Properties

Label 80.2.l.a.61.7
Level $80$
Weight $2$
Character 80.61
Analytic conductor $0.639$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(21,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.21");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 61.7
Root \(-0.296075 + 1.38287i\) of defining polynomial
Character \(\chi\) \(=\) 80.61
Dual form 80.2.l.a.21.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.09971 - 0.889181i) q^{2} +(-0.120009 - 0.120009i) q^{3} +(0.418713 - 1.95568i) q^{4} +(-0.707107 + 0.707107i) q^{5} +(-0.238684 - 0.0252650i) q^{6} +2.66881i q^{7} +(-1.27849 - 2.52299i) q^{8} -2.97120i q^{9} +O(q^{10})\) \(q+(1.09971 - 0.889181i) q^{2} +(-0.120009 - 0.120009i) q^{3} +(0.418713 - 1.95568i) q^{4} +(-0.707107 + 0.707107i) q^{5} +(-0.238684 - 0.0252650i) q^{6} +2.66881i q^{7} +(-1.27849 - 2.52299i) q^{8} -2.97120i q^{9} +(-0.148864 + 1.40636i) q^{10} +(-3.49714 + 3.49714i) q^{11} +(-0.284948 + 0.184450i) q^{12} +(2.94072 + 2.94072i) q^{13} +(2.37306 + 2.93491i) q^{14} +0.169718 q^{15} +(-3.64936 - 1.63774i) q^{16} +1.85116 q^{17} +(-2.64193 - 3.26745i) q^{18} +(-3.44856 - 3.44856i) q^{19} +(1.08680 + 1.67895i) q^{20} +(0.320281 - 0.320281i) q^{21} +(-0.736240 + 6.95543i) q^{22} -0.707288i q^{23} +(-0.149351 + 0.456211i) q^{24} -1.00000i q^{25} +(5.84877 + 0.619099i) q^{26} +(-0.716597 + 0.716597i) q^{27} +(5.21934 + 1.11747i) q^{28} +(-3.49909 - 3.49909i) q^{29} +(0.186640 - 0.150910i) q^{30} +6.84272 q^{31} +(-5.46947 + 1.44391i) q^{32} +0.839377 q^{33} +(2.03573 - 1.64601i) q^{34} +(-1.88714 - 1.88714i) q^{35} +(-5.81070 - 1.24408i) q^{36} +(-0.0975060 + 0.0975060i) q^{37} +(-6.85881 - 0.726013i) q^{38} -0.705826i q^{39} +(2.68805 + 0.879991i) q^{40} -10.2052i q^{41} +(0.0674276 - 0.637004i) q^{42} +(4.43844 - 4.43844i) q^{43} +(5.37499 + 8.30359i) q^{44} +(2.10095 + 2.10095i) q^{45} +(-0.628908 - 0.777810i) q^{46} -1.89428 q^{47} +(0.241413 + 0.634498i) q^{48} -0.122561 q^{49} +(-0.889181 - 1.09971i) q^{50} +(-0.222155 - 0.222155i) q^{51} +(6.98243 - 4.51979i) q^{52} +(-7.43897 + 7.43897i) q^{53} +(-0.150862 + 1.42523i) q^{54} -4.94571i q^{55} +(6.73338 - 3.41205i) q^{56} +0.827717i q^{57} +(-6.95931 - 0.736651i) q^{58} +(0.959574 - 0.959574i) q^{59} +(0.0710632 - 0.331914i) q^{60} +(6.49825 + 6.49825i) q^{61} +(7.52499 - 6.08442i) q^{62} +7.92956 q^{63} +(-4.73092 + 6.45123i) q^{64} -4.15881 q^{65} +(0.923069 - 0.746358i) q^{66} +(3.49691 + 3.49691i) q^{67} +(0.775103 - 3.62027i) q^{68} +(-0.0848809 + 0.0848809i) q^{69} +(-3.75330 - 0.397291i) q^{70} +7.86777i q^{71} +(-7.49629 + 3.79865i) q^{72} +15.6564i q^{73} +(-0.0205276 + 0.193929i) q^{74} +(-0.120009 + 0.120009i) q^{75} +(-8.18824 + 5.30033i) q^{76} +(-9.33322 - 9.33322i) q^{77} +(-0.627607 - 0.776202i) q^{78} -6.70212 q^{79} +(3.73854 - 1.42243i) q^{80} -8.74159 q^{81} +(-9.07431 - 11.2228i) q^{82} +(-3.87327 - 3.87327i) q^{83} +(-0.492261 - 0.760473i) q^{84} +(-1.30896 + 1.30896i) q^{85} +(0.934407 - 8.82755i) q^{86} +0.839845i q^{87} +(13.2943 + 4.35218i) q^{88} +10.5055i q^{89} +(4.17856 + 0.442305i) q^{90} +(-7.84824 + 7.84824i) q^{91} +(-1.38323 - 0.296151i) q^{92} +(-0.821187 - 0.821187i) q^{93} +(-2.08316 + 1.68436i) q^{94} +4.87701 q^{95} +(0.829667 + 0.483103i) q^{96} +4.79937 q^{97} +(-0.134781 + 0.108979i) q^{98} +(10.3907 + 10.3907i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{4} - 12 q^{6} + 4 q^{10} - 8 q^{11} - 12 q^{12} + 4 q^{14} - 8 q^{15} + 16 q^{16} - 8 q^{19} + 8 q^{20} - 20 q^{22} + 8 q^{24} - 16 q^{26} + 24 q^{27} - 4 q^{28} - 16 q^{29} + 16 q^{34} - 4 q^{36} - 16 q^{37} + 20 q^{38} + 60 q^{42} + 8 q^{43} + 40 q^{44} - 4 q^{46} - 40 q^{47} - 40 q^{48} - 16 q^{49} - 4 q^{50} - 32 q^{51} + 56 q^{52} + 16 q^{53} + 32 q^{54} + 16 q^{56} - 12 q^{58} - 8 q^{59} - 28 q^{60} + 16 q^{61} - 8 q^{62} + 40 q^{63} - 16 q^{64} + 40 q^{67} - 48 q^{68} + 16 q^{69} - 8 q^{70} - 40 q^{72} - 72 q^{74} + 16 q^{77} - 16 q^{78} + 16 q^{79} + 16 q^{80} - 16 q^{81} - 76 q^{82} + 40 q^{83} - 64 q^{84} - 16 q^{85} + 28 q^{86} + 36 q^{90} + 32 q^{91} - 52 q^{92} - 48 q^{93} - 36 q^{94} + 32 q^{95} + 8 q^{96} + 60 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.09971 0.889181i 0.777611 0.628746i
\(3\) −0.120009 0.120009i −0.0692872 0.0692872i 0.671614 0.740901i \(-0.265601\pi\)
−0.740901 + 0.671614i \(0.765601\pi\)
\(4\) 0.418713 1.95568i 0.209357 0.977839i
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) −0.238684 0.0252650i −0.0974425 0.0103144i
\(7\) 2.66881i 1.00872i 0.863495 + 0.504358i \(0.168271\pi\)
−0.863495 + 0.504358i \(0.831729\pi\)
\(8\) −1.27849 2.52299i −0.452015 0.892010i
\(9\) 2.97120i 0.990399i
\(10\) −0.148864 + 1.40636i −0.0470751 + 0.444729i
\(11\) −3.49714 + 3.49714i −1.05443 + 1.05443i −0.0559977 + 0.998431i \(0.517834\pi\)
−0.998431 + 0.0559977i \(0.982166\pi\)
\(12\) −0.284948 + 0.184450i −0.0822574 + 0.0532460i
\(13\) 2.94072 + 2.94072i 0.815610 + 0.815610i 0.985468 0.169858i \(-0.0543310\pi\)
−0.169858 + 0.985468i \(0.554331\pi\)
\(14\) 2.37306 + 2.93491i 0.634227 + 0.784389i
\(15\) 0.169718 0.0438211
\(16\) −3.64936 1.63774i −0.912340 0.409434i
\(17\) 1.85116 0.448971 0.224486 0.974477i \(-0.427930\pi\)
0.224486 + 0.974477i \(0.427930\pi\)
\(18\) −2.64193 3.26745i −0.622709 0.770144i
\(19\) −3.44856 3.44856i −0.791155 0.791155i 0.190527 0.981682i \(-0.438980\pi\)
−0.981682 + 0.190527i \(0.938980\pi\)
\(20\) 1.08680 + 1.67895i 0.243016 + 0.375424i
\(21\) 0.320281 0.320281i 0.0698911 0.0698911i
\(22\) −0.736240 + 6.95543i −0.156967 + 1.48290i
\(23\) 0.707288i 0.147480i −0.997278 0.0737399i \(-0.976507\pi\)
0.997278 0.0737399i \(-0.0234935\pi\)
\(24\) −0.149351 + 0.456211i −0.0304860 + 0.0931237i
\(25\) 1.00000i 0.200000i
\(26\) 5.84877 + 0.619099i 1.14704 + 0.121415i
\(27\) −0.716597 + 0.716597i −0.137909 + 0.137909i
\(28\) 5.21934 + 1.11747i 0.986363 + 0.211181i
