Properties

Label 80.2.j.b.67.8
Level $80$
Weight $2$
Character 80.67
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 67.8
Root \(0.482716 + 1.32928i\) of defining polynomial
Character \(\chi\) \(=\) 80.67
Dual form 80.2.j.b.43.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.759419 + 1.19301i) q^{2} +1.39319i q^{3} +(-0.846564 + 1.81200i) q^{4} +(0.535339 - 2.17104i) q^{5} +(-1.66209 + 1.05801i) q^{6} +(-2.13436 - 2.13436i) q^{7} +(-2.80463 + 0.366101i) q^{8} +1.05903 q^{9} +O(q^{10})\) \(q+(0.759419 + 1.19301i) q^{2} +1.39319i q^{3} +(-0.846564 + 1.81200i) q^{4} +(0.535339 - 2.17104i) q^{5} +(-1.66209 + 1.05801i) q^{6} +(-2.13436 - 2.13436i) q^{7} +(-2.80463 + 0.366101i) q^{8} +1.05903 q^{9} +(2.99663 - 1.01006i) q^{10} +(2.17074 + 2.17074i) q^{11} +(-2.52445 - 1.17942i) q^{12} +1.54663 q^{13} +(0.925449 - 4.16720i) q^{14} +(3.02466 + 0.745827i) q^{15} +(-2.56666 - 3.06794i) q^{16} +(-3.86386 - 3.86386i) q^{17} +(0.804250 + 1.26344i) q^{18} +(-0.0136865 - 0.0136865i) q^{19} +(3.48071 + 2.80796i) q^{20} +(2.97357 - 2.97357i) q^{21} +(-0.941219 + 4.23822i) q^{22} +(-3.15240 + 3.15240i) q^{23} +(-0.510047 - 3.90738i) q^{24} +(-4.42682 - 2.32449i) q^{25} +(1.17454 + 1.84515i) q^{26} +5.65499i q^{27} +(5.67434 - 2.06058i) q^{28} +(-3.33787 + 3.33787i) q^{29} +(1.40720 + 4.17486i) q^{30} -8.92639i q^{31} +(1.71093 - 5.39191i) q^{32} +(-3.02424 + 3.02424i) q^{33} +(1.67535 - 7.54394i) q^{34} +(-5.77640 + 3.49118i) q^{35} +(-0.896540 + 1.91896i) q^{36} +7.24737 q^{37} +(0.00593441 - 0.0267220i) q^{38} +2.15475i q^{39} +(-0.706610 + 6.28496i) q^{40} +10.3771i q^{41} +(5.80569 + 1.28932i) q^{42} -2.02975 q^{43} +(-5.77103 + 2.09570i) q^{44} +(0.566942 - 2.29920i) q^{45} +(-6.15484 - 1.36686i) q^{46} +(-3.34313 + 3.34313i) q^{47} +(4.27421 - 3.57583i) q^{48} +2.11103i q^{49} +(-0.588672 - 7.04652i) q^{50} +(5.38308 - 5.38308i) q^{51} +(-1.30932 + 2.80249i) q^{52} +7.30702i q^{53} +(-6.74648 + 4.29451i) q^{54} +(5.87483 - 3.55067i) q^{55} +(6.76751 + 5.20472i) q^{56} +(0.0190679 - 0.0190679i) q^{57} +(-6.51696 - 1.44728i) q^{58} +(3.52732 - 3.52732i) q^{59} +(-3.91201 + 4.84928i) q^{60} +(1.41629 + 1.41629i) q^{61} +(10.6493 - 6.77887i) q^{62} +(-2.26036 - 2.26036i) q^{63} +(7.73194 - 2.05356i) q^{64} +(0.827973 - 3.35780i) q^{65} +(-5.90462 - 1.31129i) q^{66} +0.748197 q^{67} +(10.2723 - 3.73030i) q^{68} +(-4.39187 - 4.39187i) q^{69} +(-8.55174 - 4.24005i) q^{70} -0.269603 q^{71} +(-2.97020 + 0.387713i) q^{72} +(-0.811870 - 0.811870i) q^{73} +(5.50380 + 8.64622i) q^{74} +(3.23844 - 6.16739i) q^{75} +(0.0363865 - 0.0132134i) q^{76} -9.26628i q^{77} +(-2.57064 + 1.63636i) q^{78} +2.80567 q^{79} +(-8.03466 + 3.92992i) q^{80} -4.70135 q^{81} +(-12.3800 + 7.88056i) q^{82} -12.8279i q^{83} +(2.87077 + 7.90541i) q^{84} +(-10.4571 + 6.32012i) q^{85} +(-1.54143 - 2.42152i) q^{86} +(-4.65027 - 4.65027i) q^{87} +(-6.88283 - 5.29341i) q^{88} +13.3732 q^{89} +(3.17353 - 1.06969i) q^{90} +(-3.30108 - 3.30108i) q^{91} +(-3.04342 - 8.38083i) q^{92} +12.4361 q^{93} +(-6.52724 - 1.44956i) q^{94} +(-0.0370409 + 0.0223871i) q^{95} +(7.51194 + 2.38364i) q^{96} +(6.33466 + 6.33466i) q^{97} +(-2.51848 + 1.60315i) q^{98} +(2.29888 + 2.29888i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} + O(q^{10}) \) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 12 q^{10} - 2 q^{11} + 4 q^{12} + 12 q^{14} + 20 q^{15} - 6 q^{17} + 16 q^{18} + 2 q^{19} - 4 q^{20} - 16 q^{21} + 4 q^{22} - 2 q^{23} + 4 q^{24} + 6 q^{25} - 16 q^{26} - 4 q^{28} - 14 q^{29} + 20 q^{30} - 4 q^{32} - 8 q^{33} - 28 q^{34} - 6 q^{35} - 4 q^{36} + 8 q^{37} + 16 q^{38} + 20 q^{40} + 28 q^{42} - 44 q^{43} + 44 q^{44} - 4 q^{45} + 12 q^{46} - 38 q^{47} + 60 q^{48} + 20 q^{50} + 8 q^{51} - 40 q^{52} - 4 q^{54} - 6 q^{55} + 20 q^{56} + 24 q^{57} - 20 q^{58} - 10 q^{59} - 68 q^{60} + 14 q^{61} + 6 q^{63} - 16 q^{64} + 4 q^{66} + 12 q^{67} + 36 q^{68} + 32 q^{69} - 36 q^{70} + 24 q^{71} - 36 q^{72} + 14 q^{73} + 48 q^{74} + 64 q^{75} - 16 q^{76} - 84 q^{78} + 16 q^{79} - 20 q^{80} + 2 q^{81} - 28 q^{82} - 24 q^{84} - 10 q^{85} - 36 q^{86} + 24 q^{87} - 96 q^{88} - 12 q^{89} - 64 q^{90} + 52 q^{92} + 16 q^{93} + 28 q^{94} - 34 q^{95} - 40 q^{96} + 18 q^{97} + 32 q^{98} - 22 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.759419 + 1.19301i 0.536991 + 0.843588i
\(3\) 1.39319i 0.804356i 0.915561 + 0.402178i \(0.131747\pi\)
−0.915561 + 0.402178i \(0.868253\pi\)
\(4\) −0.846564 + 1.81200i −0.423282 + 0.905998i
\(5\) 0.535339 2.17104i 0.239411 0.970918i
\(6\) −1.66209 + 1.05801i −0.678546 + 0.431932i
\(7\) −2.13436 2.13436i −0.806714 0.806714i 0.177421 0.984135i \(-0.443225\pi\)
−0.984135 + 0.177421i \(0.943225\pi\)
\(8\) −2.80463 + 0.366101i −0.991588 + 0.129436i
\(9\) 1.05903 0.353011
\(10\) 2.99663 1.01006i 0.947617 0.319410i
\(11\) 2.17074 + 2.17074i 0.654501 + 0.654501i 0.954074 0.299572i \(-0.0968440\pi\)
−0.299572 + 0.954074i \(0.596844\pi\)
\(12\) −2.52445 1.17942i −0.728745 0.340470i
\(13\) 1.54663 0.428958 0.214479 0.976729i \(-0.431195\pi\)
0.214479 + 0.976729i \(0.431195\pi\)
\(14\) 0.925449 4.16720i 0.247337 1.11373i
\(15\) 3.02466 + 0.745827i 0.780964 + 0.192572i
\(16\) −2.56666 3.06794i −0.641664 0.766986i
