Properties

Label 80.2.l.a.61.2
Level $80$
Weight $2$
Character 80.61
Analytic conductor $0.639$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [80,2,Mod(21,80)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(80, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("80.21");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 61.2
Root \(-0.530822 - 1.31081i\) of defining polynomial
Character \(\chi\) \(=\) 80.61
Dual form 80.2.l.a.21.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.17275 - 0.790349i) q^{2} +(1.37027 + 1.37027i) q^{3} +(0.750696 + 1.85377i) q^{4} +(-0.707107 + 0.707107i) q^{5} +(-0.523995 - 2.68998i) q^{6} +2.73482i q^{7} +(0.584744 - 2.76732i) q^{8} +0.755274i q^{9} +O(q^{10})\) \(q+(-1.17275 - 0.790349i) q^{2} +(1.37027 + 1.37027i) q^{3} +(0.750696 + 1.85377i) q^{4} +(-0.707107 + 0.707107i) q^{5} +(-0.523995 - 2.68998i) q^{6} +2.73482i q^{7} +(0.584744 - 2.76732i) q^{8} +0.755274i q^{9} +(1.38812 - 0.270400i) q^{10} +(4.12175 - 4.12175i) q^{11} +(-1.51151 + 3.56882i) q^{12} +(-1.37919 - 1.37919i) q^{13} +(2.16146 - 3.20726i) q^{14} -1.93785 q^{15} +(-2.87291 + 2.78323i) q^{16} -4.94921 q^{17} +(0.596931 - 0.885750i) q^{18} +(-0.292715 - 0.292715i) q^{19} +(-1.84163 - 0.779990i) q^{20} +(-3.74744 + 3.74744i) q^{21} +(-8.09141 + 1.57617i) q^{22} +1.64818i q^{23} +(4.59323 - 2.99072i) q^{24} -1.00000i q^{25} +(0.527407 + 2.70749i) q^{26} +(3.07588 - 3.07588i) q^{27} +(-5.06972 + 2.05302i) q^{28} +(-5.67267 - 5.67267i) q^{29} +(2.27262 + 1.53158i) q^{30} +3.95550 q^{31} +(5.56894 - 0.993438i) q^{32} +11.2958 q^{33} +(5.80420 + 3.91161i) q^{34} +(-1.93381 - 1.93381i) q^{35} +(-1.40010 + 0.566981i) q^{36} +(2.48772 - 2.48772i) q^{37} +(0.111935 + 0.574630i) q^{38} -3.77973i q^{39} +(1.54332 + 2.37027i) q^{40} +8.40843i q^{41} +(7.35660 - 1.43303i) q^{42} +(-3.22713 + 3.22713i) q^{43} +(10.7349 + 4.54659i) q^{44} +(-0.534060 - 0.534060i) q^{45} +(1.30264 - 1.93291i) q^{46} -5.19809 q^{47} +(-7.75044 - 0.122885i) q^{48} -0.479225 q^{49} +(-0.790349 + 1.17275i) q^{50} +(-6.78176 - 6.78176i) q^{51} +(1.52135 - 3.59205i) q^{52} +(7.20537 - 7.20537i) q^{53} +(-6.03826 + 1.17622i) q^{54} +5.82903i q^{55} +(7.56812 + 1.59917i) q^{56} -0.802198i q^{57} +(2.16925 + 11.1360i) q^{58} +(-6.41142 + 6.41142i) q^{59} +(-1.45474 - 3.59233i) q^{60} +(-3.82618 - 3.82618i) q^{61} +(-4.63883 - 3.12623i) q^{62} -2.06554 q^{63} +(-7.31615 - 3.23635i) q^{64} +1.95047 q^{65} +(-13.2472 - 8.92764i) q^{66} +(5.76044 + 5.76044i) q^{67} +(-3.71535 - 9.17470i) q^{68} +(-2.25846 + 2.25846i) q^{69} +(0.739494 + 3.79626i) q^{70} +7.92245i q^{71} +(2.09009 + 0.441642i) q^{72} -4.36276i q^{73} +(-4.88365 + 0.951312i) q^{74} +(1.37027 - 1.37027i) q^{75} +(0.322886 - 0.762367i) q^{76} +(11.2722 + 11.2722i) q^{77} +(-2.98730 + 4.43268i) q^{78} -5.56087 q^{79} +(0.0634130 - 3.99950i) q^{80} +10.6954 q^{81} +(6.64559 - 9.86100i) q^{82} +(-0.516191 - 0.516191i) q^{83} +(-9.76006 - 4.13369i) q^{84} +(3.49962 - 3.49962i) q^{85} +(6.33518 - 1.23406i) q^{86} -15.5462i q^{87} +(-8.99604 - 13.8164i) q^{88} +6.42236i q^{89} +(0.204226 + 1.04841i) q^{90} +(3.77184 - 3.77184i) q^{91} +(-3.05535 + 1.23729i) q^{92} +(5.42011 + 5.42011i) q^{93} +(6.09607 + 4.10830i) q^{94} +0.413962 q^{95} +(8.99222 + 6.26967i) q^{96} -9.44534 q^{97} +(0.562012 + 0.378755i) q^{98} +(3.11305 + 3.11305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 4 q^{4} - 12 q^{6} + 4 q^{10} - 8 q^{11} - 12 q^{12} + 4 q^{14} - 8 q^{15} + 16 q^{16} - 8 q^{19} + 8 q^{20} - 20 q^{22} + 8 q^{24} - 16 q^{26} + 24 q^{27} - 4 q^{28} - 16 q^{29} + 16 q^{34} - 4 q^{36} - 16 q^{37} + 20 q^{38} + 60 q^{42} + 8 q^{43} + 40 q^{44} - 4 q^{46} - 40 q^{47} - 40 q^{48} - 16 q^{49} - 4 q^{50} - 32 q^{51} + 56 q^{52} + 16 q^{53} + 32 q^{54} + 16 q^{56} - 12 q^{58} - 8 q^{59} - 28 q^{60} + 16 q^{61} - 8 q^{62} + 40 q^{63} - 16 q^{64} + 40 q^{67} - 48 q^{68} + 16 q^{69} - 8 q^{70} - 40 q^{72} - 72 q^{74} + 16 q^{77} - 16 q^{78} + 16 q^{79} + 16 q^{80} - 16 q^{81} - 76 q^{82} + 40 q^{83} - 64 q^{84} - 16 q^{85} + 28 q^{86} + 36 q^{90} + 32 q^{91} - 52 q^{92} - 48 q^{93} - 36 q^{94} + 32 q^{95} + 8 q^{96} + 60 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.17275 0.790349i −0.829261 0.558861i
\(3\) 1.37027 + 1.37027i 0.791125 + 0.791125i 0.981677 0.190552i \(-0.0610278\pi\)
−0.190552 + 0.981677i \(0.561028\pi\)
\(4\) 0.750696 + 1.85377i 0.375348 + 0.926884i
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) −0.523995 2.68998i −0.213920 1.09818i
\(7\) 2.73482i 1.03366i 0.856087 + 0.516832i \(0.172889\pi\)
−0.856087 + 0.516832i \(0.827111\pi\)
\(8\) 0.584744 2.76732i 0.206738 0.978396i
\(9\) 0.755274i 0.251758i
\(10\) 1.38812 0.270400i 0.438963 0.0855079i
\(11\) 4.12175 4.12175i 1.24275 1.24275i 0.283900 0.958854i \(-0.408371\pi\)
0.958854 0.283900i \(-0.0916285\pi\)
\(12\) −1.51151 + 3.56882i −0.436334 + 1.03023i
\(13\) −1.37919 1.37919i −0.382519 0.382519i 0.489490 0.872009i \(-0.337183\pi\)
−0.872009 + 0.489490i \(0.837183\pi\)
\(14\) 2.16146 3.20726i 0.577675 0.857177i
\(15\) −1.93785 −0.500352
\(16\) −2.87291 + 2.78323i −0.718228 + 0.695808i
\(17\) −4.94921 −1.20036 −0.600180 0.799865i \(-0.704905\pi\)
−0.600180 + 0.799865i \(0.704905\pi\)
\(18\) 0.596931 0.885750i 0.140698 0.208773i
\(19\) −0.292715 0.292715i −0.0671535 0.0671535i 0.672732 0.739886i \(-0.265121\pi\)
−0.739886 + 0.672732i \(0.765121\pi\)
\(20\) −1.84163 0.779990i −0.411802 0.174411i
\(21\) −3.74744 + 3.74744i −0.817757 + 0.817757i
\(22\) −8.09141 + 1.57617i −1.72510 + 0.336040i
\(23\) 1.64818i 0.343670i 0.985126 + 0.171835i \(0.0549696\pi\)
−0.985126 + 0.171835i \(0.945030\pi\)
\(24\) 4.59323 2.99072i 0.937590 0.610478i
\(25\) 1.00000i 0.200000i
\(26\) 0.527407 + 2.70749i 0.103433 + 0.530983i
\(27\) 3.07588 3.07588i 0.591953 0.591953i
\(28\) −5.06972 + 2.05302i −0.958086 + 0.387984i