\(29\) −3.49909 3.49909i −0.649766 0.649766i 0.303171 0.952936i \(-0.401955\pi\)
−0.952936 + 0.303171i \(0.901955\pi\)
\(30\) 0.186640 0.150910i 0.0340757 0.0275523i
\(31\) 6.84272 1.22899 0.614494 0.788921i \(-0.289360\pi\)
0.614494 + 0.788921i \(0.289360\pi\)
\(32\) −5.46947 + 1.44391i −0.966875 + 0.255250i
\(33\) 0.839377 0.146117
\(34\) 2.03573 1.64601i 0.349125 0.282289i
\(35\) −1.88714 1.88714i −0.318984 0.318984i
\(36\) −5.81070 1.24408i −0.968451 0.207346i
\(37\) −0.0975060 + 0.0975060i −0.0160299 + 0.0160299i −0.715076 0.699046i \(-0.753608\pi\)
0.699046 + 0.715076i \(0.253608\pi\)
\(38\) −6.85881 0.726013i −1.11265 0.117775i
\(39\) 0.705826i 0.113023i
\(40\) 2.68805 + 0.879991i 0.425018 + 0.139139i
\(41\) 10.2052i 1.59379i −0.604117 0.796896i \(-0.706474\pi\)
0.604117 0.796896i \(-0.293526\pi\)
\(42\) 0.0674276 0.637004i 0.0104043 0.0982918i
\(43\) 4.43844 4.43844i 0.676855 0.676855i −0.282432 0.959287i \(-0.591141\pi\)
0.959287 + 0.282432i \(0.0911412\pi\)
\(44\) 5.37499 + 8.30359i 0.810310 + 1.25181i
\(45\) 2.10095 + 2.10095i 0.313192 + 0.313192i
\(46\) −0.628908 0.777810i −0.0927274 0.114682i
\(47\) −1.89428 −0.276310 −0.138155 0.990411i \(-0.544117\pi\)
−0.138155 + 0.990411i \(0.544117\pi\)
\(48\) 0.241413 + 0.634498i 0.0348449 + 0.0915820i
\(49\) −0.122561 −0.0175087
\(50\) −0.889181 1.09971i −0.125749 0.155522i
\(51\) −0.222155 0.222155i −0.0311079 0.0311079i
\(52\) 6.98243 4.51979i 0.968289 0.626782i
\(53\) −7.43897 + 7.43897i −1.02182 + 1.02182i −0.0220650 + 0.999757i \(0.507024\pi\)
−0.999757 + 0.0220650i \(0.992976\pi\)
\(54\) −0.150862 + 1.42523i −0.0205298 + 0.193949i
\(55\) 4.94571i 0.666879i
\(56\) 6.73338 3.41205i 0.899786 0.455955i
\(57\) 0.827717i 0.109634i
\(58\) −6.95931 0.736651i −0.913802 0.0967270i
\(59\) 0.959574 0.959574i 0.124926 0.124926i −0.641880 0.766805i \(-0.721845\pi\)
0.766805 + 0.641880i \(0.221845\pi\)
\(60\) 0.0710632 0.331914i 0.00917422 0.0428500i
\(61\) 6.49825 + 6.49825i 0.832015 + 0.832015i 0.987792 0.155777i \(-0.0497881\pi\)
−0.155777 + 0.987792i \(0.549788\pi\)
\(62\) 7.52499 6.08442i 0.955674 0.772722i
\(63\) 7.92956 0.999031
\(64\) −4.73092 + 6.45123i −0.591365 + 0.806404i
\(65\) −4.15881 −0.515837
\(66\) 0.923069 0.746358i 0.113622 0.0918703i
\(67\) 3.49691 + 3.49691i 0.427216 + 0.427216i 0.887679 0.460463i \(-0.152317\pi\)
−0.460463 + 0.887679i \(0.652317\pi\)
\(68\) 0.775103 3.62027i 0.0939951 0.439022i
\(69\) −0.0848809 + 0.0848809i −0.0102185 + 0.0102185i
\(70\) −3.75330 0.397291i −0.448605 0.0474854i
\(71\) 7.86777i 0.933733i 0.884328 + 0.466866i \(0.154617\pi\)
−0.884328 + 0.466866i \(0.845383\pi\)
\(72\) −7.49629 + 3.79865i −0.883446 + 0.447675i
\(73\) 15.6564i 1.83244i 0.400675 + 0.916220i \(0.368776\pi\)
−0.400675 + 0.916220i \(0.631224\pi\)
\(74\) −0.0205276 + 0.193929i −0.00238628 + 0.0225437i
\(75\) −0.120009 + 0.120009i −0.0138574 + 0.0138574i
\(76\) −8.18824 + 5.30033i −0.939256 + 0.607989i
\(77\) −9.33322 9.33322i −1.06362 1.06362i
\(78\) −0.627607 0.776202i −0.0710625 0.0878876i
\(79\) −6.70212 −0.754047 −0.377024 0.926204i \(-0.623052\pi\)
−0.377024 + 0.926204i \(0.623052\pi\)
\(80\) 3.73854 1.42243i 0.417982 0.159033i
\(81\) −8.74159 −0.971288
\(82\) −9.07431 11.2228i −1.00209 1.23935i
\(83\) −3.87327 3.87327i −0.425147 0.425147i 0.461825 0.886971i \(-0.347195\pi\)
−0.886971 + 0.461825i \(0.847195\pi\)
\(84\) −0.492261 0.760473i −0.0537101 0.0829744i
\(85\) −1.30896 + 1.30896i −0.141977 + 0.141977i
\(86\) 0.934407 8.82755i 0.100760 0.951900i
\(87\) 0.839845i 0.0900408i
\(88\) 13.2943 + 4.35218i 1.41718 + 0.463944i
\(89\) 10.5055i 1.11358i 0.830653 + 0.556790i \(0.187967\pi\)
−0.830653 + 0.556790i \(0.812033\pi\)
\(90\) 4.17856 + 0.442305i 0.440459 + 0.0466231i
\(91\) −7.84824 + 7.84824i −0.822719 + 0.822719i
\(92\) −1.38323 0.296151i −0.144212 0.0308759i
\(93\) −0.821187 0.821187i −0.0851531 0.0851531i
\(94\) −2.08316 + 1.68436i −0.214861 + 0.173729i
\(95\) 4.87701 0.500370
\(96\) 0.829667 + 0.483103i 0.0846776 + 0.0493065i
\(97\) 4.79937 0.487303 0.243651 0.969863i \(-0.421655\pi\)
0.243651 + 0.969863i \(0.421655\pi\)
\(98\) −0.134781 + 0.108979i −0.0136150 + 0.0110085i
\(99\) 10.3907 + 10.3907i 1.04430 + 1.04430i
\(100\) −1.95568 0.418713i −0.195568 0.0418713i
\(101\) 0.372979 0.372979i 0.0371128 0.0371128i −0.688307 0.725420i \(-0.741646\pi\)
0.725420 + 0.688307i \(0.241646\pi\)
\(102\) −0.441842 0.0467695i −0.0437489 0.00463087i
\(103\) 10.3013i 1.01502i −0.861647 0.507508i \(-0.830567\pi\)
0.861647 0.507508i \(-0.169433\pi\)
\(104\) 3.65972 11.1791i 0.358865 1.09620i
\(105\) 0.452946i 0.0442030i
\(106\) −1.56610 + 14.7953i −0.152113 + 1.43705i
\(107\) 14.5069 14.5069i 1.40244 1.40244i 0.610165 0.792274i \(-0.291103\pi\)
0.792274 0.610165i \(-0.208897\pi\)
\(108\) 1.10138 + 1.70148i 0.105981 + 0.163725i
\(109\) 0.796284 + 0.796284i 0.0762701 + 0.0762701i 0.744213 0.667943i \(-0.232825\pi\)
−0.667943 + 0.744213i \(0.732825\pi\)
\(110\) −4.39763 5.43883i −0.419298 0.518572i
\(111\) 0.0234032 0.00222133
\(112\) 4.37081 9.73945i 0.413003 0.920292i
\(113\) 0.842524 0.0792580 0.0396290 0.999214i \(-0.487382\pi\)
0.0396290 + 0.999214i \(0.487382\pi\)
\(114\) 0.735990 + 0.910246i 0.0689318 + 0.0852524i
\(115\) 0.500128 + 0.500128i 0.0466372 + 0.0466372i
\(116\) −8.30822 + 5.37799i −0.771399 + 0.499334i
\(117\) 8.73747 8.73747i 0.807779 0.807779i
\(118\) 0.202015 1.90849i 0.0185970 0.175690i
\(119\) 4.94039i 0.452885i
\(120\) −0.216983 0.428197i −0.0198078 0.0390888i
\(121\) 13.4600i 1.22364i
\(122\) 12.9243 + 1.36805i 1.17011 + 0.123858i
\(123\) −1.22472 + 1.22472i −0.110429 + 0.110429i
\(124\) 2.86513 13.3822i 0.257297 1.20175i
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 8.72020 7.05082i 0.776857 0.628137i
\(127\) −21.1693 −1.87847 −0.939234 0.343277i \(-0.888463\pi\)
−0.939234 + 0.343277i \(0.888463\pi\)
\(128\) 0.533685 + 11.3011i 0.0471715 + 0.998887i
\(129\) −1.06530 −0.0937947