\(17\) −3.86386 3.86386i −0.937125 0.937125i 0.0610123 0.998137i \(-0.480567\pi\)
−0.998137 + 0.0610123i \(0.980567\pi\)
\(18\) 0.804250 + 1.26344i 0.189564 + 0.297796i
\(19\) −0.0136865 0.0136865i −0.00313991 0.00313991i 0.705535 0.708675i \(-0.250707\pi\)
−0.708675 + 0.705535i \(0.750707\pi\)
\(20\) 3.48071 + 2.80796i 0.778311 + 0.627878i
\(21\) 2.97357 2.97357i 0.648886 0.648886i
\(22\) −0.941219 + 4.23822i −0.200669 + 0.903591i
\(23\) −3.15240 + 3.15240i −0.657320 + 0.657320i −0.954745 0.297425i \(-0.903872\pi\)
0.297425 + 0.954745i \(0.403872\pi\)
\(24\) −0.510047 3.90738i −0.104113 0.797590i
\(25\) −4.42682 2.32449i −0.885365 0.464897i
\(26\) 1.17454 + 1.84515i 0.230347 + 0.361864i
\(27\) 5.65499i 1.08830i
\(28\) 5.67434 2.06058i 1.07235 0.389413i
\(29\) −3.33787 + 3.33787i −0.619826 + 0.619826i −0.945487 0.325660i \(-0.894413\pi\)
0.325660 + 0.945487i \(0.394413\pi\)
\(30\) 1.40720 + 4.17486i 0.256919 + 0.762222i
\(31\) 8.92639i 1.60323i −0.597843 0.801613i \(-0.703975\pi\)
0.597843 0.801613i \(-0.296025\pi\)
\(32\) 1.71093 5.39191i 0.302452 0.953164i
\(33\) −3.02424 + 3.02424i −0.526452 + 0.526452i
\(34\) 1.67535 7.54394i 0.287320 1.29377i
\(35\) −5.77640 + 3.49118i −0.976390 + 0.590117i
\(36\) −0.896540 + 1.91896i −0.149423 + 0.319827i
\(37\) 7.24737 1.19146 0.595730 0.803184i \(-0.296863\pi\)
0.595730 + 0.803184i \(0.296863\pi\)
\(38\) 0.00593441 0.0267220i 0.000962688 0.00433489i
\(39\) 2.15475i 0.345035i
\(40\) −0.706610 + 6.28496i −0.111725 + 0.993739i
\(41\) 10.3771i 1.62063i 0.585996 + 0.810314i \(0.300704\pi\)
−0.585996 + 0.810314i \(0.699296\pi\)
\(42\) 5.80569 + 1.28932i 0.895838 + 0.198947i
\(43\) −2.02975 −0.309534 −0.154767 0.987951i \(-0.549463\pi\)
−0.154767 + 0.987951i \(0.549463\pi\)
\(44\) −5.77103 + 2.09570i −0.870015 + 0.315938i
\(45\) 0.566942 2.29920i 0.0845147 0.342745i
\(46\) −6.15484 1.36686i −0.907482 0.201533i
\(47\) −3.34313 + 3.34313i −0.487646 + 0.487646i −0.907563 0.419917i \(-0.862059\pi\)
0.419917 + 0.907563i \(0.362059\pi\)
\(48\) 4.27421 3.57583i 0.616930 0.516127i
\(49\) 2.11103i 0.301575i
\(50\) −0.588672 7.04652i −0.0832508 0.996529i
\(51\) 5.38308 5.38308i 0.753782 0.753782i
\(52\) −1.30932 + 2.80249i −0.181570 + 0.388635i
\(53\) 7.30702i 1.00370i 0.864956 + 0.501848i \(0.167346\pi\)
−0.864956 + 0.501848i \(0.832654\pi\)
\(54\) −6.74648 + 4.29451i −0.918080 + 0.584408i
\(55\) 5.87483 3.55067i 0.792162 0.478772i
\(56\) 6.76751 + 5.20472i 0.904346 + 0.695510i
\(57\) 0.0190679 0.0190679i 0.00252560 0.00252560i
\(58\) −6.51696 1.44728i −0.855719 0.190037i
\(59\) 3.52732 3.52732i 0.459218 0.459218i −0.439181 0.898399i \(-0.644731\pi\)
0.898399 + 0.439181i \(0.144731\pi\)
\(60\) −3.91201 + 4.84928i −0.505038 + 0.626040i
\(61\) 1.41629 + 1.41629i 0.181338 + 0.181338i 0.791939 0.610601i \(-0.209072\pi\)
−0.610601 + 0.791939i \(0.709072\pi\)
\(62\) 10.6493 6.77887i 1.35246 0.860918i
\(63\) −2.26036 2.26036i −0.284779 0.284779i
\(64\) 7.73194 2.05356i 0.966492 0.256695i
\(65\) 0.827973 3.35780i 0.102697 0.416484i
\(66\) −5.90462 1.31129i −0.726809 0.161409i
\(67\) 0.748197 0.0914068 0.0457034 0.998955i \(-0.485447\pi\)
0.0457034 + 0.998955i \(0.485447\pi\)
\(68\) 10.2723 3.73030i 1.24570 0.452365i
\(69\) −4.39187 4.39187i −0.528719 0.528719i
\(70\) −8.55174 4.24005i −1.02213 0.506783i
\(71\) −0.269603 −0.0319960 −0.0159980 0.999872i \(-0.505093\pi\)
−0.0159980 + 0.999872i \(0.505093\pi\)
\(72\) −2.97020 + 0.387713i −0.350041 + 0.0456925i
\(73\) −0.811870 0.811870i −0.0950222 0.0950222i 0.657998 0.753020i \(-0.271404\pi\)
−0.753020 + 0.657998i \(0.771404\pi\)
\(74\) 5.50380 + 8.64622i 0.639803 + 1.00510i
\(75\) 3.23844 6.16739i 0.373943 0.712149i
\(76\) 0.0363865 0.0132134i 0.00417381 0.00151568i
\(77\) 9.26628i 1.05599i
\(78\) −2.57064 + 1.63636i −0.291068 + 0.185281i
\(79\) 2.80567 0.315662 0.157831 0.987466i \(-0.449550\pi\)
0.157831 + 0.987466i \(0.449550\pi\)
\(80\) −8.03466 + 3.92992i −0.898302 + 0.439379i
\(81\) −4.70135 −0.522372
\(82\) −12.3800 + 7.88056i −1.36714 + 0.870262i
\(83\) 12.8279i 1.40804i −0.710178 0.704022i \(-0.751386\pi\)
0.710178 0.704022i \(-0.248614\pi\)
\(84\) 2.87077 + 7.90541i 0.313227 + 0.862551i
\(85\) −10.4571 + 6.32012i −1.13423 + 0.685514i
\(86\) −1.54143 2.42152i −0.166217 0.261119i
\(87\) −4.65027 4.65027i −0.498561 0.498561i
\(88\) −6.88283 5.29341i −0.733712 0.564279i
\(89\) 13.3732 1.41755 0.708777 0.705432i \(-0.249247\pi\)
0.708777 + 0.705432i \(0.249247\pi\)
\(90\) 3.17353 1.06969i 0.334519 0.112755i
\(91\) −3.30108 3.30108i −0.346047 0.346047i
\(92\) −3.04342 8.38083i −0.317299 0.873762i
\(93\) 12.4361 1.28957
\(94\) −6.52724 1.44956i −0.673233 0.149511i
\(95\) −0.0370409 + 0.0223871i −0.00380032 + 0.00229686i
\(96\) 7.51194 + 2.38364i 0.766684 + 0.243279i
\(97\) 6.33466 + 6.33466i 0.643187 + 0.643187i 0.951338 0.308151i \(-0.0997101\pi\)
−0.308151 + 0.951338i \(0.599710\pi\)
\(98\) −2.51848 + 1.60315i −0.254405 + 0.161943i
\(99\) 2.29888 + 2.29888i 0.231046 + 0.231046i
\(100\) 7.95955 6.05356i 0.795955 0.605356i
\(101\) −3.78129 + 3.78129i −0.376252 + 0.376252i −0.869748 0.493496i \(-0.835719\pi\)
0.493496 + 0.869748i \(0.335719\pi\)
\(102\) 10.5101 + 2.33407i 1.04066 + 0.231108i
\(103\) 10.7199 10.7199i 1.05626 1.05626i 0.0579430 0.998320i \(-0.481546\pi\)