\(29\) −5.67267 5.67267i −1.05339 1.05339i −0.998492 0.0548963i \(-0.982517\pi\)
−0.0548963 0.998492i \(-0.517483\pi\)
\(30\) 2.27262 + 1.53158i 0.414922 + 0.279627i
\(31\) 3.95550 0.710430 0.355215 0.934785i \(-0.384408\pi\)
0.355215 + 0.934785i \(0.384408\pi\)
\(32\) 5.56894 0.993438i 0.984459 0.175617i
\(33\) 11.2958 1.96635
\(34\) 5.80420 + 3.91161i 0.995413 + 0.670835i
\(35\) −1.93381 1.93381i −0.326873 0.326873i
\(36\) −1.40010 + 0.566981i −0.233351 + 0.0944969i
\(37\) 2.48772 2.48772i 0.408979 0.408979i −0.472403 0.881382i \(-0.656613\pi\)
0.881382 + 0.472403i \(0.156613\pi\)
\(38\) 0.111935 + 0.574630i 0.0181583 + 0.0932173i
\(39\) 3.77973i 0.605241i
\(40\) 1.54332 + 2.37027i 0.244020 + 0.374772i
\(41\) 8.40843i 1.31318i 0.754250 + 0.656588i \(0.228001\pi\)
−0.754250 + 0.656588i \(0.771999\pi\)
\(42\) 7.35660 1.43303i 1.13515 0.221121i
\(43\) −3.22713 + 3.22713i −0.492133 + 0.492133i −0.908978 0.416845i \(-0.863136\pi\)
0.416845 + 0.908978i \(0.363136\pi\)
\(44\) 10.7349 + 4.54659i 1.61835 + 0.685424i
\(45\) −0.534060 0.534060i −0.0796129 0.0796129i
\(46\) 1.30264 1.93291i 0.192064 0.284992i
\(47\) −5.19809 −0.758219 −0.379109 0.925352i \(-0.623770\pi\)
−0.379109 + 0.925352i \(0.623770\pi\)
\(48\) −7.75044 0.122885i −1.11868 0.0177369i
\(49\) −0.479225 −0.0684607
\(50\) −0.790349 + 1.17275i −0.111772 + 0.165852i
\(51\) −6.78176 6.78176i −0.949636 0.949636i
\(52\) 1.52135 3.59205i 0.210973 0.498128i
\(53\) 7.20537 7.20537i 0.989733 0.989733i −0.0102143 0.999948i \(-0.503251\pi\)
0.999948 + 0.0102143i \(0.00325138\pi\)
\(54\) −6.03826 + 1.17622i −0.821703 + 0.160064i
\(55\) 5.82903i 0.785987i
\(56\) 7.56812 + 1.59917i 1.01133 + 0.213698i
\(57\) 0.802198i 0.106254i
\(58\) 2.16925 + 11.1360i 0.284836 + 1.46223i
\(59\) −6.41142 + 6.41142i −0.834695 + 0.834695i −0.988155 0.153459i \(-0.950959\pi\)
0.153459 + 0.988155i \(0.450959\pi\)
\(60\) −1.45474 3.59233i −0.187806 0.463768i
\(61\) −3.82618 3.82618i −0.489892 0.489892i 0.418380 0.908272i \(-0.362598\pi\)
−0.908272 + 0.418380i \(0.862598\pi\)
\(62\) −4.63883 3.12623i −0.589132 0.397032i
\(63\) −2.06554 −0.260233
\(64\) −7.31615 3.23635i −0.914519 0.404544i
\(65\) 1.95047 0.241926
\(66\) −13.2472 8.92764i −1.63062 1.09892i
\(67\) 5.76044 + 5.76044i 0.703750 + 0.703750i 0.965213 0.261463i \(-0.0842050\pi\)
−0.261463 + 0.965213i \(0.584205\pi\)
\(68\) −3.71535 9.17470i −0.450553 1.11260i
\(69\) −2.25846 + 2.25846i −0.271886 + 0.271886i
\(70\) 0.739494 + 3.79626i 0.0883864 + 0.453740i
\(71\) 7.92245i 0.940222i 0.882607 + 0.470111i \(0.155786\pi\)
−0.882607 + 0.470111i \(0.844214\pi\)
\(72\) 2.09009 + 0.441642i 0.246319 + 0.0520480i
\(73\) 4.36276i 0.510622i −0.966859 0.255311i \(-0.917822\pi\)
0.966859 0.255311i \(-0.0821779\pi\)
\(74\) −4.88365 + 0.951312i −0.567713 + 0.110588i
\(75\) 1.37027 1.37027i 0.158225 0.158225i
\(76\) 0.322886 0.762367i 0.0370376 0.0874495i
\(77\) 11.2722 + 11.2722i 1.28459 + 1.28459i
\(78\) −2.98730 + 4.43268i −0.338246 + 0.501902i
\(79\) −5.56087 −0.625647 −0.312824 0.949811i \(-0.601275\pi\)
−0.312824 + 0.949811i \(0.601275\pi\)
\(80\) 0.0634130 3.99950i 0.00708979 0.447157i
\(81\) 10.6954 1.18838
\(82\) 6.64559 9.86100i 0.733883 1.08897i
\(83\) −0.516191 0.516191i −0.0566594 0.0566594i 0.678209 0.734869i \(-0.262756\pi\)
−0.734869 + 0.678209i \(0.762756\pi\)
\(84\) −9.76006 4.13369i −1.06491 0.451023i
\(85\) 3.49962 3.49962i 0.379587 0.379587i
\(86\) 6.33518 1.23406i 0.683140 0.133073i
\(87\) 15.5462i 1.66672i
\(88\) −8.99604 13.8164i −0.958981 1.47283i
\(89\) 6.42236i 0.680768i 0.940286 + 0.340384i \(0.110557\pi\)
−0.940286 + 0.340384i \(0.889443\pi\)
\(90\) 0.204226 + 1.04841i 0.0215273 + 0.110512i
\(91\) 3.77184 3.77184i 0.395396 0.395396i
\(92\) −3.05535 + 1.23729i −0.318542 + 0.128996i
\(93\) 5.42011 + 5.42011i 0.562039 + 0.562039i
\(94\) 6.09607 + 4.10830i 0.628761 + 0.423739i
\(95\) 0.413962 0.0424716
\(96\) 8.99222 + 6.26967i 0.917765 + 0.639895i
\(97\) −9.44534 −0.959029 −0.479515 0.877534i \(-0.659187\pi\)
−0.479515 + 0.877534i \(0.659187\pi\)
\(98\) 0.562012 + 0.378755i 0.0567718 + 0.0382600i
\(99\) 3.11305 + 3.11305i 0.312873 + 0.312873i
\(100\) 1.85377 0.750696i 0.185377 0.0750696i
\(101\) −11.0542 + 11.0542i −1.09993 + 1.09993i −0.105515 + 0.994418i \(0.533649\pi\)
−0.994418 + 0.105515i \(0.966351\pi\)
\(102\) 2.59336 + 13.3133i 0.256781 + 1.31821i
\(103\) 5.46824i 0.538801i 0.963028 + 0.269401i \(0.0868256\pi\)
−0.963028 + 0.269401i \(0.913174\pi\)
\(104\) −4.62314 + 3.01019i −0.453336 + 0.295174i
\(105\) 5.29967i 0.517195i
\(106\) −14.1449 + 2.75535i −1.37387 + 0.267624i
\(107\) 0.293704 0.293704i 0.0283934 0.0283934i −0.692768 0.721161i \(-0.743609\pi\)
0.721161 + 0.692768i \(0.243609\pi\)
\(108\) 8.01101 + 3.39292i 0.770860 + 0.326483i
\(109\) 10.4135 + 10.4135i 0.997429 + 0.997429i 0.999997 0.00256817i \(-0.000817475\pi\)
−0.00256817 + 0.999997i \(0.500817\pi\)
\(110\) 4.60697 6.83601i 0.439258 0.651788i
\(111\) 6.81770 0.647107
\(112\) −7.61163 7.85689i −0.719231 0.742406i
\(113\) −17.4145 −1.63822 −0.819108 0.573639i \(-0.805531\pi\)
−0.819108 + 0.573639i \(0.805531\pi\)
\(114\) −0.634017 + 0.940779i −0.0593811 + 0.0881121i
\(115\) −1.16544 1.16544i −0.108678 0.108678i
\(116\) 6.25736 14.7743i 0.580982 1.37176i
\(117\) 1.04167 1.04167i 0.0963022 0.0963022i
\(118\) 12.5863 2.45175i 1.15866 0.225701i
\(119\) 13.5352i 1.24077i
\(120\) −1.13315 + 5.36266i −0.103442 + 0.489542i
\(121\) 22.9776i 2.08888i
\(122\) 1.46314 + 7.51117i 0.132467 + 0.680030i
\(123\) −11.5218 + 11.5218i −1.03889 + 1.03889i
\(124\) 2.96938 + 7.33259i 0.266658 + 0.658486i
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 2.42236 + 1.63250i 0.215801 + 0.145434i
\(127\) 10.9793 0.974254 0.487127 0.873331i \(-0.338045\pi\)
0.487127 + 0.873331i \(0.338045\pi\)
\(128\) 6.02218 + 9.57775i 0.532291 + 0.846562i
