Properties

Label 80.2.q
Level $80$
Weight $2$
Character orbit 80.q
Rep. character $\chi_{80}(29,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $20$
Newform subspaces $3$
Sturm bound $24$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.q (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 80 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(24\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(80, [\chi])\).

Total New Old
Modular forms 28 28 0
Cusp forms 20 20 0
Eisenstein series 8 8 0

Trace form

\( 20 q - 4 q^{4} - 2 q^{5} - 4 q^{6} + O(q^{10}) \) \( 20 q - 4 q^{4} - 2 q^{5} - 4 q^{6} - 8 q^{10} - 4 q^{11} - 4 q^{14} - 4 q^{15} - 12 q^{19} - 16 q^{20} - 16 q^{21} - 16 q^{24} + 32 q^{26} - 4 q^{29} - 24 q^{30} + 16 q^{31} + 32 q^{34} - 24 q^{35} + 68 q^{36} + 24 q^{40} + 16 q^{44} + 14 q^{45} + 4 q^{46} - 12 q^{49} + 36 q^{50} + 8 q^{54} - 56 q^{56} + 12 q^{59} + 48 q^{60} - 20 q^{61} - 16 q^{64} - 12 q^{65} - 96 q^{66} + 20 q^{70} - 24 q^{74} + 36 q^{75} - 96 q^{76} + 48 q^{79} - 8 q^{80} + 4 q^{81} - 80 q^{84} + 8 q^{85} - 52 q^{86} - 84 q^{90} - 16 q^{91} + 4 q^{94} + 20 q^{95} + 56 q^{96} + 76 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.2.q.a 80.q 80.q $2$ $0.639$ \(\Q(\sqrt{-1}) \) None 80.2.q.a \(-2\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-i)q^{2}+(1+i)q^{3}+2iq^{4}+\cdots\)
80.2.q.b 80.q 80.q $2$ $0.639$ \(\Q(\sqrt{-1}) \) None 80.2.q.a \(2\) \(-2\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+i)q^{2}+(-1-i)q^{3}+2iq^{4}+\cdots\)
80.2.q.c 80.q 80.q $16$ $0.639$ 16.0.\(\cdots\).1 None 80.2.q.c \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{12}q^{2}+(-\beta _{3}-\beta _{11}-\beta _{13}+\beta _{14}+\cdots)q^{3}+\cdots\)