\(130\) −4.57348 + 3.69794i −0.401120 + 0.324331i
\(131\) 4.67248 + 4.67248i 0.408237 + 0.408237i 0.881123 0.472887i \(-0.156788\pi\)
−0.472887 + 0.881123i \(0.656788\pi\)
\(132\) 0.351458 1.64155i 0.0305905 0.142879i
\(133\) 9.20357 9.20357i 0.798051 0.798051i
\(134\) 6.95497 + 0.736191i 0.600818 + 0.0635973i
\(135\) 1.01342i 0.0872214i
\(136\) −2.36669 4.67044i −0.202942 0.400487i
\(137\) 10.2840i 0.878623i 0.898335 + 0.439312i \(0.144778\pi\)
−0.898335 + 0.439312i \(0.855222\pi\)
\(138\) −0.0178696 + 0.168819i −0.00152117 + 0.0143708i
\(139\) 4.98588 4.98588i 0.422897 0.422897i −0.463303 0.886200i \(-0.653336\pi\)
0.886200 + 0.463303i \(0.153336\pi\)
\(140\) −4.48080 + 2.90046i −0.378697 + 0.245134i
\(141\) 0.227331 + 0.227331i 0.0191447 + 0.0191447i
\(142\) 6.99588 + 8.65225i 0.587081 + 0.726080i
\(143\) −20.5683 −1.72001
\(144\) −4.86604 + 10.8430i −0.405503 + 0.903580i
\(145\) 4.94847 0.410948
\(146\) 13.9214 + 17.2174i 1.15214 + 1.42493i
\(147\) 0.0147084 + 0.0147084i 0.00121313 + 0.00121313i
\(148\) 0.149863 + 0.231518i 0.0123187 + 0.0190306i
\(149\) 8.79493 8.79493i 0.720509 0.720509i −0.248200 0.968709i \(-0.579839\pi\)
0.968709 + 0.248200i \(0.0798390\pi\)
\(150\) −0.0252650 + 0.238684i −0.00206288 + 0.0194885i
\(151\) 22.1838i 1.80529i −0.430385 0.902645i \(-0.641622\pi\)
0.430385 0.902645i \(-0.358378\pi\)
\(152\) −4.29172 + 13.1096i −0.348105 + 1.06333i
\(153\) 5.50015i 0.444661i
\(154\) −18.5627 1.96489i −1.49583 0.158335i
\(155\) −4.83853 + 4.83853i −0.388640 + 0.388640i
\(156\) −1.38037 0.295539i −0.110518 0.0236620i
\(157\) −3.72187 3.72187i −0.297038 0.297038i 0.542815 0.839852i \(-0.317359\pi\)
−0.839852 + 0.542815i \(0.817359\pi\)
\(158\) −7.37037 + 5.95940i −0.586355 + 0.474104i
\(159\) 1.78549 0.141598
\(160\) 2.84650 4.88850i 0.225036 0.386470i
\(161\) 1.88762 0.148765
\(162\) −9.61319 + 7.77286i −0.755284 + 0.610694i
\(163\) 2.11630 + 2.11630i 0.165761 + 0.165761i 0.785113 0.619352i \(-0.212605\pi\)
−0.619352 + 0.785113i \(0.712605\pi\)
\(164\) −19.9582 4.27307i −1.55847 0.333671i
\(165\) −0.593529 + 0.593529i −0.0462062 + 0.0462062i
\(166\) −7.70350 0.815425i −0.597908 0.0632892i
\(167\) 18.1604i 1.40530i 0.711538 + 0.702648i \(0.247999\pi\)
−0.711538 + 0.702648i \(0.752001\pi\)
\(168\) −1.21754 0.398589i −0.0939354 0.0307518i
\(169\) 4.29572i 0.330440i
\(170\) −0.275571 + 2.60339i −0.0211354 + 0.199671i
\(171\) −10.2464 + 10.2464i −0.783559 + 0.783559i
\(172\) −6.82172 10.5386i −0.520151 0.803560i
\(173\) −8.53542 8.53542i −0.648936 0.648936i 0.303800 0.952736i \(-0.401745\pi\)
−0.952736 + 0.303800i \(0.901745\pi\)
\(174\) 0.746774 + 0.923584i 0.0566128 + 0.0700167i
\(175\) 2.66881 0.201743
\(176\) 18.4897 7.03493i 1.39372 0.530278i
\(177\) −0.230315 −0.0173115
\(178\) 9.34128 + 11.5530i 0.700159 + 0.865931i
\(179\) −2.42499 2.42499i −0.181252 0.181252i 0.610649 0.791901i \(-0.290909\pi\)
−0.791901 + 0.610649i \(0.790909\pi\)
\(180\) 4.98848 3.22909i 0.371820 0.240682i
\(181\) 4.46593 4.46593i 0.331950 0.331950i −0.521377 0.853327i \(-0.674581\pi\)
0.853327 + 0.521377i \(0.174581\pi\)
\(182\) −1.65226 + 15.6093i −0.122474 + 1.15704i
\(183\) 1.55970i 0.115296i
\(184\) −1.78448 + 0.904262i −0.131554 + 0.0666631i
\(185\) 0.137894i 0.0101382i
\(186\) −1.63325 0.172881i −0.119756 0.0126763i
\(187\) −6.47376 + 6.47376i −0.473408 + 0.473408i
\(188\) −0.793162 + 3.70461i −0.0578473 + 0.270187i
\(189\) −1.91246 1.91246i −0.139111 0.139111i
\(190\) 5.36328 4.33654i 0.389093 0.314606i
\(191\) 7.75030 0.560792 0.280396 0.959884i \(-0.409534\pi\)
0.280396 + 0.959884i \(0.409534\pi\)
\(192\) 1.34196 0.206453i 0.0968475 0.0148994i
\(193\) −11.3388 −0.816181 −0.408091 0.912941i \(-0.633805\pi\)
−0.408091 + 0.912941i \(0.633805\pi\)
\(194\) 5.27791 4.26751i 0.378932 0.306390i
\(195\) 0.499094 + 0.499094i 0.0357409 + 0.0357409i
\(196\) −0.0513179 + 0.239690i −0.00366557 + 0.0171207i
\(197\) 1.10001 1.10001i 0.0783725 0.0783725i −0.666834 0.745206i \(-0.732351\pi\)
0.745206 + 0.666834i \(0.232351\pi\)
\(198\) 20.6659 + 2.18751i 1.46866 + 0.155460i
\(199\) 14.2722i 1.01173i 0.862614 + 0.505864i \(0.168826\pi\)
−0.862614 + 0.505864i \(0.831174\pi\)
\(200\) −2.52299 + 1.27849i −0.178402 + 0.0904030i
\(201\) 0.839321i 0.0592012i
\(202\) 0.0785219 0.741814i 0.00552478 0.0521939i
\(203\) 9.33843 9.33843i 0.655429 0.655429i
\(204\) −0.527483 + 0.341445i −0.0369312 + 0.0239059i
\(205\) 7.21620 + 7.21620i 0.504001 + 0.504001i
\(206\) −9.15971 11.3284i −0.638187 0.789287i
\(207\) −2.10149 −0.146064
\(208\) −5.91563 15.5479i −0.410175 1.07805i
\(209\) 24.1203 1.66843
\(210\) 0.402751 + 0.498108i 0.0277925 + 0.0343727i
\(211\) −12.4716 12.4716i −0.858577 0.858577i 0.132593 0.991171i \(-0.457670\pi\)
−0.991171 + 0.132593i \(0.957670\pi\)
\(212\) 11.4334 + 17.6630i 0.785252 + 1.21310i
\(213\) 0.944203 0.944203i 0.0646957 0.0646957i
\(214\) 3.05409 28.8527i 0.208773 1.97233i
\(215\) 6.27690i 0.428081i
\(216\) 2.72413 + 0.891801i 0.185353 + 0.0606794i
\(217\) 18.2619i 1.23970i
\(218\) 1.58372 + 0.167639i 0.107263 + 0.0113539i
\(219\) 1.87890 1.87890i 0.126965 0.126965i
\(220\) −9.67222 2.07083i −0.652101 0.139616i
\(221\) 5.44374 + 5.44374i 0.366186 + 0.366186i
\(222\) 0.0257367 0.0208097i 0.00172733 0.00139665i
\(223\) 3.08673 0.206703 0.103351 0.994645i \(-0.467043\pi\)
0.103351 + 0.994645i \(0.467043\pi\)
\(224\) −3.85353 14.5970i −0.257475 0.975303i
\(225\) −2.97120 −0.198080
\(226\) 0.926530 0.749157i 0.0616319 0.0498332i
\(227\) 8.31678 + 8.31678i 0.552004 + 0.552004i 0.927019 0.375015i \(-0.122362\pi\)
−0.375015 + 0.927019i \(0.622362\pi\)
\(228\) 1.61875 + 0.346576i 0.107204 + 0.0229525i
\(229\) −9.98910 + 9.98910i −0.660098 + 0.660098i −0.955403 0.295305i \(-0.904579\pi\)
0.295305 + 0.955403i \(0.404579\pi\)
\(230\) 0.994700 + 0.105290i 0.0655886 + 0.00694262i
\(231\) 2.24014i 0.147390i
\(232\) −4.35461 + 13.3017i −0.285894 + 0.873301i