\(129\) −8.84407 −0.778677
\(130\) −2.28742 1.54155i −0.200620 0.135203i
\(131\) 5.77044 + 5.77044i 0.504166 + 0.504166i 0.912730 0.408564i \(-0.133970\pi\)
−0.408564 + 0.912730i \(0.633970\pi\)
\(132\) 8.47972 + 20.9398i 0.738065 + 1.82258i
\(133\) 0.800523 0.800523i 0.0694142 0.0694142i
\(134\) −2.20281 11.3083i −0.190294 0.976892i
\(135\) 4.34995i 0.374384i
\(136\) −2.89402 + 13.6961i −0.248160 + 1.17443i
\(137\) 7.18832i 0.614139i 0.951687 + 0.307070i \(0.0993484\pi\)
−0.951687 + 0.307070i \(0.900652\pi\)
\(138\) 4.43358 0.863640i 0.377411 0.0735180i
\(139\) 4.91327 4.91327i 0.416738 0.416738i −0.467340 0.884078i \(-0.654788\pi\)
0.884078 + 0.467340i \(0.154788\pi\)
\(140\) 2.13313 5.03653i 0.180282 0.425665i
\(141\) −7.12278 7.12278i −0.599846 0.599846i
\(142\) 6.26150 9.29107i 0.525454 0.779689i
\(143\) −11.3694 −0.950754
\(144\) −2.10210 2.16984i −0.175175 0.180820i
\(145\) 8.02237 0.666221
\(146\) −3.44810 + 5.11644i −0.285367 + 0.423439i
\(147\) −0.656667 0.656667i −0.0541609 0.0541609i
\(148\) 6.47918 + 2.74414i 0.532585 + 0.225567i
\(149\) 9.76620 9.76620i 0.800078 0.800078i −0.183029 0.983107i \(-0.558590\pi\)
0.983107 + 0.183029i \(0.0585903\pi\)
\(150\) −2.68998 + 0.523995i −0.219636 + 0.0427840i
\(151\) 1.90755i 0.155234i −0.996983 0.0776169i \(-0.975269\pi\)
0.996983 0.0776169i \(-0.0247311\pi\)
\(152\) −0.981202 + 0.638874i −0.0795860 + 0.0518196i
\(153\) 3.73801i 0.302201i
\(154\) −4.31053 22.1285i −0.347353 1.78317i
\(155\) −2.79696 + 2.79696i −0.224658 + 0.224658i
\(156\) 7.00674 2.83742i 0.560988 0.227176i
\(157\) −4.41296 4.41296i −0.352192 0.352192i 0.508732 0.860925i \(-0.330114\pi\)
−0.860925 + 0.508732i \(0.830114\pi\)
\(158\) 6.52153 + 4.39503i 0.518825 + 0.349650i
\(159\) 19.7466 1.56601
\(160\) −3.23537 + 4.64030i −0.255778 + 0.366848i
\(161\) −4.50748 −0.355240
\(162\) −12.5430 8.45309i −0.985474 0.664137i
\(163\) −3.58912 3.58912i −0.281122 0.281122i 0.552435 0.833556i \(-0.313699\pi\)
−0.833556 + 0.552435i \(0.813699\pi\)
\(164\) −15.5873 + 6.31217i −1.21716 + 0.492898i
\(165\) −7.98734 + 7.98734i −0.621814 + 0.621814i
\(166\) 0.197393 + 1.01334i 0.0153207 + 0.0786501i
\(167\) 17.5993i 1.36188i −0.732341 0.680938i \(-0.761572\pi\)
0.732341 0.680938i \(-0.238428\pi\)
\(168\) 8.17907 + 12.5617i 0.631029 + 0.969153i
\(169\) 9.19566i 0.707359i
\(170\) −6.87012 + 1.33827i −0.526914 + 0.102640i
\(171\) 0.221080 0.221080i 0.0169064 0.0169064i
\(172\) −8.40494 3.55976i −0.640871 0.271429i
\(173\) −7.32377 7.32377i −0.556816 0.556816i 0.371584 0.928400i \(-0.378815\pi\)
−0.928400 + 0.371584i \(0.878815\pi\)
\(174\) −12.2869 + 18.2318i −0.931468 + 1.38215i
\(175\) 2.73482 0.206733
\(176\) −0.369636 + 23.3132i −0.0278624 + 1.75730i
\(177\) −17.5707 −1.32070
\(178\) 5.07590 7.53183i 0.380455 0.564535i
\(179\) 6.42849 + 6.42849i 0.480488 + 0.480488i 0.905287 0.424800i \(-0.139655\pi\)
−0.424800 + 0.905287i \(0.639655\pi\)
\(180\) 0.589106 1.39094i 0.0439094 0.103674i
\(181\) −3.67884 + 3.67884i −0.273446 + 0.273446i −0.830486 0.557040i \(-0.811937\pi\)
0.557040 + 0.830486i \(0.311937\pi\)
\(182\) −7.40450 + 1.44236i −0.548858 + 0.106915i
\(183\) 10.4858i 0.775131i
\(184\) 4.56106 + 0.963766i 0.336246 + 0.0710498i
\(185\) 3.51817i 0.258661i
\(186\) −2.07266 10.6402i −0.151975 0.780179i
\(187\) −20.3994 + 20.3994i −1.49175 + 1.49175i
\(188\) −3.90218 9.63605i −0.284596 0.702781i
\(189\) 8.41196 + 8.41196i 0.611880 + 0.611880i
\(190\) −0.485475 0.327175i −0.0352201 0.0237357i
\(191\) −5.39093 −0.390074 −0.195037 0.980796i \(-0.562483\pi\)
−0.195037 + 0.980796i \(0.562483\pi\)
\(192\) −5.59042 14.4598i −0.403454 1.04354i
\(193\) −3.53818 −0.254684 −0.127342 0.991859i \(-0.540645\pi\)
−0.127342 + 0.991859i \(0.540645\pi\)
\(194\) 11.0770 + 7.46512i 0.795286 + 0.535964i
\(195\) 2.67267 + 2.67267i 0.191394 + 0.191394i
\(196\) −0.359752 0.888371i −0.0256966 0.0634551i
\(197\) 10.6900 10.6900i 0.761627 0.761627i −0.214989 0.976616i \(-0.568972\pi\)
0.976616 + 0.214989i \(0.0689716\pi\)
\(198\) −1.19044 6.11124i −0.0846009 0.434307i
\(199\) 15.6543i 1.10971i 0.831948 + 0.554853i \(0.187226\pi\)
−0.831948 + 0.554853i \(0.812774\pi\)
\(200\) −2.76732 0.584744i −0.195679 0.0413476i
\(201\) 15.7867i 1.11351i
\(202\) 21.7005 4.22715i 1.52684 0.297421i
\(203\) 15.5137 15.5137i 1.08885 1.08885i
\(204\) 7.48076 17.6628i 0.523758 1.23665i
\(205\) −5.94566 5.94566i −0.415263 0.415263i
\(206\) 4.32182 6.41289i 0.301115 0.446807i
\(207\) −1.24483 −0.0865218
\(208\) 7.80090 + 0.123685i 0.540895 + 0.00857603i
\(209\) −2.41300 −0.166911
\(210\) −4.18859 + 6.21520i −0.289040 + 0.428890i
\(211\) −19.9359 19.9359i −1.37244 1.37244i −0.856809 0.515634i \(-0.827556\pi\)
−0.515634 0.856809i \(-0.672444\pi\)
\(212\) 18.7661 + 7.94804i 1.28886 + 0.545874i
\(213\) −10.8559 + 10.8559i −0.743833 + 0.743833i
\(214\) −0.576570 + 0.112313i −0.0394135 + 0.00767757i
\(215\) 4.56385i 0.311252i
\(216\) −6.71335 10.3105i −0.456785 0.701544i
\(217\) 10.8176i 0.734345i
\(218\) −3.98214 20.4427i −0.269704 1.38455i
\(219\) 5.97815 5.97815i 0.403966 0.403966i
\(220\) −10.8057 + 4.37583i −0.728519 + 0.295019i
\(221\) 6.82591 + 6.82591i 0.459161 + 0.459161i
\(222\) −7.99547 5.38836i −0.536621 0.361643i
\(223\) 21.2173 1.42081 0.710406 0.703792i \(-0.248511\pi\)
0.710406 + 0.703792i \(0.248511\pi\)
\(224\) 2.71687 + 15.2300i 0.181529 + 1.01760i
\(225\) 0.755274 0.0503516
\(226\) 20.4229 + 13.7635i 1.35851 + 0.915536i
\(227\) 12.0356 + 12.0356i 0.798832 + 0.798832i 0.982911 0.184079i \(-0.0589303\pi\)
−0.184079 + 0.982911i \(0.558930\pi\)
\(228\) 1.48709 0.602207i 0.0984849 0.0398821i
\(229\) 6.70809 6.70809i 0.443283 0.443283i −0.449831 0.893114i \(-0.648516\pi\)
0.893114 + 0.449831i \(0.148516\pi\)
\(230\) 0.445669 + 2.28788i 0.0293865 + 0.150858i
\(231\) 30.8920i 2.03254i