0.998320 0.0579430i \(-0.0184542\pi\)
\(104\) −4.33774 + 0.566224i −0.425350 + 0.0555228i
\(105\) −4.86386 8.04760i −0.474665 0.785365i
\(106\) −8.71737 + 5.54909i −0.846706 + 0.538975i
\(107\) 10.9109i 1.05479i 0.849619 + 0.527397i \(0.176832\pi\)
−0.849619 + 0.527397i \(0.823168\pi\)
\(108\) −10.2468 4.78731i −0.986000 0.460659i
\(109\) −9.12139 + 9.12139i −0.873670 + 0.873670i −0.992870 0.119200i \(-0.961967\pi\)
0.119200 + 0.992870i \(0.461967\pi\)
\(110\) 8.69746 + 4.31231i 0.829270 + 0.411162i
\(111\) 10.0969i 0.958359i
\(112\) −1.06993 + 12.0263i −0.101098 + 1.13638i
\(113\) 4.88810 4.88810i 0.459834 0.459834i −0.438767 0.898601i \(-0.644585\pi\)
0.898601 + 0.438767i \(0.144585\pi\)
\(114\) 0.0372288 + 0.00826773i 0.00348679 + 0.000774344i
\(115\) 5.15637 + 8.53157i 0.480834 + 0.795573i
\(116\) −3.22248 8.87392i −0.299200 0.823923i
\(117\) 1.63793 0.151427
\(118\) 6.88685 + 1.52943i 0.633986 + 0.140795i
\(119\) 16.4938i 1.51198i
\(120\) −8.75612 0.984439i −0.799320 0.0898666i
\(121\) 1.57582i 0.143256i
\(122\) −0.614097 + 2.76522i −0.0555978 + 0.250351i
\(123\) −14.4572 −1.30356
\(124\) 16.1746 + 7.55676i 1.45252 + 0.678617i
\(125\) −7.41640 + 8.36642i −0.663343 + 0.748315i
\(126\) 0.980081 4.41321i 0.0873125 0.393160i
\(127\) −1.38586 + 1.38586i −0.122975 + 0.122975i −0.765916 0.642941i \(-0.777714\pi\)
0.642941 + 0.765916i \(0.277714\pi\)
\(128\) 8.32171 + 7.66480i 0.735542 + 0.677479i
\(129\) 2.82782i 0.248976i
\(130\) 4.63468 1.56219i 0.406488 0.137013i
\(131\) −3.52096 + 3.52096i −0.307627 + 0.307627i −0.843989 0.536361i \(-0.819798\pi\)
0.536361 + 0.843989i \(0.319798\pi\)
\(132\) −2.91969 8.04012i −0.254127 0.699802i
\(133\) 0.0584241i 0.00506601i
\(134\) 0.568195 + 0.892609i 0.0490846 + 0.0771097i
\(135\) 12.2772 + 3.02734i 1.05665 + 0.260552i
\(136\) 12.2513 + 9.42216i 1.05054 + 0.807943i
\(137\) 5.62512 5.62512i 0.480587 0.480587i −0.424732 0.905319i \(-0.639632\pi\)
0.905319 + 0.424732i \(0.139632\pi\)
\(138\) 1.90429 8.57484i 0.162104 0.729939i
\(139\) 12.1022 12.1022i 1.02650 1.02650i 0.0268584 0.999639i \(-0.491450\pi\)
0.999639 0.0268584i \(-0.00855031\pi\)
\(140\) −1.43591 13.4223i −0.121357 1.13439i
\(141\) −4.65760 4.65760i −0.392241 0.392241i
\(142\) −0.204742 0.321641i −0.0171816 0.0269915i
\(143\) 3.35733 + 3.35733i 0.280754 + 0.280754i
\(144\) −2.71817 3.24905i −0.226514 0.270754i
\(145\) 5.45975 + 9.03353i 0.453408 + 0.750194i
\(146\) 0.352023 1.58512i 0.0291336 0.131186i
\(147\) −2.94105 −0.242574
\(148\) −6.13537 + 13.1322i −0.504324 + 1.07946i
\(149\) −13.5590 13.5590i −1.11080 1.11080i −0.993042 0.117757i \(-0.962430\pi\)
−0.117757 0.993042i \(-0.537570\pi\)
\(150\) 9.81712 0.820130i 0.801564 0.0669633i
\(151\) −20.7185 −1.68605 −0.843025 0.537874i \(-0.819228\pi\)
−0.843025 + 0.537874i \(0.819228\pi\)
\(152\) 0.0433964 + 0.0333751i 0.00351991 + 0.00270707i
\(153\) −4.09196 4.09196i −0.330815 0.330815i
\(154\) 11.0548 7.03699i 0.890821 0.567057i
\(155\) −19.3795 4.77865i −1.55660 0.383830i
\(156\) −3.90439 1.82413i −0.312601 0.146047i
\(157\) 5.72312i 0.456755i −0.973573 0.228377i \(-0.926658\pi\)
0.973573 0.228377i \(-0.0733420\pi\)
\(158\) 2.13068 + 3.34720i 0.169508 + 0.266289i
\(159\) −10.1800 −0.807329
\(160\) −10.7901 6.60100i −0.853034 0.521855i
\(161\) 13.4567 1.06054
\(162\) −3.57030 5.60878i −0.280509 0.440667i
\(163\) 17.9900i 1.40909i 0.709662 + 0.704543i \(0.248848\pi\)
−0.709662 + 0.704543i \(0.751152\pi\)
\(164\) −18.8032 8.78487i −1.46829 0.685983i
\(165\) 4.94675 + 8.18473i 0.385104 + 0.637181i
\(166\) 15.3039 9.74175i 1.18781 0.756106i
\(167\) 2.39642 + 2.39642i 0.185441 + 0.185441i 0.793722 0.608281i \(-0.208141\pi\)
−0.608281 + 0.793722i \(0.708141\pi\)
\(168\) −7.25114 + 9.42839i −0.559438 + 0.727416i
\(169\) −10.6079 −0.815995
\(170\) −15.4813 7.67582i −1.18736 0.588708i
\(171\) −0.0144945 0.0144945i −0.00110842 0.00110842i
\(172\) 1.71832 3.67790i 0.131020 0.280437i
\(173\) −9.45205 −0.718626 −0.359313 0.933217i \(-0.616989\pi\)
−0.359313 + 0.933217i \(0.616989\pi\)
\(174\) 2.01633 9.07934i 0.152858 0.688303i
\(175\) 4.48716 + 14.4098i 0.339197 + 1.08928i
\(176\) 1.08816 12.2312i 0.0820230 0.921963i
\(177\) 4.91421 + 4.91421i 0.369375 + 0.369375i
\(178\) 10.1559 + 15.9544i 0.761213 + 1.19583i
\(179\) −11.7991 11.7991i −0.881905 0.881905i 0.111824 0.993728i \(-0.464331\pi\)
−0.993728 + 0.111824i \(0.964331\pi\)
\(180\) 3.68619 + 2.97372i 0.274752 + 0.221648i
\(181\) 2.54155 2.54155i 0.188912 0.188912i −0.606314 0.795225i \(-0.707352\pi\)
0.795225 + 0.606314i \(0.207352\pi\)
\(182\) 1.43133 6.44513i 0.106097 0.477745i
\(183\) −1.97316 + 1.97316i −0.145860 + 0.145860i
\(184\) 7.68722 9.99541i 0.566709 0.736871i
\(185\) 3.87980 15.7343i 0.285249 1.15681i
\(186\) 9.44423 + 14.8365i 0.692484 + 1.08786i
\(187\) 16.7748i 1.22670i
\(188\) −3.22756 8.88791i −0.235394 0.648217i
\(189\) 12.0698 12.0698i 0.877949 0.877949i
\(190\) −0.0548377 0.0271892i −0.00397834 0.00197251i
\(191\) 5.46421i 0.395376i 0.980265 + 0.197688i \(0.0633433\pi\)
−0.980265 + 0.197688i \(0.936657\pi\)
\(192\) 2.86099 + 10.7720i 0.206474 + 0.777404i
\(193\) 4.82485 4.82485i 0.347300 0.347300i −0.511803 0.859103i \(-0.671022\pi\)
0.859103 + 0.511803i \(0.171022\pi\)