\(233\) 13.9015i 0.910718i −0.890308 0.455359i \(-0.849511\pi\)
0.890308 0.455359i \(-0.150489\pi\)
\(234\) 1.83947 17.3779i 0.120250 1.13603i
\(235\) 1.33946 1.33946i 0.0873768 0.0873768i
\(236\) −1.47483 2.27840i −0.0960034 0.148311i
\(237\) 0.804314 + 0.804314i 0.0522458 + 0.0522458i
\(238\) 4.39290 + 5.43298i 0.284750 + 0.352168i
\(239\) −10.7687 −0.696569 −0.348284 0.937389i \(-0.613236\pi\)
−0.348284 + 0.937389i \(0.613236\pi\)
\(240\) −0.619363 0.277954i −0.0399797 0.0179418i
\(241\) −12.4707 −0.803305 −0.401653 0.915792i \(-0.631564\pi\)
−0.401653 + 0.915792i \(0.631564\pi\)
\(242\) −11.9684 14.8021i −0.769358 0.951515i
\(243\) 3.19886 + 3.19886i 0.205207 + 0.205207i
\(244\) 15.4294 9.98758i 0.987765 0.639390i
\(245\) 0.0866638 0.0866638i 0.00553675 0.00553675i
\(246\) −0.257836 + 2.43583i −0.0164390 + 0.155303i
\(247\) 20.2826i 1.29055i
\(248\) −8.74835 17.2641i −0.555521 1.09627i
\(249\) 0.929654i 0.0589144i
\(250\) 1.40636 + 0.148864i 0.0889458 + 0.00941502i
\(251\) 3.69093 3.69093i 0.232969 0.232969i −0.580962 0.813931i \(-0.697323\pi\)
0.813931 + 0.580962i \(0.197323\pi\)
\(252\) 3.32021 15.5077i 0.209154 0.976892i
\(253\) 2.47349 + 2.47349i 0.155507 + 0.155507i
\(254\) −23.2800 + 18.8233i −1.46072 + 1.18108i
\(255\) 0.314175 0.0196744
\(256\) 10.6356 + 11.9534i 0.664727 + 0.747086i
\(257\) 3.11011 0.194003 0.0970016 0.995284i \(-0.469075\pi\)
0.0970016 + 0.995284i \(0.469075\pi\)
\(258\) −1.17152 + 0.947248i −0.0729358 + 0.0589731i
\(259\) −0.260225 0.260225i −0.0161696 0.0161696i
\(260\) −1.74135 + 8.13330i −0.107994 + 0.504406i
\(261\) −10.3965 + 10.3965i −0.643527 + 0.643527i
\(262\) 9.29305 + 0.983680i 0.574126 + 0.0607719i
\(263\) 17.9512i 1.10692i 0.832877 + 0.553458i \(0.186692\pi\)
−0.832877 + 0.553458i \(0.813308\pi\)
\(264\) −1.07314 2.11774i −0.0660469 0.130338i
\(265\) 10.5203i 0.646257i
\(266\) 1.93759 18.3049i 0.118801 1.12234i
\(267\) 1.26075 1.26075i 0.0771568 0.0771568i
\(268\) 8.30304 5.37463i 0.507189 0.328308i
\(269\) 1.62436 + 1.62436i 0.0990392 + 0.0990392i 0.754890 0.655851i \(-0.227690\pi\)
−0.655851 + 0.754890i \(0.727690\pi\)
\(270\) −0.901115 1.11447i −0.0548401 0.0678243i
\(271\) 18.1808 1.10440 0.552201 0.833711i \(-0.313788\pi\)
0.552201 + 0.833711i \(0.313788\pi\)
\(272\) −6.75553 3.03171i −0.409614 0.183824i
\(273\) 1.88372 0.114008
\(274\) 9.14436 + 11.3094i 0.552431 + 0.683227i
\(275\) 3.49714 + 3.49714i 0.210886 + 0.210886i
\(276\) 0.130459 + 0.201541i 0.00785271 + 0.0121313i
\(277\) −13.8675 + 13.8675i −0.833218 + 0.833218i −0.987956 0.154737i \(-0.950547\pi\)
0.154737 + 0.987956i \(0.450547\pi\)
\(278\) 1.04966 9.91636i 0.0629543 0.594744i
\(279\) 20.3310i 1.21719i
\(280\) −2.34853 + 7.17390i −0.140352 + 0.428723i
\(281\) 10.7377i 0.640556i 0.947324 + 0.320278i \(0.103776\pi\)
−0.947324 + 0.320278i \(0.896224\pi\)
\(282\) 0.452136 + 0.0478591i 0.0269243 + 0.00284997i
\(283\) −16.3679 + 16.3679i −0.972971 + 0.972971i −0.999644 0.0266735i \(-0.991509\pi\)
0.0266735 + 0.999644i \(0.491509\pi\)
\(284\) 15.3868 + 3.29434i 0.913041 + 0.195483i
\(285\) −0.585284 0.585284i −0.0346692 0.0346692i
\(286\) −22.6191 + 18.2889i −1.33749 + 1.08145i
\(287\) 27.2359 1.60768
\(288\) 4.29014 + 16.2509i 0.252799 + 0.957592i
\(289\) −13.5732 −0.798425
\(290\) 5.44187 4.40008i 0.319557 0.258382i
\(291\) −0.575968 0.575968i −0.0337638 0.0337638i
\(292\) 30.6188 + 6.55553i 1.79183 + 0.383633i
\(293\) −4.22052 + 4.22052i −0.246566 + 0.246566i −0.819560 0.572994i \(-0.805782\pi\)
0.572994 + 0.819560i \(0.305782\pi\)
\(294\) 0.0292534 + 0.00309651i 0.00170609 + 0.000180592i
\(295\) 1.35704i 0.0790101i
\(296\) 0.370667 + 0.121346i 0.0215446 + 0.00705308i
\(297\) 5.01208i 0.290831i
\(298\) 1.85156 17.4921i 0.107258 1.01329i
\(299\) 2.07994 2.07994i 0.120286 0.120286i
\(300\) 0.184450 + 0.284948i 0.0106492 + 0.0164515i
\(301\) 11.8454 + 11.8454i 0.682755 + 0.682755i
\(302\) −19.7254 24.3957i −1.13507 1.40381i
\(303\) −0.0895217 −0.00514289
\(304\) 6.93721 + 18.2329i 0.397876 + 1.04573i
\(305\) −9.18991 −0.526213
\(306\) −4.89063 6.04855i −0.279579 0.345773i
\(307\) −12.6363 12.6363i −0.721190 0.721190i 0.247658 0.968848i \(-0.420339\pi\)
−0.968848 + 0.247658i \(0.920339\pi\)
\(308\) −22.1607 + 14.3448i −1.26272 + 0.817373i
\(309\) −1.23625 + 1.23625i −0.0703276 + 0.0703276i
\(310\) −1.01864 + 9.62330i −0.0578547 + 0.546567i
\(311\) 8.56815i 0.485855i −0.970044 0.242928i \(-0.921892\pi\)
0.970044 0.242928i \(-0.0781078\pi\)
\(312\) −1.78079 + 0.902392i −0.100817 + 0.0510879i
\(313\) 19.1825i 1.08426i −0.840295 0.542129i \(-0.817618\pi\)
0.840295 0.542129i \(-0.182382\pi\)
\(314\) −7.40239 0.783551i −0.417741 0.0442183i
\(315\) −5.60705 + 5.60705i −0.315921 + 0.315921i
\(316\) −2.80626 + 13.1072i −0.157865 + 0.737337i
\(317\) −9.41764 9.41764i −0.528947 0.528947i 0.391311 0.920258i \(-0.372022\pi\)
−0.920258 + 0.391311i \(0.872022\pi\)
\(318\) 1.96351 1.58762i 0.110108 0.0890293i
\(319\) 24.4737 1.37026
\(320\) −1.21644 7.90698i −0.0680012 0.442013i
\(321\) −3.48193 −0.194342
\(322\) 2.07583 1.67844i 0.115681 0.0935356i
\(323\) −6.38383 6.38383i −0.355206 0.355206i
\(324\) −3.66022 + 17.0957i −0.203345 + 0.949764i
\(325\) 2.94072 2.94072i 0.163122 0.163122i
\(326\) 4.20908 + 0.445536i 0.233120 + 0.0246760i
\(327\) 0.191122i 0.0105691i
\(328\) −25.7477 + 13.0473i −1.42168 + 0.720417i
\(329\) 5.05549i 0.278718i
\(330\) −0.124953 + 1.18046i −0.00687846 + 0.0649824i
\(331\) 12.8579 12.8579i 0.706733 0.706733i −0.259114 0.965847i \(-0.583431\pi\)
0.965847 + 0.259114i \(0.0834305\pi\)
\(332\) −9.19666 + 5.95308i −0.504732 + 0.326718i
\(333\) 0.289709 + 0.289709i 0.0158760 + 0.0158760i
\(334\) 16.1479 + 19.9711i 0.883574 + 1.09277i
\(335\) −4.94538 −0.270195
\(336\) −1.69336 + 0.644285i −0.0923802 + 0.0351486i
\(337\) 3.31961 0.180831 0.0904153 0.995904i \(-0.471181\pi\)
0.0904153 + 0.995904i \(0.471181\pi\)