\(232\) −19.0152 + 12.3810i −1.24841 + 0.812856i
\(233\) 5.40431i 0.354048i 0.984207 + 0.177024i \(0.0566470\pi\)
−0.984207 + 0.177024i \(0.943353\pi\)
\(234\) −2.04490 + 0.398337i −0.133679 + 0.0260401i
\(235\) 3.67560 3.67560i 0.239770 0.239770i
\(236\) −16.6983 7.07226i −1.08697 0.460365i
\(237\) −7.61989 7.61989i −0.494965 0.494965i
\(238\) −10.6975 + 15.8734i −0.693418 + 1.02892i
\(239\) −1.86569 −0.120681 −0.0603406 0.998178i \(-0.519219\pi\)
−0.0603406 + 0.998178i \(0.519219\pi\)
\(240\) 5.56728 5.39349i 0.359366 0.348149i
\(241\) 16.3740 1.05474 0.527369 0.849636i \(-0.323178\pi\)
0.527369 + 0.849636i \(0.323178\pi\)
\(242\) −18.1604 + 26.9471i −1.16739 + 1.73222i
\(243\) 5.42792 + 5.42792i 0.348201 + 0.348201i
\(244\) 4.22055 9.96514i 0.270193 0.637953i
\(245\) 0.338863 0.338863i 0.0216492 0.0216492i
\(246\) 22.6185 4.40597i 1.44210 0.280915i
\(247\) 0.807421i 0.0513750i
\(248\) 2.31296 10.9462i 0.146873 0.695082i
\(249\) 1.41464i 0.0896493i
\(250\) −0.270400 1.38812i −0.0171016 0.0877926i
\(251\) 3.01154 3.01154i 0.190087 0.190087i −0.605647 0.795734i \(-0.707086\pi\)
0.795734 + 0.605647i \(0.207086\pi\)
\(252\) −1.55059 3.82903i −0.0976780 0.241206i
\(253\) 6.79340 + 6.79340i 0.427098 + 0.427098i
\(254\) −12.8760 8.67747i −0.807911 0.544473i
\(255\) 9.59085 0.600602
\(256\) 0.507240 15.9920i 0.0317025 0.999497i
\(257\) 22.7407 1.41853 0.709263 0.704944i \(-0.249028\pi\)
0.709263 + 0.704944i \(0.249028\pi\)
\(258\) 10.3719 + 6.98991i 0.645727 + 0.435173i
\(259\) 6.80346 + 6.80346i 0.422747 + 0.422747i
\(260\) 1.46421 + 3.61572i 0.0908065 + 0.224237i
\(261\) 4.28442 4.28442i 0.265199 0.265199i
\(262\) −2.20663 11.3280i −0.136326 0.699844i
\(263\) 12.0300i 0.741805i −0.928672 0.370902i \(-0.879048\pi\)
0.928672 0.370902i \(-0.120952\pi\)
\(264\) 6.60516 31.2592i 0.406519 1.92387i
\(265\) 10.1899i 0.625962i
\(266\) −1.57151 + 0.306122i −0.0963554 + 0.0187696i
\(267\) −8.80035 + 8.80035i −0.538573 + 0.538573i
\(268\) −6.35419 + 15.0029i −0.388144 + 0.916446i
\(269\) 4.90068 + 4.90068i 0.298800 + 0.298800i 0.840544 0.541744i \(-0.182236\pi\)
−0.541744 + 0.840544i \(0.682236\pi\)
\(270\) 3.43798 5.10141i 0.209229 0.310462i
\(271\) −4.14616 −0.251862 −0.125931 0.992039i \(-0.540192\pi\)
−0.125931 + 0.992039i \(0.540192\pi\)
\(272\) 14.2187 13.7748i 0.862133 0.835221i
\(273\) 10.3369 0.625615
\(274\) 5.68128 8.43011i 0.343219 0.509282i
\(275\) −4.12175 4.12175i −0.248551 0.248551i
\(276\) −5.88207 2.49124i −0.354059 0.149955i
\(277\) −10.4815 + 10.4815i −0.629775 + 0.629775i −0.948011 0.318236i \(-0.896909\pi\)
0.318236 + 0.948011i \(0.396909\pi\)
\(278\) −9.64525 + 1.87885i −0.578483 + 0.112686i
\(279\) 2.98749i 0.178856i
\(280\) −6.48225 + 4.22069i −0.387389 + 0.252234i
\(281\) 3.51927i 0.209942i 0.994475 + 0.104971i \(0.0334750\pi\)
−0.994475 + 0.104971i \(0.966525\pi\)
\(282\) 2.72377 + 13.9827i 0.162198 + 0.832660i
\(283\) −2.88462 + 2.88462i −0.171473 + 0.171473i −0.787626 0.616153i \(-0.788690\pi\)
0.616153 + 0.787626i \(0.288690\pi\)
\(284\) −14.6864 + 5.94735i −0.871477 + 0.352910i
\(285\) 0.567240 + 0.567240i 0.0336004 + 0.0336004i
\(286\) 13.3334 + 8.98577i 0.788423 + 0.531340i
\(287\) −22.9955 −1.35738
\(288\) 0.750318 + 4.20608i 0.0442129 + 0.247845i
\(289\) 7.49472 0.440866
\(290\) −9.40825 6.34047i −0.552471 0.372325i
\(291\) −12.9427 12.9427i −0.758712 0.758712i
\(292\) 8.08754 3.27511i 0.473288 0.191661i
\(293\) 3.92351 3.92351i 0.229214 0.229214i −0.583150 0.812364i \(-0.698180\pi\)
0.812364 + 0.583150i \(0.198180\pi\)
\(294\) 0.251111 + 1.28910i 0.0146451 + 0.0751820i
\(295\) 9.06711i 0.527908i
\(296\) −5.42965 8.33901i −0.315592 0.484695i
\(297\) 25.3560i 1.47130i
\(298\) −19.1720 + 3.73462i −1.11061 + 0.216341i
\(299\) 2.27316 2.27316i 0.131460 0.131460i
\(300\) 3.56882 + 1.51151i 0.206046 + 0.0872668i
\(301\) −8.82561 8.82561i −0.508700 0.508700i
\(302\) −1.50763 + 2.23708i −0.0867542 + 0.128729i
\(303\) −30.2944 −1.74037
\(304\) 1.65564 + 0.0262506i 0.0949575 + 0.00150557i
\(305\) 5.41103 0.309835
\(306\) −2.95434 + 4.38377i −0.168888 + 0.250603i
\(307\) −0.196482 0.196482i −0.0112138 0.0112138i 0.701478 0.712691i \(-0.252524\pi\)
−0.712691 + 0.701478i \(0.752524\pi\)
\(308\) −12.4341 + 29.3581i −0.708498 + 1.67283i
\(309\) −7.49296 + 7.49296i −0.426259 + 0.426259i
\(310\) 5.49072 1.06957i 0.311852 0.0607473i
\(311\) 2.52927i 0.143422i −0.997425 0.0717110i \(-0.977154\pi\)
0.997425 0.0717110i \(-0.0228459\pi\)
\(312\) −10.4597 2.21017i −0.592165 0.125126i
\(313\) 3.84874i 0.217543i 0.994067 + 0.108772i \(0.0346917\pi\)
−0.994067 + 0.108772i \(0.965308\pi\)
\(314\) 1.68753 + 8.66308i 0.0952327 + 0.488886i
\(315\) 1.46056 1.46056i 0.0822930 0.0822930i
\(316\) −4.17453 10.3086i −0.234835 0.579902i
\(317\) −6.78901 6.78901i −0.381309 0.381309i 0.490265 0.871574i \(-0.336900\pi\)
−0.871574 + 0.490265i \(0.836900\pi\)
\(318\) −23.1579 15.6067i −1.29863 0.875180i
\(319\) −46.7627 −2.61821
\(320\) 7.46174 2.88485i 0.417124 0.161268i
\(321\) 0.804906 0.0449255
\(322\) 5.28616 + 3.56249i 0.294586 + 0.198530i
\(323\) 1.44871 + 1.44871i 0.0806085 + 0.0806085i
\(324\) 8.02898 + 19.8268i 0.446054 + 1.10149i
\(325\) −1.37919 + 1.37919i −0.0765038 + 0.0765038i
\(326\) 1.37249 + 7.04581i 0.0760152 + 0.390231i
\(327\) 28.5385i 1.57818i
\(328\) 23.2688 + 4.91678i 1.28481 + 0.271484i
\(329\) 14.2158i 0.783743i
\(330\) 15.6800 3.05438i 0.863154 0.168138i
\(331\) 1.79195 1.79195i 0.0984944 0.0984944i −0.656143 0.754637i \(-0.727813\pi\)
0.754637 + 0.656143i \(0.227813\pi\)
\(332\) 0.569396 1.34440i 0.0312497 0.0737836i
\(333\) 1.87891 + 1.87891i 0.102964 + 0.102964i
\(334\) −13.9096 + 20.6396i −0.761100 + 1.12935i
\(335\) −8.14650 −0.445091
\(336\) 0.336068 21.1960i 0.0183340 1.15634i
\(337\) 16.1071 0.877411 0.438706 0.898631i \(-0.355437\pi\)
0.438706 + 0.898631i \(0.355437\pi\)