\(194\) −2.74667 + 12.3680i −0.197200 + 0.887970i
\(195\) 4.67804 + 1.15352i 0.335001 + 0.0826053i
\(196\) −3.82517 1.78712i −0.273226 0.127651i
\(197\) 2.94582 0.209881 0.104941 0.994478i \(-0.466535\pi\)
0.104941 + 0.994478i \(0.466535\pi\)
\(198\) −0.996782 + 4.48841i −0.0708382 + 0.318977i
\(199\) 2.14620i 0.152140i 0.997102 + 0.0760700i \(0.0242372\pi\)
−0.997102 + 0.0760700i \(0.975763\pi\)
\(200\) 13.2666 + 4.89866i 0.938091 + 0.346388i
\(201\) 1.04238i 0.0735236i
\(202\) −7.38271 1.63955i −0.519446 0.115358i
\(203\) 14.2485 1.00005
\(204\) 5.19699 + 14.3112i 0.363862 + 1.00199i
\(205\) 22.5291 + 5.55526i 1.57350 + 0.387996i
\(206\) 20.9299 + 4.64809i 1.45825 + 0.323848i
\(207\) −3.33849 + 3.33849i −0.232041 + 0.232041i
\(208\) −3.96967 4.74498i −0.275247 0.329005i
\(209\) 0.0594197i 0.00411014i
\(210\) 5.90719 11.9142i 0.407634 0.822155i
\(211\) 5.54427 5.54427i 0.381684 0.381684i −0.490025 0.871708i \(-0.663012\pi\)
0.871708 + 0.490025i \(0.163012\pi\)
\(212\) −13.2403 6.18586i −0.909346 0.424847i
\(213\) 0.375608i 0.0257362i
\(214\) −13.0168 + 8.28593i −0.889812 + 0.566414i
\(215\) −1.08661 + 4.40667i −0.0741059 + 0.300532i
\(216\) −2.07030 15.8602i −0.140866 1.07915i
\(217\) −19.0522 + 19.0522i −1.29335 + 1.29335i
\(218\) −17.8089 3.95498i −1.20617 0.267865i
\(219\) 1.13109 1.13109i 0.0764317 0.0764317i
\(220\) 1.46038 + 13.6510i 0.0984587 + 0.920353i
\(221\) −5.97597 5.97597i −0.401988 0.401988i
\(222\) −12.0458 + 7.66781i −0.808461 + 0.514630i
\(223\) −1.16163 1.16163i −0.0777882 0.0777882i 0.667142 0.744930i \(-0.267517\pi\)
−0.744930 + 0.667142i \(0.767517\pi\)
\(224\) −15.1601 + 7.85656i −1.01292 + 0.524939i
\(225\) −4.68815 2.46171i −0.312543 0.164114i
\(226\) 9.54369 + 2.11945i 0.634837 + 0.140984i
\(227\) 12.8161 0.850632 0.425316 0.905045i \(-0.360163\pi\)
0.425316 + 0.905045i \(0.360163\pi\)
\(228\) 0.0184087 + 0.0506931i 0.00121915 + 0.00335723i
\(229\) −0.976882 0.976882i −0.0645542 0.0645542i 0.674093 0.738647i \(-0.264535\pi\)
−0.738647 + 0.674093i \(0.764535\pi\)
\(230\) −6.26244 + 12.6307i −0.412933 + 0.832842i
\(231\) 12.9097 0.849393
\(232\) 8.13950 10.5835i 0.534384 0.694840i
\(233\) 0.303870 + 0.303870i 0.0199072 + 0.0199072i 0.716990 0.697083i \(-0.245519\pi\)
−0.697083 + 0.716990i \(0.745519\pi\)
\(234\) 1.24388 + 1.95408i 0.0813149 + 0.127742i
\(235\) 5.46836 + 9.04777i 0.356716 + 0.590212i
\(236\) 3.40538 + 9.37758i 0.221671 + 0.610429i
\(237\) 3.90881i 0.253905i
\(238\) −19.6773 + 12.5257i −1.27549 + 0.811921i
\(239\) 12.5096 0.809178 0.404589 0.914499i \(-0.367415\pi\)
0.404589 + 0.914499i \(0.367415\pi\)
\(240\) −5.47511 11.1938i −0.353417 0.722555i
\(241\) −19.5775 −1.26110 −0.630548 0.776150i \(-0.717170\pi\)
−0.630548 + 0.776150i \(0.717170\pi\)
\(242\) 1.87997 1.19671i 0.120849 0.0769273i
\(243\) 10.4151i 0.668129i
\(244\) −3.76530 + 1.36733i −0.241049 + 0.0875346i
\(245\) 4.58312 + 1.13012i 0.292805 + 0.0722004i
\(246\) −10.9791 17.2477i −0.700001 1.09967i
\(247\) −0.0211680 0.0211680i −0.00134689 0.00134689i
\(248\) 3.26796 + 25.0352i 0.207516 + 1.58974i
\(249\) 17.8716 1.13257
\(250\) −15.6134 2.49425i −0.987479 0.157750i
\(251\) 5.17763 + 5.17763i 0.326809 + 0.326809i 0.851372 0.524563i \(-0.175771\pi\)
−0.524563 + 0.851372i \(0.675771\pi\)
\(252\) 6.00931 2.18222i 0.378551 0.137467i
\(253\) −13.6860 −0.860433
\(254\) −2.70580 0.600902i −0.169777 0.0377040i
\(255\) −8.80511 14.5687i −0.551397 0.912325i
\(256\) −2.82454 + 15.7487i −0.176534 + 0.984295i
\(257\) −14.7989 14.7989i −0.923131 0.923131i 0.0741183 0.997249i \(-0.476386\pi\)
−0.997249 + 0.0741183i \(0.976386\pi\)
\(258\) 3.37363 2.14750i 0.210033 0.133698i
\(259\) −15.4685 15.4685i −0.961168 0.961168i
\(260\) 5.38338 + 4.34288i 0.333863 + 0.269334i
\(261\) −3.53491 + 3.53491i −0.218805 + 0.218805i
\(262\) −6.87443 1.52667i −0.424704 0.0943178i
\(263\) 11.7906 11.7906i 0.727038 0.727038i −0.242991 0.970029i \(-0.578129\pi\)
0.970029 + 0.242991i \(0.0781285\pi\)
\(264\) 7.37470 9.58906i 0.453881 0.590166i
\(265\) 15.8638 + 3.91173i 0.974507 + 0.240296i
\(266\) −0.0697008 + 0.0443684i −0.00427363 + 0.00272040i
\(267\) 18.6313i 1.14022i
\(268\) −0.633397 + 1.35573i −0.0386909 + 0.0828144i
\(269\) −2.10121 + 2.10121i −0.128113 + 0.128113i −0.768256 0.640143i \(-0.778875\pi\)
0.640143 + 0.768256i \(0.278875\pi\)
\(270\) 5.71189 + 16.9459i 0.347614 + 1.03129i
\(271\) 18.8596i 1.14564i −0.819683 0.572818i \(-0.805850\pi\)
0.819683 0.572818i \(-0.194150\pi\)
\(272\) −1.93690 + 21.7713i −0.117442 + 1.32008i
\(273\) 4.59901 4.59901i 0.278345 0.278345i
\(274\) 10.9827 + 2.43902i 0.663488 + 0.147347i
\(275\) −4.56362 14.6553i −0.275197 0.883748i
\(276\) 11.6761 4.24005i 0.702816 0.255221i
\(277\) 9.91909 0.595980 0.297990 0.954569i \(-0.403684\pi\)
0.297990 + 0.954569i \(0.403684\pi\)
\(278\) 23.6288 + 5.24746i 1.41716 + 0.314722i
\(279\) 9.45334i 0.565956i
\(280\) 14.9226 11.9062i 0.891793 0.711533i
\(281\) 9.31434i 0.555647i 0.960632 + 0.277823i \(0.0896130\pi\)
−0.960632 + 0.277823i \(0.910387\pi\)
\(282\) 2.01951 9.09366i 0.120260 0.541519i
\(283\) −3.42364 −0.203514 −0.101757 0.994809i \(-0.532446\pi\)
−0.101757 + 0.994809i \(0.532446\pi\)
\(284\) 0.228237 0.488520i 0.0135434 0.0289883i