\(338\) 3.81967 + 4.72403i 0.207763 + 0.256954i
\(339\) −0.101110 0.101110i −0.00549156 0.00549156i
\(340\) 2.01183 + 3.10800i 0.109107 + 0.168555i
\(341\) −23.9300 + 23.9300i −1.29588 + 1.29588i
\(342\) −2.15713 + 20.3789i −0.116644 + 1.10196i
\(343\) 18.3546i 0.991055i
\(344\) −16.8726 5.52361i −0.909710 0.297813i
\(345\) 0.120040i 0.00646272i
\(346\) −16.9760 1.79693i −0.912635 0.0966035i
\(347\) 17.8860 17.8860i 0.960171 0.960171i −0.0390656 0.999237i \(-0.512438\pi\)
0.999237 + 0.0390656i \(0.0124381\pi\)
\(348\) 1.64247 + 0.351654i 0.0880455 + 0.0188506i
\(349\) −3.68796 3.68796i −0.197412 0.197412i 0.601478 0.798890i \(-0.294579\pi\)
−0.798890 + 0.601478i \(0.794579\pi\)
\(350\) 2.93491 2.37306i 0.156878 0.126845i
\(351\) −4.21463 −0.224960
\(352\) 14.0780 24.1771i 0.750358 1.28864i
\(353\) 33.0951 1.76148 0.880738 0.473604i \(-0.157047\pi\)
0.880738 + 0.473604i \(0.157047\pi\)
\(354\) −0.253279 + 0.204792i −0.0134616 + 0.0108846i
\(355\) −5.56335 5.56335i −0.295272 0.295272i
\(356\) 20.5454 + 4.39879i 1.08890 + 0.233135i
\(357\) 0.592891 0.592891i 0.0313791 0.0313791i
\(358\) −4.82303 0.510524i −0.254905 0.0269820i
\(359\) 6.52522i 0.344388i −0.985063 0.172194i \(-0.944914\pi\)
0.985063 0.172194i \(-0.0550856\pi\)
\(360\) 2.61463 7.98672i 0.137803 0.420937i
\(361\) 4.78519i 0.251852i
\(362\) 0.940195 8.88224i 0.0494156 0.466840i
\(363\) −1.61532 + 1.61532i −0.0847825 + 0.0847825i
\(364\) 12.0625 + 18.6348i 0.632246 + 0.976729i
\(365\) −11.0707 11.0707i −0.579469 0.579469i
\(366\) −1.38685 1.71521i −0.0724919 0.0896554i
\(367\) −11.0338 −0.575959 −0.287980 0.957636i \(-0.592984\pi\)
−0.287980 + 0.957636i \(0.592984\pi\)
\(368\) −1.15835 + 2.58115i −0.0603833 + 0.134552i
\(369\) −30.3218 −1.57849
\(370\) −0.122613 0.151643i −0.00637435 0.00788357i
\(371\) −19.8532 19.8532i −1.03073 1.03073i
\(372\) −1.94982 + 1.26214i −0.101093 + 0.0654387i
\(373\) 6.84468 6.84468i 0.354404 0.354404i −0.507341 0.861745i \(-0.669372\pi\)
0.861745 + 0.507341i \(0.169372\pi\)
\(374\) −1.36290 + 12.8756i −0.0704737 + 0.665781i
\(375\) 0.169718i 0.00876421i
\(376\) 2.42183 + 4.77925i 0.124896 + 0.246471i
\(377\) 20.5797i 1.05991i
\(378\) −3.80367 0.402623i −0.195640 0.0207087i
\(379\) −10.1072 + 10.1072i −0.519171 + 0.519171i −0.917321 0.398150i \(-0.869653\pi\)
0.398150 + 0.917321i \(0.369653\pi\)
\(380\) 2.04207 9.53786i 0.104756 0.489282i
\(381\) 2.54050 + 2.54050i 0.130154 + 0.130154i
\(382\) 8.52307 6.89143i 0.436078 0.352596i
\(383\) 29.5283 1.50883 0.754413 0.656400i \(-0.227922\pi\)
0.754413 + 0.656400i \(0.227922\pi\)
\(384\) 1.29219 1.42028i 0.0659417 0.0724784i
\(385\) 13.1992 0.672692
\(386\) −12.4693 + 10.0822i −0.634671 + 0.513171i
\(387\) −13.1875 13.1875i −0.670356 0.670356i
\(388\) 2.00956 9.38604i 0.102020 0.476504i
\(389\) 0.990949 0.990949i 0.0502431 0.0502431i −0.681539 0.731782i \(-0.738689\pi\)
0.731782 + 0.681539i \(0.238689\pi\)
\(390\) 0.992643 + 0.105072i 0.0502645 + 0.00532055i
\(391\) 1.30930i 0.0662142i
\(392\) 0.156693 + 0.309220i 0.00791420 + 0.0156180i
\(393\) 1.12148i 0.0565711i
\(394\) 0.231581 2.18780i 0.0116669 0.110220i
\(395\) 4.73911 4.73911i 0.238451 0.238451i
\(396\) 24.6716 15.9701i 1.23979 0.802530i
\(397\) 17.0024 + 17.0024i 0.853326 + 0.853326i 0.990541 0.137216i \(-0.0438153\pi\)
−0.137216 + 0.990541i \(0.543815\pi\)
\(398\) 12.6905 + 15.6952i 0.636119 + 0.786730i
\(399\) −2.20902 −0.110589
\(400\) −1.63774 + 3.64936i −0.0818868 + 0.182468i
\(401\) 26.7791 1.33728 0.668642 0.743585i \(-0.266876\pi\)
0.668642 + 0.743585i \(0.266876\pi\)
\(402\) −0.746309 0.923008i −0.0372225 0.0460354i
\(403\) 20.1225 + 20.1225i 1.00238 + 1.00238i
\(404\) −0.573256 0.885599i −0.0285206 0.0440602i
\(405\) 6.18124 6.18124i 0.307148 0.307148i
\(406\) 1.96598 18.5731i 0.0975701 0.921767i
\(407\) 0.681985i 0.0338048i
\(408\) −0.276471 + 0.844518i −0.0136874 + 0.0418099i
\(409\) 13.1970i 0.652550i −0.945275 0.326275i \(-0.894206\pi\)
0.945275 0.326275i \(-0.105794\pi\)
\(410\) 14.3522 + 1.51920i 0.708805 + 0.0750279i
\(411\) 1.23417 1.23417i 0.0608773 0.0608773i
\(412\) −20.1460 4.31328i −0.992523 0.212500i
\(413\) 2.56092 + 2.56092i 0.126015 + 0.126015i
\(414\) −2.31103 + 1.86861i −0.113581 + 0.0918371i
\(415\) 5.47763 0.268886
\(416\) −20.3304 11.8381i −0.996777 0.580409i
\(417\) −1.19670 −0.0586026
\(418\) 26.5252 21.4473i 1.29739 1.04902i
\(419\) −9.92468 9.92468i −0.484852 0.484852i 0.421825 0.906677i \(-0.361390\pi\)
−0.906677 + 0.421825i \(0.861390\pi\)
\(420\) 0.885817 + 0.189654i 0.0432234 + 0.00925419i
\(421\) 15.7930 15.7930i 0.769702 0.769702i −0.208352 0.978054i \(-0.566810\pi\)
0.978054 + 0.208352i \(0.0668100\pi\)
\(422\) −24.8045 2.62559i −1.20747 0.127812i
\(423\) 5.62829i 0.273657i
\(424\) 28.2791 + 9.25777i 1.37335 + 0.449597i
\(425\) 1.85116i 0.0897943i
\(426\) 0.198779 1.87791i 0.00963089 0.0909852i
\(427\) −17.3426 + 17.3426i −0.839268 + 0.839268i
\(428\) −22.2967 34.4452i −1.07775 1.66497i
\(429\) 2.46838 + 2.46838i 0.119174 + 0.119174i
\(430\) 5.58130 + 6.90275i 0.269154 + 0.332880i
\(431\) −0.285215 −0.0137383 −0.00686917 0.999976i \(-0.502187\pi\)
−0.00686917 + 0.999976i \(0.502187\pi\)
\(432\) 3.78871 1.44152i 0.182285 0.0693552i
\(433\) −18.1101 −0.870318 −0.435159 0.900354i \(-0.643308\pi\)
−0.435159 + 0.900354i \(0.643308\pi\)
\(434\) 16.2382 + 20.0828i 0.779457 + 0.964004i
\(435\) −0.593860 0.593860i −0.0284734 0.0284734i
\(436\) 1.89069 1.22386i 0.0905476 0.0586123i
\(437\) −2.43913 + 2.43913i −0.116679 + 0.116679i
\(438\) 0.395559 3.73693i 0.0189005 0.178558i
\(439\) 11.5931i 0.553308i 0.960970 + 0.276654i \(0.0892256\pi\)
−0.960970 + 0.276654i \(0.910774\pi\)
\(440\) −12.4780 + 6.32304i −0.594863 + 0.301439i
\(441\) 0.364153i 0.0173406i
\(442\) 10.8270 + 1.14605i 0.514988 + 0.0545120i
\(443\) −22.6855 + 22.6855i −1.07782 + 1.07782i −0.0811145 + 0.996705i \(0.525848\pi\)
−0.996705 + 0.0811145i \(0.974152\pi\)