\(338\) −7.26779 + 10.7842i −0.395315 + 0.586585i
\(339\) −23.8625 23.8625i −1.29603 1.29603i
\(340\) 9.11464 + 3.86034i 0.494311 + 0.209356i
\(341\) 16.3036 16.3036i 0.882889 0.882889i
\(342\) −0.434003 + 0.0845418i −0.0234682 + 0.00457150i
\(343\) 17.8331i 0.962898i
\(344\) 7.04347 + 10.8176i 0.379758 + 0.583243i
\(345\) 3.19394i 0.171956i
\(346\) 2.80063 + 14.3773i 0.150563 + 0.772929i
\(347\) 12.6577 12.6577i 0.679502 0.679502i −0.280385 0.959888i \(-0.590462\pi\)
0.959888 + 0.280385i \(0.0904622\pi\)
\(348\) 28.8190 11.6704i 1.54486 0.625601i
\(349\) −16.3020 16.3020i −0.872627 0.872627i 0.120131 0.992758i \(-0.461669\pi\)
−0.992758 + 0.120131i \(0.961669\pi\)
\(350\) −3.20726 2.16146i −0.171435 0.115535i
\(351\) −8.48445 −0.452866
\(352\) 18.8591 27.0485i 1.00519 1.44169i
\(353\) −13.2637 −0.705954 −0.352977 0.935632i \(-0.614831\pi\)
−0.352977 + 0.935632i \(0.614831\pi\)
\(354\) 20.6061 + 13.8870i 1.09520 + 0.738087i
\(355\) −5.60202 5.60202i −0.297324 0.297324i
\(356\) −11.9056 + 4.82124i −0.630993 + 0.255525i
\(357\) 18.5469 18.5469i 0.981604 0.981604i
\(358\) −2.45827 12.6198i −0.129924 0.666976i
\(359\) 13.3561i 0.704906i 0.935830 + 0.352453i \(0.114652\pi\)
−0.935830 + 0.352453i \(0.885348\pi\)
\(360\) −1.79020 + 1.16563i −0.0943520 + 0.0614339i
\(361\) 18.8286i 0.990981i
\(362\) 7.22194 1.40680i 0.379577 0.0739398i
\(363\) 31.4855 31.4855i 1.65256 1.65256i
\(364\) 9.82361 + 4.16061i 0.514897 + 0.218075i
\(365\) 3.08494 + 3.08494i 0.161473 + 0.161473i
\(366\) −8.28743 + 12.2972i −0.433191 + 0.642786i
\(367\) 11.8938 0.620852 0.310426 0.950598i \(-0.399528\pi\)
0.310426 + 0.950598i \(0.399528\pi\)
\(368\) −4.58728 4.73509i −0.239129 0.246834i
\(369\) −6.35067 −0.330603
\(370\) 2.78058 4.12594i 0.144556 0.214498i
\(371\) 19.7054 + 19.7054i 1.02305 + 1.02305i
\(372\) −5.97877 + 14.1165i −0.309985 + 0.731905i
\(373\) −19.0494 + 19.0494i −0.986342 + 0.986342i −0.999908 0.0135655i \(-0.995682\pi\)
0.0135655 + 0.999908i \(0.495682\pi\)
\(374\) 40.0461 7.80080i 2.07074 0.403370i
\(375\) 1.93785i 0.100070i
\(376\) −3.03955 + 14.3848i −0.156753 + 0.741839i
\(377\) 15.6474i 0.805882i
\(378\) −3.21676 16.5135i −0.165452 0.849365i
\(379\) −4.64554 + 4.64554i −0.238625 + 0.238625i −0.816281 0.577655i \(-0.803968\pi\)
0.577655 + 0.816281i \(0.303968\pi\)
\(380\) 0.310760 + 0.767390i 0.0159416 + 0.0393663i
\(381\) 15.0446 + 15.0446i 0.770757 + 0.770757i
\(382\) 6.32222 + 4.26072i 0.323473 + 0.217997i
\(383\) 38.5131 1.96793 0.983964 0.178366i \(-0.0570811\pi\)
0.983964 + 0.178366i \(0.0570811\pi\)
\(384\) −4.87208 + 21.3761i −0.248628 + 1.09084i
\(385\) −15.9413 −0.812446
\(386\) 4.14941 + 2.79640i 0.211200 + 0.142333i
\(387\) −2.43737 2.43737i −0.123898 0.123898i
\(388\) −7.09058 17.5095i −0.359970 0.888909i
\(389\) −0.903192 + 0.903192i −0.0457937 + 0.0457937i −0.729633 0.683839i \(-0.760309\pi\)
0.683839 + 0.729633i \(0.260309\pi\)
\(390\) −1.02204 5.24672i −0.0517529 0.265678i
\(391\) 8.15722i 0.412528i
\(392\) −0.280224 + 1.32617i −0.0141534 + 0.0669817i
\(393\) 15.8141i 0.797716i
\(394\) −20.9855 + 4.08787i −1.05723 + 0.205944i
\(395\) 3.93213 3.93213i 0.197847 0.197847i
\(396\) −3.43392 + 8.10783i −0.172561 + 0.407434i
\(397\) 4.44748 + 4.44748i 0.223212 + 0.223212i 0.809850 0.586637i \(-0.199549\pi\)
−0.586637 + 0.809850i \(0.699549\pi\)
\(398\) 12.3724 18.3587i 0.620172 0.920237i
\(399\) 2.19386 0.109831
\(400\) 2.78323 + 2.87291i 0.139162 + 0.143646i
\(401\) 27.3379 1.36519 0.682596 0.730796i \(-0.260851\pi\)
0.682596 + 0.730796i \(0.260851\pi\)
\(402\) 12.4770 18.5139i 0.622297 0.923390i
\(403\) −5.45540 5.45540i −0.271753 0.271753i
\(404\) −28.7902 12.1936i −1.43237 0.606652i
\(405\) −7.56278 + 7.56278i −0.375797 + 0.375797i
\(406\) −30.4550 + 5.93249i −1.51146 + 0.294425i
\(407\) 20.5075i 1.01652i
\(408\) −22.7329 + 14.8017i −1.12545 + 0.732794i
\(409\) 38.6889i 1.91304i 0.291661 + 0.956522i \(0.405792\pi\)
−0.291661 + 0.956522i \(0.594208\pi\)
\(410\) 2.27364 + 11.6719i 0.112287 + 0.576435i
\(411\) −9.84993 + 9.84993i −0.485861 + 0.485861i
\(412\) −10.1368 + 4.10498i −0.499406 + 0.202238i
\(413\) −17.5341 17.5341i −0.862794 0.862794i
\(414\) 1.45988 + 0.983852i 0.0717492 + 0.0483537i
\(415\) 0.730005 0.0358345
\(416\) −9.05077 6.31049i −0.443751 0.309397i
\(417\) 13.4650 0.659384
\(418\) 2.82985 + 1.90711i 0.138413 + 0.0932799i
\(419\) 7.41439 + 7.41439i 0.362217 + 0.362217i 0.864628 0.502412i \(-0.167554\pi\)
−0.502412 + 0.864628i \(0.667554\pi\)
\(420\) 9.82437 3.97844i 0.479380 0.194128i
\(421\) −10.3279 + 10.3279i −0.503351 + 0.503351i −0.912478 0.409127i \(-0.865833\pi\)
0.409127 + 0.912478i \(0.365833\pi\)
\(422\) 7.62354 + 39.1362i 0.371108 + 1.90512i
\(423\) 3.92598i 0.190888i
\(424\) −15.7263 24.1529i −0.763736 1.17297i
\(425\) 4.94921i 0.240072i
\(426\) 21.3112 4.15132i 1.03253 0.201132i
\(427\) 10.4639 10.4639i 0.506383 0.506383i
\(428\) 0.764940 + 0.323976i 0.0369748 + 0.0156600i
\(429\) −15.5791 15.5791i −0.752165 0.752165i
\(430\) −3.60704 + 5.35227i −0.173947 + 0.258109i
\(431\) −14.8644 −0.715991 −0.357995 0.933723i \(-0.616540\pi\)
−0.357995 + 0.933723i \(0.616540\pi\)
\(432\) −0.275843 + 17.3976i −0.0132715 + 0.837043i
\(433\) −4.96284 −0.238499 −0.119249 0.992864i \(-0.538049\pi\)
−0.119249 + 0.992864i \(0.538049\pi\)
\(434\) 8.54967 12.6863i 0.410397 0.608964i
\(435\) 10.9928 + 10.9928i 0.527064 + 0.527064i
\(436\) −11.4868 + 27.1215i −0.550118 + 1.29888i
\(437\) 0.482449 0.482449i 0.0230787 0.0230787i
\(438\) −11.7357 + 2.28606i −0.560755 + 0.109232i
\(439\) 13.7348i 0.655527i −0.944760 0.327763i \(-0.893705\pi\)
0.944760 0.327763i \(-0.106295\pi\)
\(440\) 16.1308 + 3.40849i 0.769007 + 0.162494i
\(441\) 0.361946i 0.0172355i
\(442\) −2.61025 13.4000i −0.124157 0.637371i
\(443\) −7.62584 + 7.62584i −0.362315 + 0.362315i −0.864664 0.502350i \(-0.832469\pi\)