\(285\) −0.0311893 0.0516049i −0.00184750 0.00305681i
\(286\) −1.45572 + 6.55496i −0.0860785 + 0.387603i
\(287\) 22.1485 22.1485i 1.30738 1.30738i
\(288\) 1.81193 5.71021i 0.106769 0.336477i
\(289\) 12.8589i 0.756405i
\(290\) −6.63089 + 13.3738i −0.389379 + 0.785336i
\(291\) −8.82535 + 8.82535i −0.517351 + 0.517351i
\(292\) 2.15841 0.783805i 0.126311 0.0458687i
\(293\) 2.66471i 0.155674i −0.996966 0.0778369i \(-0.975199\pi\)
0.996966 0.0778369i \(-0.0248013\pi\)
\(294\) −2.23349 3.50872i −0.130260 0.204633i
\(295\) −5.76963 9.54626i −0.335921 0.555804i
\(296\) −20.3262 + 2.65327i −1.18144 + 0.154218i
\(297\) −12.2755 + 12.2755i −0.712296 + 0.712296i
\(298\) 5.87912 26.4731i 0.340568 1.53355i
\(299\) −4.87559 + 4.87559i −0.281963 + 0.281963i
\(300\) 8.43373 + 11.0891i 0.486922 + 0.640231i
\(301\) 4.33223 + 4.33223i 0.249706 + 0.249706i
\(302\) −15.7341 24.7175i −0.905393 1.42233i
\(303\) −5.26804 5.26804i −0.302641 0.302641i
\(304\) −0.00686086 + 0.0771181i −0.000393497 + 0.00442303i
\(305\) 3.83303 2.31663i 0.219478 0.132650i
\(306\) 1.77425 7.98928i 0.101427 0.456717i
\(307\) 10.5554 0.602430 0.301215 0.953556i \(-0.402608\pi\)
0.301215 + 0.953556i \(0.402608\pi\)
\(308\) 16.7905 + 7.84450i 0.956725 + 0.446982i
\(309\) 14.9348 + 14.9348i 0.849612 + 0.849612i
\(310\) −9.01621 26.7491i −0.512086 1.51924i
\(311\) −20.4762 −1.16110 −0.580550 0.814225i \(-0.697162\pi\)
−0.580550 + 0.814225i \(0.697162\pi\)
\(312\) −0.788855 6.04327i −0.0446601 0.342133i
\(313\) 2.82393 + 2.82393i 0.159618 + 0.159618i 0.782397 0.622780i \(-0.213997\pi\)
−0.622780 + 0.782397i \(0.713997\pi\)
\(314\) 6.82776 4.34625i 0.385313 0.245273i
\(315\) −6.11740 + 3.69727i −0.344676 + 0.208318i
\(316\) −2.37518 + 5.08385i −0.133614 + 0.285989i
\(317\) 20.2533i 1.13754i 0.822497 + 0.568769i \(0.192580\pi\)
−0.822497 + 0.568769i \(0.807420\pi\)
\(318\) −7.73091 12.1449i −0.433528 0.681053i
\(319\) −14.4913 −0.811354
\(320\) −0.319150 17.8857i −0.0178410 0.999841i
\(321\) −15.2009 −0.848430
\(322\) 10.2193 + 16.0541i 0.569499 + 0.894658i
\(323\) 0.105766i 0.00588497i
\(324\) 3.98000 8.51883i 0.221111 0.473268i
\(325\) −6.84667 3.59512i −0.379785 0.199422i
\(326\) −21.4623 + 13.6620i −1.18869 + 0.756666i
\(327\) −12.7078 12.7078i −0.702742 0.702742i
\(328\) −3.79907 29.1039i −0.209768 1.60700i
\(329\) 14.2709 0.786781
\(330\) −6.00785 + 12.1172i −0.330721 + 0.667029i
\(331\) 19.4930 + 19.4930i 1.07143 + 1.07143i 0.997244 + 0.0741908i \(0.0236374\pi\)
0.0741908 + 0.997244i \(0.476363\pi\)
\(332\) 23.2441 + 10.8596i 1.27569 + 0.596000i
\(333\) 7.67521 0.420599
\(334\) −1.03908 + 4.67885i −0.0568557 + 0.256016i
\(335\) 0.400539 1.62437i 0.0218838 0.0887485i
\(336\) −16.7549 1.49061i −0.914053 0.0813192i
\(337\) −5.89449 5.89449i −0.321093 0.321093i 0.528093 0.849186i \(-0.322907\pi\)
−0.849186 + 0.528093i \(0.822907\pi\)
\(338\) −8.05587 12.6554i −0.438181 0.688364i
\(339\) 6.81003 + 6.81003i 0.369870 + 0.369870i
\(340\) −2.59944 24.2986i −0.140975 1.31778i
\(341\) 19.3768 19.3768i 1.04931 1.04931i
\(342\) 0.00628473 0.0282995i 0.000339839 0.00153026i
\(343\) −10.4349 + 10.4349i −0.563429 + 0.563429i
\(344\) 5.69271 0.743095i 0.306930 0.0400650i
\(345\) −11.8861 + 7.18379i −0.639925 + 0.386762i
\(346\) −7.17807 11.2764i −0.385895 0.606225i
\(347\) 11.4626i 0.615346i −0.951492 0.307673i \(-0.900450\pi\)
0.951492 0.307673i \(-0.0995502\pi\)
\(348\) 12.3630 4.48952i 0.662728 0.240663i
\(349\) −0.317872 + 0.317872i −0.0170153 + 0.0170153i −0.715563 0.698548i \(-0.753830\pi\)
0.698548 + 0.715563i \(0.253830\pi\)
\(350\) −13.7834 + 16.2963i −0.736754 + 0.871073i
\(351\) 8.74618i 0.466837i
\(352\) 15.4184 7.99044i 0.821803 0.425892i
\(353\) −18.4551 + 18.4551i −0.982266 + 0.982266i −0.999845 0.0175800i \(-0.994404\pi\)
0.0175800 + 0.999845i \(0.494404\pi\)
\(354\) −2.13077 + 9.59466i −0.113249 + 0.509951i
\(355\) −0.144329 + 0.585320i −0.00766020 + 0.0310655i
\(356\) −11.3213 + 24.2321i −0.600026 + 1.28430i
\(357\) −22.9789 −1.21617
\(358\) 5.11602 23.0369i 0.270390 1.21754i
\(359\) 15.5802i 0.822292i 0.911569 + 0.411146i \(0.134871\pi\)
−0.911569 + 0.411146i \(0.865129\pi\)
\(360\) −0.748323 + 6.65598i −0.0394401 + 0.350801i
\(361\) 18.9996i 0.999980i
\(362\) 4.96220 + 1.10200i 0.260808 + 0.0579199i
\(363\) 2.19541 0.115229
\(364\) 8.77611 3.18696i 0.459993 0.167042i
\(365\) −2.19723 + 1.32798i −0.115008 + 0.0695095i
\(366\) −3.85246 0.855552i −0.201372 0.0447204i
\(367\) 5.37489 5.37489i 0.280567 0.280567i −0.552768 0.833335i \(-0.686428\pi\)
0.833335 + 0.552768i \(0.186428\pi\)
\(368\) 17.7625 + 1.58025i 0.925933 + 0.0823762i
\(369\) 10.9897i 0.572100i
\(370\) 21.7177 7.32030i 1.12905 0.380564i
\(371\) 15.5958 15.5958i 0.809696 0.809696i
\(372\) −10.5280 + 22.5342i −0.545850 + 1.16834i
\(373\) 3.24424i 0.167980i −0.996467 0.0839902i \(-0.973234\pi\)
0.996467 0.0839902i \(-0.0267664\pi\)
\(374\) 20.0126 12.7391i 1.03483 0.658726i
\(375\) −11.6560 10.3324i −0.601912 0.533564i
\(376\) 8.15233 10.6002i 0.420424 0.546662i
\(377\) −5.16245 + 5.16245i −0.265880 + 0.265880i
\(378\) 23.5655 + 5.23340i 1.21208 + 0.269177i
\(379\) −25.7690 + 25.7690i −1.32367 + 1.32367i −0.412882 + 0.910785i \(0.635478\pi\)
−0.910785 + 0.412882i \(0.864522\pi\)
\(380\) −0.00920772 0.0860701i −0.000472346 0.00441530i