\(444\) 0.00979922 0.0457691i 0.000465050 0.00217211i
\(445\) −7.42850 7.42850i −0.352145 0.352145i
\(446\) 3.39450 2.74466i 0.160734 0.129963i
\(447\) −2.11094 −0.0998440
\(448\) −17.2171 12.6259i −0.813433 0.596520i
\(449\) 12.1999 0.575747 0.287873 0.957669i \(-0.407052\pi\)
0.287873 + 0.957669i \(0.407052\pi\)
\(450\) −3.26745 + 2.64193i −0.154029 + 0.124542i
\(451\) 35.6892 + 35.6892i 1.68054 + 1.68054i
\(452\) 0.352776 1.64771i 0.0165932 0.0775016i
\(453\) −2.66225 + 2.66225i −0.125083 + 0.125083i
\(454\) 16.5411 + 1.75090i 0.776315 + 0.0821738i
\(455\) 11.0991i 0.520333i
\(456\) 2.08832 1.05823i 0.0977945 0.0495561i
\(457\) 1.70660i 0.0798314i −0.999203 0.0399157i \(-0.987291\pi\)
0.999203 0.0399157i \(-0.0127089\pi\)
\(458\) −2.10297 + 19.8672i −0.0982652 + 0.928334i
\(459\) −1.32653 + 1.32653i −0.0619172 + 0.0619172i
\(460\) 1.18750 0.768680i 0.0553675 0.0358399i
\(461\) −4.74710 4.74710i −0.221094 0.221094i 0.587865 0.808959i \(-0.299969\pi\)
−0.808959 + 0.587865i \(0.799969\pi\)
\(462\) 1.99189 + 2.46350i 0.0926711 + 0.114612i
\(463\) −11.1761 −0.519398 −0.259699 0.965690i \(-0.583623\pi\)
−0.259699 + 0.965690i \(0.583623\pi\)
\(464\) 7.03886 + 18.5000i 0.326771 + 0.858843i
\(465\) 1.16133 0.0538556
\(466\) −12.3610 15.2876i −0.572610 0.708184i
\(467\) 2.06471 + 2.06471i 0.0955435 + 0.0955435i 0.753263 0.657719i \(-0.228479\pi\)
−0.657719 + 0.753263i \(0.728479\pi\)
\(468\) −13.4292 20.7462i −0.620764 0.958992i
\(469\) −9.33260 + 9.33260i −0.430940 + 0.430940i
\(470\) 0.281992 2.66404i 0.0130073 0.122883i
\(471\) 0.893315i 0.0411618i
\(472\) −3.64780 1.19419i −0.167904 0.0549668i
\(473\) 31.0437i 1.42739i
\(474\) 1.59969 + 0.169329i 0.0734762 + 0.00777754i
\(475\) −3.44856 + 3.44856i −0.158231 + 0.158231i
\(476\) 9.66181 + 2.06861i 0.442848 + 0.0948144i
\(477\) 22.1026 + 22.1026i 1.01201 + 1.01201i
\(478\) −11.8424 + 9.57532i −0.541659 + 0.437965i
\(479\) −41.6214 −1.90173 −0.950864 0.309608i \(-0.899802\pi\)
−0.950864 + 0.309608i \(0.899802\pi\)
\(480\) −0.928269 + 0.245058i −0.0423695 + 0.0111853i
\(481\) −0.573477 −0.0261483
\(482\) −13.7141 + 11.0887i −0.624659 + 0.505075i
\(483\) −0.226531 0.226531i −0.0103075 0.0103075i
\(484\) −26.3235 5.63589i −1.19652 0.256177i
\(485\) −3.39367 + 3.39367i −0.154099 + 0.154099i
\(486\) 6.36217 + 0.673443i 0.288594 + 0.0305480i
\(487\) 8.25627i 0.374127i 0.982348 + 0.187064i \(0.0598970\pi\)
−0.982348 + 0.187064i \(0.940103\pi\)
\(488\) 8.08704 24.7029i 0.366083 1.11825i
\(489\) 0.507950i 0.0229703i
\(490\) 0.0182450 0.172365i 0.000824225 0.00778664i
\(491\) 4.28512 4.28512i 0.193385 0.193385i −0.603772 0.797157i \(-0.706336\pi\)
0.797157 + 0.603772i \(0.206336\pi\)
\(492\) 1.88235 + 2.90797i 0.0848630 + 0.131101i
\(493\) −6.47737 6.47737i −0.291726 0.291726i
\(494\) −18.0349 22.3049i −0.811427 1.00354i
\(495\) −14.6947 −0.660476
\(496\) −24.9715 11.2066i −1.12125 0.503190i
\(497\) −20.9976 −0.941871
\(498\) 0.826631 + 1.02235i 0.0370422 + 0.0458125i
\(499\) −15.1287 15.1287i −0.677253 0.677253i 0.282125 0.959378i \(-0.408961\pi\)
−0.959378 + 0.282125i \(0.908961\pi\)
\(500\) 1.67895 1.08680i 0.0750849 0.0486031i
\(501\) 2.17941 2.17941i 0.0973689 0.0973689i
\(502\) 0.777037 7.34084i 0.0346808 0.327638i
\(503\) 18.6439i 0.831291i 0.909527 + 0.415646i \(0.136444\pi\)
−0.909527 + 0.415646i \(0.863556\pi\)
\(504\) −10.1379 20.0062i −0.451577 0.891146i
\(505\) 0.527472i 0.0234722i
\(506\) 4.91950 + 0.520734i 0.218698 + 0.0231495i
\(507\) 0.515524 0.515524i 0.0228952 0.0228952i
\(508\) −8.86385 + 41.4003i −0.393270 + 1.83684i
\(509\) 11.6243 + 11.6243i 0.515239 + 0.515239i 0.916127 0.400888i \(-0.131298\pi\)
−0.400888 + 0.916127i \(0.631298\pi\)
\(510\) 0.345500 0.279358i 0.0152990 0.0123702i
\(511\) −41.7839 −1.84841
\(512\) 22.3248 + 3.68821i 0.986627 + 0.162997i
\(513\) 4.94246 0.218215
\(514\) 3.42021 2.76545i 0.150859 0.121979i
\(515\) 7.28411 + 7.28411i 0.320976 + 0.320976i
\(516\) −0.446057 + 2.08339i −0.0196365 + 0.0917162i
\(517\) 6.62459 6.62459i 0.291349 0.291349i
\(518\) −0.517559 0.0547842i −0.0227402 0.00240708i
\(519\) 2.04865i 0.0899259i
\(520\) 5.31700 + 10.4926i 0.233166 + 0.460132i
\(521\) 36.9052i 1.61684i 0.588603 + 0.808422i \(0.299678\pi\)
−0.588603 + 0.808422i \(0.700322\pi\)
\(522\) −2.18873 + 20.6775i −0.0957983 + 0.905028i
\(523\) 6.04158 6.04158i 0.264180 0.264180i −0.562570 0.826750i \(-0.690187\pi\)
0.826750 + 0.562570i \(0.190187\pi\)
\(524\) 11.0943 7.18144i 0.484657 0.313723i
\(525\) −0.320281 0.320281i −0.0139782 0.0139782i
\(526\) 15.9618 + 19.7410i 0.695969 + 0.860750i
\(527\) 12.6669 0.551780
\(528\) −3.06319 1.37468i −0.133308 0.0598252i
\(529\) 22.4997 0.978250
\(530\) −9.35445 11.5692i −0.406331 0.502536i
\(531\) −2.85108 2.85108i −0.123726 0.123726i
\(532\) −14.1456 21.8529i −0.613288 0.947443i
\(533\) 30.0108 30.0108i 1.29991 1.29991i
\(534\) 0.265421 2.50750i 0.0114859 0.108510i
\(535\) 20.5159i 0.886981i
\(536\) 4.35189 13.2934i 0.187973 0.574189i
\(537\) 0.582041i 0.0251169i
\(538\) 3.23068 + 0.341971i 0.139284 + 0.0147434i
\(539\) 0.428614 0.428614i 0.0184617 0.0184617i
\(540\) −1.98193 0.424333i −0.0852885 0.0182604i
\(541\) −28.4222 28.4222i −1.22197 1.22197i −0.966932 0.255035i \(-0.917913\pi\)
−0.255035 0.966932i \(-0.582087\pi\)
\(542\) 19.9935 16.1660i 0.858795 0.694389i
\(543\) −1.07190 −0.0459997
\(544\) −10.1248 + 2.67290i −0.434099 + 0.114600i
\(545\) −1.12612 −0.0482375
\(546\) 2.07154 1.67497i 0.0886537 0.0716820i
\(547\) 23.3562 + 23.3562i 0.998640 + 0.998640i 0.999999 0.00135902i \(-0.000432589\pi\)
−0.00135902 + 0.999999i \(0.500433\pi\)
\(548\) 20.1122 + 4.30605i 0.859152 + 0.183945i
\(549\) 19.3076 19.3076i 0.824027 0.824027i
\(550\) 6.95543 + 0.736240i 0.296581 + 0.0313934i
\(551\) 24.1337i 1.02813i
\(552\) 0.322673 + 0.105634i 0.0137339 + 0.00449608i
\(553\) 17.8867i 0.760620i
\(554\) −2.91948 + 27.5810i −0.124037 + 1.17180i