0.502350 + 0.864664i \(0.332469\pi\)
\(444\) 5.11802 + 12.6384i 0.242890 + 0.599793i
\(445\) −4.54129 4.54129i −0.215278 0.215278i
\(446\) −24.8826 16.7690i −1.17822 0.794037i
\(447\) 26.7646 1.26592
\(448\) 8.85083 20.0083i 0.418162 0.945305i
\(449\) −15.8544 −0.748215 −0.374108 0.927385i \(-0.622051\pi\)
−0.374108 + 0.927385i \(0.622051\pi\)
\(450\) −0.885750 0.596931i −0.0417546 0.0281396i
\(451\) 34.6574 + 34.6574i 1.63195 + 1.63195i
\(452\) −13.0730 32.2824i −0.614901 1.51844i
\(453\) 2.61385 2.61385i 0.122809 0.122809i
\(454\) −4.60246 23.6271i −0.216004 1.10888i
\(455\) 5.33418i 0.250070i
\(456\) −2.21994 0.469080i −0.103958 0.0219667i
\(457\) 14.1978i 0.664144i −0.943254 0.332072i \(-0.892252\pi\)
0.943254 0.332072i \(-0.107748\pi\)
\(458\) −13.1687 + 2.56519i −0.615331 + 0.119864i
\(459\) −15.2232 + 15.2232i −0.710557 + 0.710557i
\(460\) 1.28557 3.03535i 0.0599399 0.141524i
\(461\) −22.8952 22.8952i −1.06634 1.06634i −0.997638 0.0686980i \(-0.978116\pi\)
−0.0686980 0.997638i \(-0.521884\pi\)
\(462\) 24.4155 36.2286i 1.13591 1.68551i
\(463\) 25.0175 1.16266 0.581330 0.813668i \(-0.302533\pi\)
0.581330 + 0.813668i \(0.302533\pi\)
\(464\) 32.0854 + 0.508722i 1.48953 + 0.0236168i
\(465\) −7.66519 −0.355465
\(466\) 4.27129 6.33792i 0.197864 0.293598i
\(467\) −23.5446 23.5446i −1.08951 1.08951i −0.995578 0.0939334i \(-0.970056\pi\)
−0.0939334 0.995578i \(-0.529944\pi\)
\(468\) 2.71299 + 1.14903i 0.125408 + 0.0531142i
\(469\) −15.7538 + 15.7538i −0.727441 + 0.727441i
\(470\) −7.21558 + 1.40556i −0.332830 + 0.0648337i
\(471\) 12.0939i 0.557256i
\(472\) 13.9934 + 21.4915i 0.644100 + 0.989226i
\(473\) 26.6028i 1.22320i
\(474\) 2.91387 + 14.9586i 0.133838 + 0.687072i
\(475\) −0.292715 + 0.292715i −0.0134307 + 0.0134307i
\(476\) 25.0911 10.1608i 1.15005 0.465720i
\(477\) 5.44203 + 5.44203i 0.249173 + 0.249173i
\(478\) 2.18799 + 1.47454i 0.100076 + 0.0674441i
\(479\) 39.3416 1.79756 0.898781 0.438398i \(-0.144454\pi\)
0.898781 + 0.438398i \(0.144454\pi\)
\(480\) −10.7918 + 1.92514i −0.492575 + 0.0878701i
\(481\) −6.86209 −0.312884
\(482\) −19.2026 12.9411i −0.874654 0.589453i
\(483\) −6.17647 6.17647i −0.281039 0.281039i
\(484\) 42.5952 17.2492i 1.93615 0.784055i
\(485\) 6.67886 6.67886i 0.303272 0.303272i
\(486\) −2.07565 10.6556i −0.0941535 0.483346i
\(487\) 25.6970i 1.16444i 0.813030 + 0.582222i \(0.197816\pi\)
−0.813030 + 0.582222i \(0.802184\pi\)
\(488\) −12.8256 + 8.35093i −0.580588 + 0.378029i
\(489\) 9.83612i 0.444805i
\(490\) −0.665222 + 0.129582i −0.0300517 + 0.00585393i
\(491\) −29.0344 + 29.0344i −1.31030 + 1.31030i −0.389113 + 0.921190i \(0.627219\pi\)
−0.921190 + 0.389113i \(0.872781\pi\)
\(492\) −30.0081 12.7094i −1.35287 0.572983i
\(493\) 28.0753 + 28.0753i 1.26445 + 1.26445i
\(494\) 0.638145 0.946905i 0.0287115 0.0426033i
\(495\) −4.40252 −0.197879
\(496\) −11.3638 + 11.0091i −0.510250 + 0.494323i
\(497\) −21.6665 −0.971873
\(498\) −1.11806 + 1.65902i −0.0501015 + 0.0743427i
\(499\) −7.89904 7.89904i −0.353610 0.353610i 0.507841 0.861451i \(-0.330444\pi\)
−0.861451 + 0.507841i \(0.830444\pi\)
\(500\) −0.779990 + 1.84163i −0.0348822 + 0.0823604i
\(501\) 24.1158 24.1158i 1.07741 1.07741i
\(502\) −5.91197 + 1.15162i −0.263864 + 0.0513995i
\(503\) 9.53668i 0.425220i 0.977137 + 0.212610i \(0.0681963\pi\)
−0.977137 + 0.212610i \(0.931804\pi\)
\(504\) −1.20781 + 5.71601i −0.0538002 + 0.254611i
\(505\) 15.6330i 0.695658i
\(506\) −2.59782 13.3361i −0.115487 0.592864i
\(507\) 12.6005 12.6005i 0.559609 0.559609i
\(508\) 8.24211 + 20.3531i 0.365684 + 0.903021i
\(509\) −4.24956 4.24956i −0.188358 0.188358i 0.606628 0.794986i \(-0.292522\pi\)
−0.794986 + 0.606628i \(0.792522\pi\)
\(510\) −11.2477 7.58012i −0.498056 0.335653i
\(511\) 11.9313 0.527812
\(512\) −13.2341 + 18.3537i −0.584870 + 0.811127i
\(513\) −1.80071 −0.0795035
\(514\) −26.6692 17.9731i −1.17633 0.792759i
\(515\) −3.86663 3.86663i −0.170384 0.170384i
\(516\) −6.63921 16.3949i −0.292275 0.721743i
\(517\) −21.4252 + 21.4252i −0.942280 + 0.942280i
\(518\) −2.60166 13.3559i −0.114311 0.586824i
\(519\) 20.0711i 0.881022i
\(520\) 1.14053 5.39758i 0.0500154 0.236700i
\(521\) 9.71766i 0.425739i −0.977081 0.212869i \(-0.931719\pi\)
0.977081 0.212869i \(-0.0682809\pi\)
\(522\) −8.41076 + 1.63838i −0.368129 + 0.0717098i
\(523\) −4.62580 + 4.62580i −0.202272 + 0.202272i −0.800973 0.598701i \(-0.795684\pi\)
0.598701 + 0.800973i \(0.295684\pi\)
\(524\) −6.36521 + 15.0289i −0.278066 + 0.656541i
\(525\) 3.74744 + 3.74744i 0.163551 + 0.163551i
\(526\) −9.50794 + 14.1083i −0.414566 + 0.615150i
\(527\) −19.5766 −0.852772
\(528\) −32.4519 + 31.4389i −1.41229 + 1.36820i
\(529\) 20.2835 0.881891
\(530\) 8.05360 11.9503i 0.349826 0.519086i
\(531\) −4.84238 4.84238i −0.210141 0.210141i
\(532\) 2.08493 + 0.883035i 0.0903933 + 0.0382844i
\(533\) 11.5968 11.5968i 0.502314 0.502314i
\(534\) 17.2760 3.36528i 0.747605 0.145630i
\(535\) 0.415360i 0.0179576i
\(536\) 19.3094 12.5726i 0.834039 0.543055i
\(537\) 17.6175i 0.760252i
\(538\) −1.87403 9.62053i −0.0807953 0.414771i
\(539\) −1.97524 + 1.97524i −0.0850798 + 0.0850798i
\(540\) −8.06379 + 3.26549i −0.347010 + 0.140524i
\(541\) 24.0206 + 24.0206i 1.03272 + 1.03272i 0.999446 + 0.0332788i \(0.0105949\pi\)
0.0332788 + 0.999446i \(0.489405\pi\)
\(542\) 4.86242 + 3.27692i 0.208859 + 0.140756i
\(543\) −10.0820 −0.432660
\(544\) −27.5619 + 4.91674i −1.18171 + 0.210803i
\(545\) −14.7269 −0.630829
\(546\) −12.1226 8.16973i −0.518798 0.349632i
\(547\) 4.63900 + 4.63900i 0.198349 + 0.198349i 0.799292 0.600943i \(-0.205208\pi\)
−0.600943 + 0.799292i \(0.705208\pi\)
\(548\) −13.3255 + 5.39624i −0.569236 + 0.230516i
\(549\) 2.88981 2.88981i 0.123334 0.123334i
\(550\) 1.57617 + 8.09141i 0.0672081 + 0.345019i
\(551\) 3.32096i 0.141477i
\(552\) 4.92926 + 7.57050i 0.209803 + 0.322222i
\(553\) 15.2080i 0.646709i
