Defining parameters
| Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 80.n (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(80, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 36 | 6 | 30 |
| Cusp forms | 12 | 6 | 6 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 80.2.n.a | $2$ | $0.639$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(4\) | \(0\) | \(q+(i+2)q^{5}-3 i q^{9}+(5 i-5)q^{13}+\cdots\) |
| 80.2.n.b | $4$ | $0.639$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q-\beta_{2} q^{3}+(-2\beta_1-1)q^{5}+\beta_{3} q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(80, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)