Defining parameters
| Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 80.q (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(80, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 28 | 28 | 0 |
| Cusp forms | 20 | 20 | 0 |
| Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 80.2.q.a | $2$ | $0.639$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(2\) | \(2\) | \(0\) | \(q+(-i-1)q^{2}+(i+1)q^{3}+2 i q^{4}+\cdots\) |
| 80.2.q.b | $2$ | $0.639$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(-2\) | \(4\) | \(0\) | \(q+(i+1)q^{2}+(-i-1)q^{3}+2 i q^{4}+\cdots\) |
| 80.2.q.c | $16$ | $0.639$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q-\beta _{12}q^{2}+(-\beta _{3}-\beta _{11}-\beta _{13}+\beta _{14}+\cdots)q^{3}+\cdots\) |