\(554\) 20.5763 4.00818i 0.874205 0.170291i
\(555\) −4.82084 + 4.82084i −0.204633 + 0.204633i
\(556\) 12.7964 + 5.41969i 0.542690 + 0.229846i
\(557\) 13.6258 + 13.6258i 0.577345 + 0.577345i 0.934171 0.356826i \(-0.116141\pi\)
−0.356826 + 0.934171i \(0.616141\pi\)
\(558\) 2.36116 3.50359i 0.0999559 0.148319i
\(559\) 8.90166 0.376500
\(560\) 10.9379 + 0.173423i 0.462210 + 0.00732846i
\(561\) −55.9054 −2.36033
\(562\) 2.78145 4.12723i 0.117328 0.174097i
\(563\) 28.0885 + 28.0885i 1.18379 + 1.18379i 0.978755 + 0.205035i \(0.0657308\pi\)
0.205035 + 0.978755i \(0.434269\pi\)
\(564\) 7.85694 18.5510i 0.330837 0.781139i
\(565\) 12.3139 12.3139i 0.518050 0.518050i
\(566\) 5.66280 1.10309i 0.238025 0.0463662i
\(567\) 29.2499i 1.22838i
\(568\) 21.9240 + 4.63261i 0.919910 + 0.194380i
\(569\) 42.3770i 1.77654i −0.459326 0.888268i \(-0.651909\pi\)
0.459326 0.888268i \(-0.348091\pi\)
\(570\) −0.216914 1.11355i −0.00908553 0.0466414i
\(571\) 7.99217 7.99217i 0.334462 0.334462i −0.519816 0.854278i \(-0.674000\pi\)
0.854278 + 0.519816i \(0.174000\pi\)
\(572\) −8.53493 21.0762i −0.356863 0.881239i
\(573\) −7.38702 7.38702i −0.308597 0.308597i
\(574\) 26.9680 + 18.1745i 1.12562 + 0.758588i
\(575\) 1.64818 0.0687341
\(576\) 2.44433 5.52570i 0.101847 0.230238i
\(577\) −20.4651 −0.851972 −0.425986 0.904730i \(-0.640073\pi\)
−0.425986 + 0.904730i \(0.640073\pi\)
\(578\) −8.78945 5.92345i −0.365593 0.246383i
\(579\) −4.84826 4.84826i −0.201487 0.201487i
\(580\) 6.02236 + 14.8716i 0.250065 + 0.617510i
\(581\) 1.41169 1.41169i 0.0585667 0.0585667i
\(582\) 4.94931 + 25.4078i 0.205156 + 1.05319i
\(583\) 59.3974i 2.45999i
\(584\) −12.0732 2.55110i −0.499591 0.105565i
\(585\) 1.47314i 0.0609069i
\(586\) −7.70224 + 1.50036i −0.318177 + 0.0619793i
\(587\) 0.429976 0.429976i 0.0177470 0.0177470i −0.698178 0.715925i \(-0.746005\pi\)
0.715925 + 0.698178i \(0.246005\pi\)
\(588\) 0.724351 1.71026i 0.0298717 0.0705301i
\(589\) −1.15784 1.15784i −0.0477079 0.0477079i
\(590\) −7.16619 + 10.6335i −0.295027 + 0.437773i
\(591\) 29.2962 1.20509
\(592\) −0.223098 + 14.0709i −0.00916926 + 0.578311i
\(593\) 37.9620 1.55891 0.779455 0.626458i \(-0.215496\pi\)
0.779455 + 0.626458i \(0.215496\pi\)
\(594\) −20.0401 + 29.7363i −0.822255 + 1.22010i
\(595\) 9.57083 + 9.57083i 0.392366 + 0.392366i
\(596\) 25.4357 + 10.7728i 1.04189 + 0.441272i
\(597\) −21.4507 + 21.4507i −0.877917 + 0.877917i
\(598\) −4.46245 + 0.869264i −0.182483 + 0.0355468i
\(599\) 13.7108i 0.560207i 0.959970 + 0.280104i \(0.0903688\pi\)
−0.959970 + 0.280104i \(0.909631\pi\)
\(600\) −2.99072 4.59323i −0.122096 0.187518i
\(601\) 2.84070i 0.115875i 0.998320 + 0.0579373i \(0.0184523\pi\)
−0.998320 + 0.0579373i \(0.981548\pi\)
\(602\) 3.37494 + 17.3256i 0.137552 + 0.706138i
\(603\) −4.35072 + 4.35072i −0.177175 + 0.177175i
\(604\) 3.53615 1.43199i 0.143884 0.0582667i
\(605\) 16.2476 + 16.2476i 0.660561 + 0.660561i
\(606\) 35.5278 + 23.9432i 1.44322 + 0.972625i
\(607\) −42.8562 −1.73948 −0.869740 0.493510i \(-0.835713\pi\)
−0.869740 + 0.493510i \(0.835713\pi\)
\(608\) −1.92091 1.33932i −0.0779032 0.0543166i
\(609\) 42.5159 1.72283
\(610\) −6.34580 4.27661i −0.256934 0.173155i
\(611\) 7.16916 + 7.16916i 0.290033 + 0.290033i
\(612\) 6.92941 2.80611i 0.280105 0.113430i
\(613\) 5.48393 5.48393i 0.221494 0.221494i −0.587633 0.809127i \(-0.699940\pi\)
0.809127 + 0.587633i \(0.199940\pi\)
\(614\) 0.0751353 + 0.385714i 0.00303221 + 0.0155661i
\(615\) 16.2943i 0.657049i
\(616\) 37.7853 24.6025i 1.52241 0.991264i
\(617\) 22.2539i 0.895908i −0.894057 0.447954i \(-0.852153\pi\)
0.894057 0.447954i \(-0.147847\pi\)
\(618\) 14.7094 2.86533i 0.591700 0.115260i
\(619\) 10.0974 10.0974i 0.405849 0.405849i −0.474439 0.880288i \(-0.657349\pi\)
0.880288 + 0.474439i \(0.157349\pi\)
\(620\) −7.28459 3.08525i −0.292556 0.123907i
\(621\) 5.06962 + 5.06962i 0.203437 + 0.203437i
\(622\) −1.99901 + 2.96621i −0.0801530 + 0.118934i
\(623\) −17.5640 −0.703685
\(624\) 10.5199 + 10.8588i 0.421131 + 0.434701i
\(625\) −1.00000 −0.0400000
\(626\) 3.04185 4.51361i 0.121577 0.180400i
\(627\) −3.30646 3.30646i −0.132047 0.132047i
\(628\) 4.86781 11.4934i 0.194247 0.458636i
\(629\) −12.3123 + 12.3123i −0.490922 + 0.490922i
\(630\) −2.86722 + 0.558521i −0.114233 + 0.0222520i
\(631\) 49.5996i 1.97453i −0.159086 0.987265i \(-0.550855\pi\)
0.159086 0.987265i \(-0.449145\pi\)
\(632\) −3.25169 + 15.3887i −0.129345 + 0.612131i
\(633\) 54.6351i 2.17155i
\(634\) 2.59614 + 13.3275i 0.103106 + 0.529303i
\(635\) −7.76353 + 7.76353i −0.308086 + 0.308086i
\(636\) 14.8237 + 36.6056i 0.587797 + 1.45151i
\(637\) 0.660942 + 0.660942i 0.0261875 + 0.0261875i
\(638\) 54.8410 + 36.9588i 2.17118 + 1.46321i
\(639\) −5.98362 −0.236709
\(640\) −11.0308 2.51417i −0.436031 0.0993811i
\(641\) −42.5379 −1.68015 −0.840074 0.542472i \(-0.817488\pi\)
−0.840074 + 0.542472i \(0.817488\pi\)
\(642\) −0.943955 0.636157i −0.0372549 0.0251071i
\(643\) −29.3128 29.3128i −1.15598 1.15598i −0.985331 0.170653i \(-0.945412\pi\)
−0.170653 0.985331i \(-0.554588\pi\)
\(644\) −3.38375 8.35583i −0.133338 0.329266i
\(645\) 6.25370 6.25370i 0.246239 0.246239i
\(646\) −0.553992 2.84397i −0.0217965 0.111894i
\(647\) 4.35345i 0.171152i −0.996332 0.0855759i \(-0.972727\pi\)
0.996332 0.0855759i \(-0.0272730\pi\)
\(648\) 6.25406 29.5976i 0.245683 1.16270i
\(649\) 52.8525i 2.07464i
\(650\) 2.70749 0.527407i 0.106197 0.0206866i
\(651\) −14.8230 + 14.8230i −0.580959 + 0.580959i
\(652\) 3.95906 9.34774i 0.155049 0.366086i
\(653\) −12.3460 12.3460i −0.483137 0.483137i 0.422995 0.906132i \(-0.360979\pi\)
−0.906132 + 0.422995i \(0.860979\pi\)
\(654\) 22.5554 33.4686i 0.881985 1.30872i
\(655\) −8.16063 −0.318862
\(656\) −23.4026 24.1567i −0.913718 0.943159i
\(657\) 3.29508 0.128553
\(658\) −11.2355 + 16.6716i −0.438004 + 0.649928i
\(659\) 19.5367 + 19.5367i 0.761040 + 0.761040i 0.976510 0.215470i \(-0.0691284\pi\)