\(555\) −0.0165485 + 0.0165485i −0.000702447 + 0.000702447i
\(556\) −7.66312 11.8384i −0.324989 0.502061i
\(557\) −4.89520 4.89520i −0.207416 0.207416i 0.595752 0.803168i \(-0.296854\pi\)
−0.803168 + 0.595752i \(0.796854\pi\)
\(558\) −18.0780 22.3582i −0.765302 0.946498i
\(559\) 26.1044 1.10410
\(560\) 3.79620 + 9.97747i 0.160419 + 0.421625i
\(561\) 1.55382 0.0656022
\(562\) 9.54774 + 11.8083i 0.402747 + 0.498103i
\(563\) 1.28613 + 1.28613i 0.0542040 + 0.0542040i 0.733689 0.679485i \(-0.237797\pi\)
−0.679485 + 0.733689i \(0.737797\pi\)
\(564\) 0.539773 0.349400i 0.0227285 0.0147124i
\(565\) −0.595755 + 0.595755i −0.0250636 + 0.0250636i
\(566\) −3.44587 + 32.5539i −0.144841 + 1.36834i
\(567\) 23.3297i 0.979754i
\(568\) 19.8503 10.0589i 0.832899 0.422061i
\(569\) 11.4799i 0.481261i −0.970617 0.240631i \(-0.922646\pi\)
0.970617 0.240631i \(-0.0773543\pi\)
\(570\) −1.16407 0.123218i −0.0487573 0.00516102i
\(571\) 28.7069 28.7069i 1.20134 1.20134i 0.227587 0.973758i \(-0.426917\pi\)
0.973758 0.227587i \(-0.0730835\pi\)
\(572\) −8.61221 + 40.2249i −0.360094 + 1.68189i
\(573\) −0.930105 0.930105i −0.0388557 0.0388557i
\(574\) 29.9515 24.2176i 1.25015 1.01082i
\(575\) −0.707288 −0.0294960
\(576\) 19.1679 + 14.0565i 0.798661 + 0.585687i
\(577\) −20.3419 −0.846842 −0.423421 0.905933i \(-0.639171\pi\)
−0.423421 + 0.905933i \(0.639171\pi\)
\(578\) −14.9266 + 12.0691i −0.620864 + 0.502007i
\(579\) 1.36075 + 1.36075i 0.0565509 + 0.0565509i
\(580\) 2.07199 9.67761i 0.0860346 0.401841i
\(581\) 10.3370 10.3370i 0.428852 0.428852i
\(582\) −1.14554 0.121256i −0.0474840 0.00502623i
\(583\) 52.0303i 2.15488i
\(584\) 39.5008 20.0165i 1.63456 0.828290i
\(585\) 12.3566i 0.510884i
\(586\) −0.888530 + 8.39415i −0.0367048 + 0.346759i
\(587\) −25.8136 + 25.8136i −1.06544 + 1.06544i −0.0677360 + 0.997703i \(0.521578\pi\)
−0.997703 + 0.0677360i \(0.978422\pi\)
\(588\) 0.0349236 0.0226063i 0.00144022 0.000932270i
\(589\) −23.5975 23.5975i −0.972320 0.972320i
\(590\) 1.20666 + 1.49235i 0.0496773 + 0.0614391i
\(591\) −0.264022 −0.0108604
\(592\) 0.515524 0.196145i 0.0211879 0.00806152i
\(593\) 4.02945 0.165470 0.0827349 0.996572i \(-0.473635\pi\)
0.0827349 + 0.996572i \(0.473635\pi\)
\(594\) −4.45665 5.51183i −0.182859 0.226153i
\(595\) −3.49338 3.49338i −0.143215 0.143215i
\(596\) −13.5175 20.8826i −0.553699 0.855385i
\(597\) 1.71279 1.71279i 0.0700997 0.0700997i
\(598\) 0.437882 4.13677i 0.0179063 0.169165i
\(599\) 31.6701i 1.29400i −0.762489 0.647002i \(-0.776023\pi\)
0.762489 0.647002i \(-0.223977\pi\)
\(600\) 0.456211 + 0.149351i 0.0186247 + 0.00609721i
\(601\) 19.4667i 0.794065i 0.917805 + 0.397032i \(0.129960\pi\)
−0.917805 + 0.397032i \(0.870040\pi\)
\(602\) 23.5591 + 2.49376i 0.960197 + 0.101638i
\(603\) 10.3900 10.3900i 0.423114 0.423114i
\(604\) −43.3843 9.28864i −1.76528 0.377949i
\(605\) 9.51768 + 9.51768i 0.386949 + 0.386949i
\(606\) −0.0984477 + 0.0796010i −0.00399916 + 0.00323357i
\(607\) 13.6128 0.552528 0.276264 0.961082i \(-0.410904\pi\)
0.276264 + 0.961082i \(0.410904\pi\)
\(608\) 23.8412 + 13.8824i 0.966890 + 0.563006i
\(609\) −2.24139 −0.0908257
\(610\) −10.1062 + 8.17150i −0.409189 + 0.330854i
\(611\) −5.57057 5.57057i −0.225361 0.225361i
\(612\) −10.7565 2.30298i −0.434807 0.0930926i
\(613\) −11.1480 + 11.1480i −0.450265 + 0.450265i −0.895442 0.445177i \(-0.853141\pi\)
0.445177 + 0.895442i \(0.353141\pi\)
\(614\) −25.1321 2.66026i −1.01425 0.107360i
\(615\) 1.73202i 0.0698416i
\(616\) −11.6152 + 35.4800i −0.467988 + 1.42953i
\(617\) 1.96695i 0.0791863i 0.999216 + 0.0395932i \(0.0126062\pi\)
−0.999216 + 0.0395932i \(0.987394\pi\)
\(618\) −0.260262 + 2.45876i −0.0104693 + 0.0989057i
\(619\) 7.84144 7.84144i 0.315174 0.315174i −0.531736 0.846910i \(-0.678460\pi\)
0.846910 + 0.531736i \(0.178460\pi\)
\(620\) 7.43666 + 11.4886i 0.298663 + 0.461392i
\(621\) 0.506840 + 0.506840i 0.0203388 + 0.0203388i
\(622\) −7.61864 9.42246i −0.305480 0.377806i
\(623\) −28.0372 −1.12329
\(624\) −1.15596 + 2.57581i −0.0462753 + 0.103115i
\(625\) −1.00000 −0.0400000
\(626\) −17.0567 21.0951i −0.681723 0.843131i
\(627\) −2.89464 2.89464i −0.115601 0.115601i
\(628\) −8.83718 + 5.72039i −0.352642 + 0.228268i
\(629\) −0.180499 + 0.180499i −0.00719696 + 0.00719696i
\(630\) −1.18043 + 11.1518i −0.0470295 + 0.444298i
\(631\) 0.220729i 0.00878708i 0.999990 + 0.00439354i \(0.00139851\pi\)
−0.999990 + 0.00439354i \(0.998601\pi\)
\(632\) 8.56860 + 16.9093i 0.340840 + 0.672618i
\(633\) 2.99339i 0.118977i
\(634\) −18.7306 1.98266i −0.743888 0.0787414i
\(635\) 14.9689 14.9689i 0.594024 0.594024i
\(636\) 0.747606 3.49184i 0.0296445 0.138460i
\(637\) −0.360418 0.360418i −0.0142803 0.0142803i
\(638\) 26.9139 21.7615i 1.06553 0.861547i
\(639\) 23.3767 0.924767
\(640\) −8.36847 7.61372i −0.330793 0.300959i
\(641\) −19.2037 −0.758502 −0.379251 0.925294i \(-0.623818\pi\)
−0.379251 + 0.925294i \(0.623818\pi\)
\(642\) −3.82910 + 3.09606i −0.151122 + 0.122192i
\(643\) −7.17110 7.17110i −0.282801 0.282801i 0.551424 0.834225i \(-0.314085\pi\)
−0.834225 + 0.551424i \(0.814085\pi\)
\(644\) 0.790371 3.69158i 0.0311450 0.145469i
\(645\) 0.753283 0.753283i 0.0296605 0.0296605i
\(646\) −12.6967 1.34396i −0.499546 0.0528775i
\(647\) 26.4735i 1.04078i −0.853928 0.520391i \(-0.825786\pi\)
0.853928 0.520391i \(-0.174214\pi\)
\(648\) 11.1760 + 22.0549i 0.439037 + 0.866399i
\(649\) 6.71153i 0.263451i
\(650\) 0.619099 5.84877i 0.0242831 0.229408i
\(651\) 2.19159 2.19159i 0.0858953 0.0858953i
\(652\) 5.02492 3.25268i 0.196791 0.127385i
\(653\) 10.5746 + 10.5746i 0.413815 + 0.413815i 0.883065 0.469250i \(-0.155476\pi\)
−0.469250 + 0.883065i \(0.655476\pi\)
\(654\) −0.169942 0.210179i −0.00664527 0.00821863i
\(655\) −6.60789 −0.258192
\(656\) −16.7135 + 37.2426i −0.652553 + 1.45408i
\(657\) 46.5182 1.81485
\(658\) −4.49525 5.55956i −0.175243 0.216734i
\(659\) 24.1291 + 24.1291i 0.939937 + 0.939937i 0.998296 0.0583584i \(-0.0185866\pi\)