\(381\) −1.93076 1.93076i −0.0989160 0.0989160i
\(382\) −6.51888 + 4.14962i −0.333535 + 0.212313i
\(383\) 0.418091 + 0.418091i 0.0213634 + 0.0213634i 0.717708 0.696344i \(-0.245191\pi\)
−0.696344 + 0.717708i \(0.745191\pi\)
\(384\) −10.6785 + 11.5937i −0.544934 + 0.591638i
\(385\) −20.1175 4.96060i −1.02528 0.252816i
\(386\) 9.42019 + 2.09203i 0.479475 + 0.106481i
\(387\) −2.14957 −0.109269
\(388\) −16.8411 + 6.11568i −0.854976 + 0.310476i
\(389\) 13.3626 + 13.3626i 0.677508 + 0.677508i 0.959436 0.281927i \(-0.0909737\pi\)
−0.281927 + 0.959436i \(0.590974\pi\)
\(390\) 2.17643 + 6.45697i 0.110208 + 0.326961i
\(391\) 24.3609 1.23198
\(392\) −0.772850 5.92066i −0.0390348 0.299038i
\(393\) −4.90535 4.90535i −0.247442 0.247442i
\(394\) 2.23712 + 3.51441i 0.112704 + 0.177053i
\(395\) 1.50198 6.09121i 0.0755730 0.306482i
\(396\) −6.11171 + 2.21941i −0.307125 + 0.111530i
\(397\) 13.8391i 0.694564i −0.937761 0.347282i \(-0.887105\pi\)
0.937761 0.347282i \(-0.112895\pi\)
\(398\) −2.56044 + 1.62986i −0.128343 + 0.0816977i
\(399\) −0.0813957 −0.00407488
\(400\) 4.23075 + 19.5474i 0.211538 + 0.977370i
\(401\) 20.3112 1.01430 0.507148 0.861859i \(-0.330700\pi\)
0.507148 + 0.861859i \(0.330700\pi\)
\(402\) −1.24357 + 0.791602i −0.0620237 + 0.0394815i
\(403\) 13.8058i 0.687718i
\(404\) −3.65057 10.0528i −0.181623 0.500144i
\(405\) −2.51682 + 10.2068i −0.125062 + 0.507181i
\(406\) 10.8206 + 16.9986i 0.537015 + 0.843626i
\(407\) 15.7321 + 15.7321i 0.779813 + 0.779813i
\(408\) −13.1268 + 17.0683i −0.649874 + 0.845008i
\(409\) −18.2875 −0.904259 −0.452130 0.891952i \(-0.649336\pi\)
−0.452130 + 0.891952i \(0.649336\pi\)
\(410\) 10.4815 + 31.0963i 0.517644 + 1.53573i
\(411\) 7.83684 + 7.83684i 0.386563 + 0.386563i
\(412\) 10.3493 + 28.4995i 0.509875 + 1.40407i
\(413\) −15.0572 −0.740915
\(414\) −6.51818 1.44755i −0.320351 0.0711433i
\(415\) −27.8499 6.86728i −1.36710 0.337101i
\(416\) 2.64618 8.33930i 0.129740 0.408868i
\(417\) 16.8607 + 16.8607i 0.825670 + 0.825670i
\(418\) 0.0708885 0.0451245i 0.00346727 0.00220711i
\(419\) 17.3188 + 17.3188i 0.846079 + 0.846079i 0.989641 0.143563i \(-0.0458558\pi\)
−0.143563 + 0.989641i \(0.545856\pi\)
\(420\) 18.6998 2.00049i 0.912456 0.0976139i
\(421\) 11.5457 11.5457i 0.562703 0.562703i −0.367372 0.930074i \(-0.619742\pi\)
0.930074 + 0.367372i \(0.119742\pi\)
\(422\) 10.8248 + 2.40397i 0.526944 + 0.117023i
\(423\) −3.54048 + 3.54048i −0.172144 + 0.172144i
\(424\) −2.67511 20.4935i −0.129915 0.995252i
\(425\) 8.12315 + 26.0861i 0.394031 + 1.26536i
\(426\) 0.448105 0.285244i 0.0217108 0.0138201i
\(427\) 6.04577i 0.292576i
\(428\) −19.7705 9.23676i −0.955641 0.446475i
\(429\) −4.67738 + 4.67738i −0.225826 + 0.225826i
\(430\) −6.08241 + 2.05018i −0.293320 + 0.0988682i
\(431\) 15.9479i 0.768185i 0.923295 + 0.384093i \(0.125486\pi\)
−0.923295 + 0.384093i \(0.874514\pi\)
\(432\) 17.3492 14.5144i 0.834713 0.698325i
\(433\) 3.52109 3.52109i 0.169213 0.169213i −0.617420 0.786633i \(-0.711822\pi\)
0.786633 + 0.617420i \(0.211822\pi\)
\(434\) −37.1981 8.26092i −1.78557 0.396537i
\(435\) −12.5854 + 7.60645i −0.603423 + 0.364701i
\(436\) −8.80607 24.2498i −0.421734 1.16135i
\(437\) 0.0862907 0.00412784
\(438\) 2.20837 + 0.490433i 0.105520 + 0.0234338i
\(439\) 6.45840i 0.308242i −0.988052 0.154121i \(-0.950745\pi\)
0.988052 0.154121i \(-0.0492546\pi\)
\(440\) −15.1768 + 12.1091i −0.723528 + 0.577279i
\(441\) 2.23565i 0.106459i
\(442\) 2.59115 11.6677i 0.123248 0.554975i
\(443\) 27.0992 1.28752 0.643761 0.765226i \(-0.277373\pi\)
0.643761 + 0.765226i \(0.277373\pi\)
\(444\) −18.2956 8.54771i −0.868271 0.405656i
\(445\) 7.15919 29.0337i 0.339378 1.37633i
\(446\) 0.503675 2.26800i 0.0238497 0.107393i
\(447\) 18.8903 18.8903i 0.893478 0.893478i
\(448\) −20.8858 12.1197i −0.986763 0.572604i
\(449\) 41.0879i 1.93906i −0.244976 0.969529i \(-0.578780\pi\)
0.244976 0.969529i \(-0.421220\pi\)
\(450\) −0.623423 7.46250i −0.0293884 0.351785i
\(451\) −22.5259 + 22.5259i −1.06070 + 1.06070i
\(452\) 4.71913 + 12.9953i 0.221969 + 0.611248i
\(453\) 28.8648i 1.35619i
\(454\) 9.73276 + 15.2897i 0.456781 + 0.717583i
\(455\) −8.93396 + 5.39957i −0.418831 + 0.253136i
\(456\) −0.0464977 + 0.0604592i −0.00217745 + 0.00283126i
\(457\) 18.2449 18.2449i 0.853462 0.853462i −0.137096 0.990558i \(-0.543777\pi\)
0.990558 + 0.137096i \(0.0437769\pi\)
\(458\) 0.423571 1.90730i 0.0197922 0.0891221i
\(459\) 21.8501 21.8501i 1.01988 1.01988i
\(460\) −19.8244 + 2.12080i −0.924316 + 0.0988827i
\(461\) 6.68802 + 6.68802i 0.311492 + 0.311492i 0.845488 0.533995i \(-0.179310\pi\)
−0.533995 + 0.845488i \(0.679310\pi\)
\(462\) 9.80384 + 15.4014i 0.456116 + 0.716538i
\(463\) 28.6926 + 28.6926i 1.33346 + 1.33346i 0.902254 + 0.431205i \(0.141911\pi\)
0.431205 + 0.902254i \(0.358089\pi\)
\(464\) 18.8075 + 1.67322i 0.873118 + 0.0776775i
\(465\) 6.65754 26.9993i 0.308736 1.25206i
\(466\) −0.131756 + 0.593286i −0.00610349 + 0.0274834i
\(467\) −32.4161 −1.50004 −0.750018 0.661417i \(-0.769955\pi\)
−0.750018 + 0.661417i \(0.769955\pi\)
\(468\) −1.38662 + 2.96793i −0.0640964 + 0.137193i
\(469\) −1.59693 1.59693i −0.0737392 0.0737392i
\(470\) −6.64134 + 13.3949i −0.306342 + 0.617860i
\(471\) 7.97337 0.367394