−0.215470 + 0.976510i \(0.569128\pi\)
\(660\) −20.8028 8.81062i −0.809746 0.342953i
\(661\) 26.4901 26.4901i 1.03035 1.03035i 0.0308210 0.999525i \(-0.490188\pi\)
0.999525 0.0308210i \(-0.00981219\pi\)
\(662\) −3.51778 + 0.685247i −0.136722 + 0.0266329i
\(663\) 18.7067i 0.726507i
\(664\) −1.73031 + 1.12663i −0.0671490 + 0.0437217i
\(665\) 1.13211i 0.0439014i
\(666\) −0.718502 3.68850i −0.0278414 0.142926i
\(667\) 9.34961 9.34961i 0.362018 0.362018i
\(668\) 32.6250 13.2117i 1.26230 0.511177i
\(669\) 29.0734 + 29.0734i 1.12404 + 1.12404i
\(670\) 9.55382 + 6.43858i 0.369096 + 0.248744i
\(671\) −31.5411 −1.21763
\(672\) −17.1464 + 24.5921i −0.661436 + 0.948660i
\(673\) −11.5260 −0.444295 −0.222148 0.975013i \(-0.571307\pi\)
−0.222148 + 0.975013i \(0.571307\pi\)
\(674\) −18.8897 12.7303i −0.727603 0.490351i
\(675\) −3.07588 3.07588i −0.118391 0.118391i
\(676\) 17.0466 6.90315i 0.655639 0.265506i
\(677\) −15.8009 + 15.8009i −0.607278 + 0.607278i −0.942234 0.334956i \(-0.891279\pi\)
0.334956 + 0.942234i \(0.391279\pi\)
\(678\) 9.12510 + 46.8446i 0.350447 + 1.79905i
\(679\) 25.8313i 0.991314i
\(680\) −7.63820 11.7310i −0.292912 0.449862i
\(681\) 32.9841i 1.26395i
\(682\) −32.0056 + 6.23454i −1.22556 + 0.238733i
\(683\) −25.1439 + 25.1439i −0.962105 + 0.962105i −0.999308 0.0372032i \(-0.988155\pi\)
0.0372032 + 0.999308i \(0.488155\pi\)
\(684\) 0.575796 + 0.243868i 0.0220161 + 0.00932452i
\(685\) −5.08291 5.08291i −0.194208 0.194208i
\(686\) 14.0944 20.9138i 0.538127 0.798494i
\(687\) 18.3838 0.701385
\(688\) 0.289407 18.2531i 0.0110336 0.695893i
\(689\) −19.8752 −0.757183
\(690\) −2.52433 + 3.74570i −0.0960995 + 0.142596i
\(691\) −27.2647 27.2647i −1.03720 1.03720i −0.999281 0.0379162i \(-0.987928\pi\)
−0.0379162 0.999281i \(-0.512072\pi\)
\(692\) 8.07865 19.0745i 0.307104 0.725103i
\(693\) −8.51363 + 8.51363i −0.323406 + 0.323406i
\(694\) −24.8484 + 4.84035i −0.943232 + 0.183737i
\(695\) 6.94841i 0.263568i
\(696\) −43.0213 9.09053i −1.63072 0.344576i
\(697\) 41.6151i 1.57628i
\(698\) 6.23394 + 32.0025i 0.235958 + 1.21131i
\(699\) −7.40536 + 7.40536i −0.280096 + 0.280096i
\(700\) 2.05302 + 5.06972i 0.0775967 + 0.191617i
\(701\) 12.5566 + 12.5566i 0.474257 + 0.474257i 0.903289 0.429032i \(-0.141145\pi\)
−0.429032 + 0.903289i \(0.641145\pi\)
\(702\) 9.95016 + 6.70568i 0.375544 + 0.253090i
\(703\) −1.45639 −0.0549288
\(704\) −43.4948 + 16.8159i −1.63927 + 0.633773i
\(705\) 10.0731 0.379376
\(706\) 15.5550 + 10.4829i 0.585420 + 0.394531i
\(707\) −30.2312 30.2312i −1.13696 1.13696i
\(708\) −13.1903 32.5721i −0.495721 1.22413i
\(709\) 18.0518 18.0518i 0.677950 0.677950i −0.281586 0.959536i \(-0.590860\pi\)
0.959536 + 0.281586i \(0.0908604\pi\)
\(710\) 2.14223 + 10.9973i 0.0803964 + 0.412723i
\(711\) 4.19999i 0.157512i
\(712\) 17.7727 + 3.75543i 0.666061 + 0.140741i
\(713\) 6.51940i 0.244154i
\(714\) −36.4094 + 7.09237i −1.36259 + 0.265425i
\(715\) 8.03935 8.03935i 0.300655 0.300655i
\(716\) −7.09109 + 16.7428i −0.265006 + 0.625707i
\(717\) −2.55649 2.55649i −0.0954739 0.0954739i
\(718\) 10.5560 15.6633i 0.393945 0.584551i
\(719\) −1.68053 −0.0626731 −0.0313366 0.999509i \(-0.509976\pi\)
−0.0313366 + 0.999509i \(0.509976\pi\)
\(720\) 3.02072 + 0.0478942i 0.112576 + 0.00178491i
\(721\) −14.9546 −0.556939
\(722\) −14.8812 + 22.0813i −0.553821 + 0.821782i
\(723\) 22.4367 + 22.4367i 0.834431 + 0.834431i
\(724\) −9.58141 4.05803i −0.356090 0.150815i
\(725\) −5.67267 + 5.67267i −0.210678 + 0.210678i
\(726\) −61.8093 + 12.0402i −2.29396 + 0.446852i
\(727\) 15.5235i 0.575735i 0.957670 + 0.287867i \(0.0929462\pi\)
−0.957670 + 0.287867i \(0.907054\pi\)
\(728\) −8.23233 12.6434i −0.305110 0.468597i
\(729\) 17.2107i 0.637435i
\(730\) −1.17969 6.05604i −0.0436622 0.224144i
\(731\) 15.9718 15.9718i 0.590737 0.590737i
\(732\) 19.4382 7.87163i 0.718457 0.290944i
\(733\) −8.79758 8.79758i −0.324946 0.324946i 0.525715 0.850661i \(-0.323798\pi\)
−0.850661 + 0.525715i \(0.823798\pi\)
\(734\) −13.9485 9.40027i −0.514849 0.346970i
\(735\) 0.928667 0.0342544
\(736\) 1.63737 + 9.17864i 0.0603542 + 0.338329i
\(737\) 47.4862 1.74918
\(738\) 7.44776 + 5.01925i 0.274156 + 0.184761i
\(739\) −6.44190 6.44190i −0.236969 0.236969i 0.578625 0.815594i \(-0.303590\pi\)
−0.815594 + 0.578625i \(0.803590\pi\)
\(740\) −6.52187 + 2.64108i −0.239749 + 0.0970879i
\(741\) −1.10638 + 1.10638i −0.0406440 + 0.0406440i
\(742\) −7.53539 38.6836i −0.276633 1.42012i
\(743\) 34.8920i 1.28006i 0.768348 + 0.640032i \(0.221079\pi\)
−0.768348 + 0.640032i \(0.778921\pi\)
\(744\) 18.1686 11.8298i 0.666092 0.433702i
\(745\) 13.8115i 0.506014i
\(746\) 37.3960 7.28456i 1.36916 0.266707i
\(747\) 0.389866 0.389866i 0.0142645 0.0142645i
\(748\) −53.1296 22.5020i −1.94261 0.822756i
\(749\) 0.803225 + 0.803225i 0.0293492 + 0.0293492i
\(750\) 1.53158 2.27262i 0.0559254 0.0829844i
\(751\) 17.4058 0.635148 0.317574 0.948234i \(-0.397132\pi\)
0.317574 + 0.948234i \(0.397132\pi\)
\(752\) 14.9336 14.4675i 0.544574 0.527575i
\(753\) 8.25325 0.300765
\(754\) 12.3669 18.3505i 0.450376 0.668286i
\(755\) 1.34884 + 1.34884i 0.0490893 + 0.0490893i
\(756\) −9.27900 + 21.9087i −0.337474 + 0.796810i
\(757\) 20.6521 20.6521i 0.750614 0.750614i −0.223980 0.974594i \(-0.571905\pi\)
0.974594 + 0.223980i \(0.0719050\pi\)
\(758\) 9.11967 1.77647i 0.331241 0.0645242i
\(759\) 18.6176i 0.675776i
\(760\) 0.242062 1.14557i 0.00878051 0.0415541i
\(761\) 8.36636i 0.303280i 0.988436 + 0.151640i \(0.0484555\pi\)
−0.988436 + 0.151640i \(0.951545\pi\)
\(762\) −5.75309 29.5340i −0.208413 1.06991i
\(763\) −28.4789 + 28.4789i −1.03101 + 1.03101i
\(764\) −4.04695 9.99353i −0.146413 0.361553i
\(765\) 2.64318 + 2.64318i 0.0955642 + 0.0955642i
\(766\) −45.1663 30.4388i −1.63193 1.09980i
\(767\) 17.6851 0.638574
\(768\) 22.6083 21.2182i 0.815808 0.765647i