−0.0583584 + 0.998296i \(0.518587\pi\)
\(660\) 0.912234 + 1.40927i 0.0355086 + 0.0548558i
\(661\) 23.4294 23.4294i 0.911299 0.911299i −0.0850756 0.996374i \(-0.527113\pi\)
0.996374 + 0.0850756i \(0.0271132\pi\)
\(662\) 2.70692 25.5729i 0.105207 0.993919i
\(663\) 1.30659i 0.0507439i
\(664\) −4.82027 + 14.7241i −0.187063 + 0.571408i
\(665\) 13.0158i 0.504732i
\(666\) 0.576200 + 0.0609914i 0.0223273 + 0.00236337i
\(667\) −2.47487 + 2.47487i −0.0958273 + 0.0958273i
\(668\) 35.5159 + 7.60401i 1.37415 + 0.294208i
\(669\) −0.370435 0.370435i −0.0143218 0.0143218i
\(670\) −5.43847 + 4.39734i −0.210107 + 0.169884i
\(671\) −45.4506 −1.75460
\(672\) −1.28931 + 2.21423i −0.0497363 + 0.0854157i
\(673\) −41.8069 −1.61154 −0.805769 0.592230i \(-0.798248\pi\)
−0.805769 + 0.592230i \(0.798248\pi\)
\(674\) 3.65060 2.95173i 0.140616 0.113697i
\(675\) 0.716597 + 0.716597i 0.0275818 + 0.0275818i
\(676\) 8.40105 + 1.79867i 0.323117 + 0.0691798i
\(677\) −22.7350 + 22.7350i −0.873776 + 0.873776i −0.992882 0.119106i \(-0.961997\pi\)
0.119106 + 0.992882i \(0.461997\pi\)
\(678\) −0.201097 0.0212864i −0.00772310 0.000817499i
\(679\) 12.8086i 0.491550i
\(680\) 4.97600 + 1.62900i 0.190821 + 0.0624693i
\(681\) 1.99617i 0.0764936i
\(682\) −5.03788 + 47.5940i −0.192911 + 1.82247i
\(683\) 34.4402 34.4402i 1.31782 1.31782i 0.402315 0.915501i \(-0.368206\pi\)
0.915501 0.402315i \(-0.131794\pi\)
\(684\) 15.7483 + 24.3289i 0.602151 + 0.930238i
\(685\) −7.27190 7.27190i −0.277845 0.277845i
\(686\) 16.3206 + 20.1847i 0.623122 + 0.770655i
\(687\) 2.39756 0.0914727
\(688\) −23.4664 + 8.92845i −0.894649 + 0.340394i
\(689\) −43.7519 −1.66682
\(690\) −0.106737 0.132009i −0.00406341 0.00502548i
\(691\) 16.0991 + 16.0991i 0.612438 + 0.612438i 0.943581 0.331143i \(-0.107434\pi\)
−0.331143 + 0.943581i \(0.607434\pi\)
\(692\) −20.2664 + 13.1186i −0.770414 + 0.498696i
\(693\) −27.7308 + 27.7308i −1.05341 + 1.05341i
\(694\) 3.76547 35.5733i 0.142935 1.35034i
\(695\) 7.05110i 0.267463i
\(696\) 2.11892 1.07373i 0.0803174 0.0406998i
\(697\) 18.8915i 0.715567i
\(698\) −7.33495 0.776413i −0.277632 0.0293877i
\(699\) −1.66830 + 1.66830i −0.0631010 + 0.0631010i
\(700\) 1.11747 5.21934i 0.0422363 0.197273i
\(701\) −30.0507 30.0507i −1.13500 1.13500i −0.989334 0.145666i \(-0.953467\pi\)
−0.145666 0.989334i \(-0.546533\pi\)
\(702\) −4.63486 + 3.74757i −0.174931 + 0.141443i
\(703\) 0.672512 0.0253643
\(704\) −6.01617 39.1056i −0.226743 1.47385i
\(705\) −0.321495 −0.0121082
\(706\) 36.3950 29.4276i 1.36974 1.10752i
\(707\) 0.995412 + 0.995412i 0.0374363 + 0.0374363i
\(708\) −0.0964358 + 0.450422i −0.00362428 + 0.0169279i
\(709\) −12.9188 + 12.9188i −0.485176 + 0.485176i −0.906780 0.421604i \(-0.861467\pi\)
0.421604 + 0.906780i \(0.361467\pi\)
\(710\) −11.0649 1.17123i −0.415258 0.0439555i
\(711\) 19.9133i 0.746807i
\(712\) 26.5052 13.4312i 0.993325 0.503355i
\(713\) 4.83977i 0.181251i
\(714\) 0.124819 1.17919i 0.00467123 0.0441302i
\(715\) 14.5440 14.5440i 0.543913 0.543913i
\(716\) −5.75788 + 3.72713i −0.215182 + 0.139289i
\(717\) 1.29234 + 1.29234i 0.0482633 + 0.0482633i
\(718\) −5.80211 7.17584i −0.216533 0.267800i
\(719\) 17.0356 0.635319 0.317659 0.948205i \(-0.397103\pi\)
0.317659 + 0.948205i \(0.397103\pi\)
\(720\) −4.22632 11.1079i −0.157506 0.413968i
\(721\) 27.4922 1.02386
\(722\) 4.25490 + 5.26231i 0.158351 + 0.195843i
\(723\) 1.49659 + 1.49659i 0.0556588 + 0.0556588i
\(724\) −6.86398 10.6039i −0.255098 0.394090i
\(725\) −3.49909 + 3.49909i −0.129953 + 0.129953i
\(726\) −0.340068 + 3.21270i −0.0126211 + 0.119234i
\(727\) 31.7051i 1.17588i 0.808905 + 0.587939i \(0.200061\pi\)
−0.808905 + 0.587939i \(0.799939\pi\)
\(728\) 29.8349 + 9.76710i 1.10576 + 0.361993i
\(729\) 25.4570i 0.942852i
\(730\) −22.0185 2.33068i −0.814940 0.0862623i
\(731\) 8.21624 8.21624i 0.303888 0.303888i
\(732\) −3.05026 0.653065i −0.112741 0.0241380i
\(733\) 3.87657 + 3.87657i 0.143184 + 0.143184i 0.775065 0.631881i \(-0.217717\pi\)
−0.631881 + 0.775065i \(0.717717\pi\)
\(734\) −12.1339 + 9.81105i −0.447872 + 0.362132i
\(735\) −0.0208008 −0.000767251
\(736\) 1.02126 + 3.86849i 0.0376442 + 0.142595i
\(737\) −24.4584 −0.900937
\(738\) −33.3451 + 26.9616i −1.22745 + 0.992469i
\(739\) 11.3024 + 11.3024i 0.415766 + 0.415766i 0.883742 0.467975i \(-0.155016\pi\)
−0.467975 + 0.883742i \(0.655016\pi\)
\(740\) −0.269677 0.0577382i −0.00991352 0.00212250i
\(741\) −2.43409 + 2.43409i −0.0894184 + 0.0894184i
\(742\) −39.4859 4.17962i −1.44957 0.153439i
\(743\) 30.7210i 1.12704i −0.826102 0.563521i \(-0.809446\pi\)
0.826102 0.563521i \(-0.190554\pi\)
\(744\) −1.02196 + 3.12172i −0.0374670 + 0.114448i
\(745\) 12.4379i 0.455690i
\(746\) 1.44098 13.6133i 0.0527582 0.498419i
\(747\) −11.5082 + 11.5082i −0.421065 + 0.421065i
\(748\) 9.94995 + 15.3712i 0.363806 + 0.562028i
\(749\) 38.7163 + 38.7163i 1.41466 + 1.41466i
\(750\) −0.150910 0.186640i −0.00551046 0.00681514i
\(751\) 16.4695 0.600981 0.300491 0.953785i \(-0.402850\pi\)
0.300491 + 0.953785i \(0.402850\pi\)
\(752\) 6.91292 + 3.10234i 0.252088 + 0.113131i
\(753\) −0.885888 −0.0322836
\(754\) −18.2991 22.6317i −0.666415 0.824198i
\(755\) 15.6863 + 15.6863i 0.570883 + 0.570883i
\(756\) −4.54093 + 2.93939i −0.165152 + 0.106905i
\(757\) 21.9737 21.9737i 0.798649 0.798649i −0.184233 0.982883i \(-0.558980\pi\)
0.982883 + 0.184233i \(0.0589802\pi\)
\(758\) −2.12783 + 20.1021i −0.0772861 + 0.730140i
\(759\) 0.593681i 0.0215493i
\(760\) −6.23521 12.3046i −0.226175 0.446336i
\(761\) 5.91749i 0.214509i −0.994232 0.107254i \(-0.965794\pi\)
0.994232 0.107254i \(-0.0342060\pi\)
\(762\) 5.05277 + 0.534842i 0.183043 + 0.0193753i
\(763\) −2.12513 + 2.12513i −0.0769349 + 0.0769349i
\(764\) 3.24515 15.1571i 0.117406 0.548365i
\(765\) 3.88919 + 3.88919i 0.140614 + 0.140614i
\(766\) 32.4725 26.2560i 1.17328 0.948668i
\(767\) 5.64368 0.203782
\(768\) 0.158140 2.71088i