\(472\) −8.60148 + 11.1842i −0.395915 + 0.514794i
\(473\) −4.40605 4.40605i −0.202591 0.202591i
\(474\) −4.66327 + 2.96843i −0.214191 + 0.136344i
\(475\) 0.0287737 + 0.0924020i 0.00132023 + 0.00423970i
\(476\) −29.8867 13.9631i −1.36985 0.639996i
\(477\) 7.73837i 0.354316i
\(478\) 9.50003 + 14.9241i 0.434521 + 0.682613i
\(479\) 7.33117 0.334970 0.167485 0.985875i \(-0.446435\pi\)
0.167485 + 0.985875i \(0.446435\pi\)
\(480\) 9.19642 15.0327i 0.419757 0.686144i
\(481\) 11.2090 0.511087
\(482\) −14.8675 23.3562i −0.677197 1.06385i
\(483\) 18.7477i 0.853051i
\(484\) 2.85538 + 1.33403i 0.129790 + 0.0606378i
\(485\) 17.1440 10.3616i 0.778468 0.470496i
\(486\) −12.4254 + 7.90943i −0.563626 + 0.358779i
\(487\) −11.7773 11.7773i −0.533681 0.533681i 0.387985 0.921666i \(-0.373171\pi\)
−0.921666 + 0.387985i \(0.873171\pi\)
\(488\) −4.49069 3.45368i −0.203284 0.156341i
\(489\) −25.0634 −1.13341
\(490\) 2.13227 + 6.32596i 0.0963260 + 0.285778i
\(491\) −27.3556 27.3556i −1.23454 1.23454i −0.962200 0.272343i \(-0.912202\pi\)
−0.272343 0.962200i \(-0.587798\pi\)
\(492\) 12.2390 26.1964i 0.551775 1.18103i
\(493\) 25.7941 1.16171
\(494\) 0.00917834 0.0413292i 0.000412953 0.00185949i
\(495\) 6.22164 3.76028i 0.279642 0.169012i
\(496\) −27.3856 + 22.9110i −1.22965 + 1.02873i
\(497\) 0.575432 + 0.575432i 0.0258117 + 0.0258117i
\(498\) 13.5721 + 21.3211i 0.608179 + 0.955422i
\(499\) 12.1629 + 12.1629i 0.544488 + 0.544488i 0.924841 0.380353i \(-0.124198\pi\)
−0.380353 + 0.924841i \(0.624198\pi\)
\(500\) −8.88145 20.5212i −0.397191 0.917736i
\(501\) −3.33866 + 3.33866i −0.149160 + 0.149160i
\(502\) −2.24499 + 10.1090i −0.100199 + 0.451185i
\(503\) −13.2748 + 13.2748i −0.591892 + 0.591892i −0.938142 0.346250i \(-0.887455\pi\)
0.346250 + 0.938142i \(0.387455\pi\)
\(504\) 7.16701 + 5.51197i 0.319244 + 0.245522i
\(505\) 6.18505 + 10.2336i 0.275231 + 0.455389i
\(506\) −10.3934 16.3276i −0.462045 0.725851i
\(507\) 14.7788i 0.656350i
\(508\) −1.33795 3.68440i −0.0593621 0.163469i
\(509\) 9.29995 9.29995i 0.412213 0.412213i −0.470296 0.882509i \(-0.655853\pi\)
0.882509 + 0.470296i \(0.155853\pi\)
\(510\) 10.6938 21.5683i 0.473531 0.955062i
\(511\) 3.46565i 0.153312i
\(512\) −20.9334 + 8.59016i −0.925136 + 0.379635i
\(513\) 0.0773972 0.0773972i 0.00341717 0.00341717i
\(514\) 6.41673 28.8939i 0.283030 1.27446i
\(515\) −17.5345 29.0121i −0.772664 1.27843i
\(516\) 5.12400 + 2.39393i 0.225572 + 0.105387i
\(517\) −14.5141 −0.638329
\(518\) 6.70708 30.2013i 0.294692 1.32697i
\(519\) 13.1685i 0.578031i
\(520\) −1.09287 + 9.72052i −0.0479253 + 0.426273i
\(521\) 33.5279i 1.46888i −0.678671 0.734442i \(-0.737444\pi\)
0.678671 0.734442i \(-0.262556\pi\)
\(522\) −6.90168 1.53272i −0.302078 0.0670852i
\(523\) −25.9463 −1.13455 −0.567276 0.823528i \(-0.692003\pi\)
−0.567276 + 0.823528i \(0.692003\pi\)
\(524\) −3.39924 9.36067i −0.148497 0.408923i
\(525\) −20.0755 + 6.25144i −0.876165 + 0.272835i
\(526\) 23.0203 + 5.11233i 1.00373 + 0.222908i
\(527\) −34.4903 + 34.4903i −1.50242 + 1.50242i
\(528\) 17.0404 + 1.51601i 0.741587 + 0.0659757i
\(529\) 3.12481i 0.135861i
\(530\) 7.38054 + 21.8964i 0.320590 + 0.951119i
\(531\) 3.73554 3.73554i 0.162109 0.162109i
\(532\) −0.105864 0.0494598i −0.00458980 0.00214435i
\(533\) 16.0495i 0.695182i
\(534\) −22.2274 + 14.1490i −0.961875 + 0.612287i
\(535\) 23.6879 + 5.84102i 1.02412 + 0.252529i
\(536\) −2.09842 + 0.273916i −0.0906379 + 0.0118314i
\(537\) 16.4383 16.4383i 0.709365 0.709365i
\(538\) −4.10247 0.911073i −0.176870 0.0392792i
\(539\) −4.58248 + 4.58248i −0.197381 + 0.197381i
\(540\) −15.8790 + 19.6834i −0.683322 + 0.847039i
\(541\) 4.47122 + 4.47122i 0.192233 + 0.192233i 0.796660 0.604428i \(-0.206598\pi\)
−0.604428 + 0.796660i \(0.706598\pi\)
\(542\) 22.4997 14.3223i 0.966445 0.615196i
\(543\) 3.54085 + 3.54085i 0.151952 + 0.151952i
\(544\) −27.4444 + 14.2228i −1.17667 + 0.609798i
\(545\) 14.9199 + 24.6859i 0.639096 + 1.05743i
\(546\) 8.97927 + 1.99411i 0.384277 + 0.0853399i
\(547\) 15.5964 0.666853 0.333426 0.942776i \(-0.391795\pi\)
0.333426 + 0.942776i \(0.391795\pi\)
\(548\) 5.43067 + 14.9547i 0.231987 + 0.638835i
\(549\) 1.49990 + 1.49990i 0.0640142 + 0.0640142i
\(550\) 14.0183 16.5740i 0.597741 0.706717i
\(551\) 0.0913677 0.00389239
\(552\) 13.9255 + 10.7097i 0.592707 + 0.455836i
\(553\) −5.98831 5.98831i −0.254649 0.254649i
\(554\) 7.53275 + 11.8336i 0.320036 + 0.502762i
\(555\) 21.9209 + 5.40529i 0.930488 + 0.229442i
\(556\) 11.6839 + 32.1745i 0.495506 + 1.36450i
\(557\) 15.5348i 0.658231i 0.944290 + 0.329116i \(0.106751\pi\)
−0.944290 + 0.329116i \(0.893249\pi\)
\(558\) 11.2780 7.17905i 0.477434 0.303913i
\(559\) −3.13928 −0.132777
\(560\) 25.5368 + 8.76100i 1.07913 + 0.370220i
\(561\) 23.3705 0.986703
\(562\) −11.1121 + 7.07349i −0.468737 + 0.298377i
\(563\) 24.3087i 1.02449i −0.858839 0.512245i \(-0.828814\pi\)
0.858839 0.512245i \(-0.171186\pi\)
\(564\) 12.3825 4.49659i 0.521398 0.189341i
\(565\) −7.99547 13.2291i −0.336372 0.556550i
\(566\) −2.59998 4.08445i −0.109285 0.171682i
\(567\) 10.0344 + 10.0344i 0.421405 + 0.421405i
\(568\) 0.756139 0.0987022i 0.0317269 0.00414145i
\(569\) 0.187259 0.00785029 0.00392515 0.999992i \(-0.498751\pi\)
0.00392515 + 0.999992i \(0.498751\pi\)
