338i 1.27934 0.304431i
\(736\) 28.7191 + 1.35375i 1.05860 + 0.0499000i
\(737\) 1.19405i 0.0439834i
\(738\) 37.9845 + 28.1478i 1.39823 + 1.03614i
\(739\) 22.8974 + 22.8974i 0.842293 + 0.842293i 0.989157 0.146864i \(-0.0469178\pi\)
−0.146864 + 0.989157i \(0.546918\pi\)
\(740\) 12.2969 7.18734i 0.452043 0.264212i
\(741\) 20.8923 20.8923i 0.767497 0.767497i
\(742\) −6.03043 40.5430i −0.221384 1.48838i
\(743\) 11.8975 0.436478 0.218239 0.975895i \(-0.429969\pi\)
0.218239 + 0.975895i \(0.429969\pi\)
\(744\) 4.06520 + 8.56873i 0.149037 + 0.314145i
\(745\) 13.4719 3.20576i 0.493573 0.117450i
\(746\) 2.56873 + 17.2697i 0.0940477 + 0.632289i
\(747\) −14.7253 14.7253i −0.538770 0.538770i
\(748\) 0.239691 0.449288i 0.00876398 0.0164276i
\(749\) −34.2660 34.2660i −1.25205 1.25205i
\(750\) −2.62321 41.5154i −0.0957862 1.51593i
\(751\) 23.4102 0.854250 0.427125 0.904193i \(-0.359526\pi\)
0.427125 + 0.904193i \(0.359526\pi\)
\(752\) 5.65541 + 8.43490i 0.206232 + 0.307589i
\(753\) 52.8913i 1.92747i
\(754\) 7.42314 + 5.50081i 0.270335 + 0.200328i
\(755\) −15.1924 + 24.6806i −0.552910 + 0.898218i
\(756\) −8.24913 + 15.4625i −0.300018 + 0.562367i
\(757\) 11.3218 + 11.3218i 0.411496 + 0.411496i 0.882260 0.470763i \(-0.156021\pi\)
−0.470763 + 0.882260i \(0.656021\pi\)
\(758\) −12.0925 + 1.79866i −0.439219 + 0.0653301i
\(759\) 1.79246i 0.0650620i
\(760\) −19.2425 2.10202i −0.697999 0.0762484i
\(761\) 8.53590i 0.309426i 0.987959 + 0.154713i \(0.0494453\pi\)
−0.987959 + 0.154713i \(0.950555\pi\)
\(762\) 1.61043 + 10.8271i 0.0583399 + 0.392223i
\(763\) 30.9904 + 30.9904i 1.12193 + 1.12193i
\(764\) 11.0179 + 36.2176i 0.398613 + 1.31031i
\(765\) 14.1839 + 8.73111i 0.512821 + 0.315674i
\(766\) −6.15864 + 8.31085i −0.222521 + 0.300283i
\(767\) 40.5687i 1.46485i
\(768\) −16.2322 38.8388i −0.585730 1.40147i