Defining parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.q (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(80, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 28 | 0 |
Cusp forms | 20 | 20 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
80.2.q.a | $2$ | $0.639$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(2\) | \(2\) | \(0\) | \(q+(-1-i)q^{2}+(1+i)q^{3}+2iq^{4}+\cdots\) |
80.2.q.b | $2$ | $0.639$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(-2\) | \(4\) | \(0\) | \(q+(1+i)q^{2}+(-1-i)q^{3}+2iq^{4}+\cdots\) |
80.2.q.c | $16$ | $0.639$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q-\beta _{12}q^{2}+(-\beta _{3}-\beta _{11}-\beta _{13}+\beta _{14}+\cdots)q^{3}+\cdots\) |