\(570\) 0.0378796 0.0763991i 0.00158660 0.00320001i
\(571\) −9.07187 9.07187i −0.379646 0.379646i 0.491328 0.870974i \(-0.336511\pi\)
−0.870974 + 0.491328i \(0.836511\pi\)
\(572\) −8.92566 + 3.24127i −0.373200 + 0.135524i
\(573\) −7.61266 −0.318023
\(574\) 43.2434 + 9.60346i 1.80495 + 0.400841i
\(575\) 21.2828 6.62740i 0.887554 0.276382i
\(576\) 8.18838 2.17479i 0.341182 0.0906162i
\(577\) −1.53648 1.53648i −0.0639645 0.0639645i 0.674401 0.738365i \(-0.264402\pi\)
−0.738365 + 0.674401i \(0.764402\pi\)
\(578\) −15.3408 + 9.76529i −0.638095 + 0.406183i
\(579\) 6.72191 + 6.72191i 0.279353 + 0.279353i
\(580\) −20.9908 + 2.24557i −0.871594 + 0.0932424i
\(581\) −27.3794 + 27.3794i −1.13589 + 1.13589i
\(582\) −17.2309 3.82663i −0.714244 0.158619i
\(583\) −15.8616 + 15.8616i −0.656920 + 0.656920i
\(584\) 2.57423 + 1.97977i 0.106522 + 0.0819235i
\(585\) 0.876850 3.55602i 0.0362533 0.147023i
\(586\) 3.17903 2.02363i 0.131325 0.0835954i
\(587\) 3.06150i 0.126362i −0.998002 0.0631808i \(-0.979876\pi\)
0.998002 0.0631808i \(-0.0201245\pi\)
\(588\) 2.48979 5.32917i 0.102677 0.219771i
\(589\) −0.122171 + 0.122171i −0.00503398 + 0.00503398i
\(590\) 7.00724 14.1329i 0.288484 0.581841i
\(591\) 4.10408i 0.168819i
\(592\) −18.6015 22.2345i −0.764518 0.913833i
\(593\) −20.8213 + 20.8213i −0.855029 + 0.855029i −0.990747 0.135718i \(-0.956666\pi\)
0.135718 + 0.990747i \(0.456666\pi\)
\(594\) −23.9671 5.32258i −0.983380 0.218388i
\(595\) 35.8087 + 8.82977i 1.46801 + 0.361985i
\(596\) 36.0475 13.0903i 1.47656 0.536200i
\(597\) −2.99005 −0.122375
\(598\) −9.51927 2.11403i −0.389272 0.0864492i
\(599\) 27.8866i 1.13942i −0.821847 0.569709i \(-0.807056\pi\)
0.821847 0.569709i \(-0.192944\pi\)
\(600\) −6.82475 + 18.4829i −0.278619 + 0.754560i
\(601\) 4.70260i 0.191823i −0.995390 0.0959115i \(-0.969423\pi\)
0.995390 0.0959115i \(-0.0305766\pi\)
\(602\) −1.87843 + 8.45839i −0.0765592 + 0.344738i
\(603\) 0.792365 0.0322676
\(604\) 17.5396 37.5419i 0.713675 1.52756i
\(605\) −3.42116 0.843598i −0.139090 0.0342971i
\(606\) 2.28419 10.2855i 0.0927889 0.417819i
\(607\) −28.8294 + 28.8294i −1.17015 + 1.17015i −0.187975 + 0.982174i \(0.560193\pi\)
−0.982174 + 0.187975i \(0.939807\pi\)
\(608\) −0.0972133 + 0.0503799i −0.00394252 + 0.00204317i
\(609\) 19.8507i 0.804393i
\(610\) 5.67465 + 2.81356i 0.229760 + 0.113918i
\(611\) −5.17059 + 5.17059i −0.209180 + 0.209180i
\(612\) 10.8787 3.95050i 0.439746 0.159690i
\(613\) 38.7980i 1.56704i 0.621369 + 0.783518i \(0.286577\pi\)
−0.621369 + 0.783518i \(0.713423\pi\)
\(614\) 8.01599 + 12.5928i 0.323499 + 0.508203i
\(615\) −7.73951 + 31.3872i −0.312087 + 1.26565i
\(616\) 3.39240 + 25.9885i 0.136684 + 1.04711i
\(617\) −7.06723 + 7.06723i −0.284516 + 0.284516i −0.834907 0.550391i \(-0.814479\pi\)
0.550391 + 0.834907i \(0.314479\pi\)
\(618\) −6.47565 + 29.1592i −0.260489 + 1.17296i
\(619\) −28.1001 + 28.1001i −1.12944 + 1.12944i −0.139172 + 0.990268i \(0.544444\pi\)
−0.990268 + 0.139172i \(0.955556\pi\)
\(620\) 25.0649 31.0702i 1.00663 1.24781i
\(621\) −17.8268 17.8268i −0.715363 0.715363i
\(622\) −15.5500 24.4284i −0.623500 0.979490i
\(623\) −28.5432 28.5432i −1.14356 1.14356i
\(624\) 6.61064 5.53049i 0.264637 0.221397i
\(625\) 14.1935 + 20.5802i 0.567741 + 0.823207i
\(626\) −1.22444 + 5.51353i −0.0489384 + 0.220365i
\(627\) 0.0827827 0.00330602
\(628\) 10.3703 + 4.84499i 0.413819 + 0.193336i
\(629\) −28.0029 28.0029i −1.11655 1.11655i
\(630\) −9.05657 4.49036i −0.360822 0.178900i
\(631\) 38.2613 1.52316 0.761580 0.648071i \(-0.224424\pi\)
0.761580 + 0.648071i \(0.224424\pi\)
\(632\) −7.86886 + 1.02716i −0.313007 + 0.0408582i
\(633\) 7.72420 + 7.72420i 0.307010 + 0.307010i
\(634\) −24.1625 + 15.3807i −0.959614 + 0.610847i
\(635\) 2.26685 + 3.75067i 0.0899574 + 0.148841i
\(636\) 8.61805 18.4462i 0.341728 0.731438i
\(637\) 3.26498i 0.129363i
\(638\) −11.0049 17.2883i −0.435690 0.684449i
\(639\) −0.285519 −0.0112950
\(640\) 21.0955 13.9635i 0.833874 0.551956i
\(641\) 7.15922 0.282772 0.141386 0.989955i \(-0.454844\pi\)
0.141386 + 0.989955i \(0.454844\pi\)
\(642\) −11.5438 18.1349i −0.455599 0.715726i
\(643\) 8.74864i 0.345013i −0.985008 0.172506i \(-0.944813\pi\)
0.985008 0.172506i \(-0.0551866\pi\)
\(644\) −11.3920 + 24.3835i −0.448907 + 0.960845i
\(645\) −6.13931 1.51384i −0.241735 0.0596076i
\(646\) −0.126180 + 0.0803206i −0.00496449 + 0.00316017i
\(647\) 8.84125 + 8.84125i 0.347585 + 0.347585i 0.859209 0.511624i \(-0.170956\pi\)
−0.511624 + 0.859209i \(0.670956\pi\)
\(648\) 13.1856 1.72117i 0.517978 0.0676140i
\(649\) 15.3137 0.601117
\(650\) −0.910459 10.8984i −0.0357111 0.427469i
\(651\) −26.5432 26.5432i −1.04031 1.04031i
\(652\) −32.5978 15.2297i −1.27663 0.596441i
\(653\) −20.7854 −0.813396 −0.406698 0.913563i \(-0.633320\pi\)
−0.406698 + 0.913563i \(0.633320\pi\)
\(654\) 5.51003 24.8111i 0.215459 0.970191i
\(655\) 5.75923 + 9.52904i 0.225032 + 0.372330i
\(656\) 31.8363 26.6344i 1.24300 1.03990i
\(657\) −0.859797 0.859797i −0.0335439 0.0335439i
\(658\) 10.8376 + 17.0254i 0.422494 + 0.663719i
\(659\) 13.3330 + 13.3330i 0.519382 + 0.519382i 0.917384 0.398003i \(-0.130297\pi\)
−0.398003 + 0.917384i \(0.630297\pi\)
\(660\) −19.0184 + 2.03458i −0.740292 + 0.0791959i
\(661\) −30.5831 + 30.5831i −1.18954 + 1.18954i −0.212350 + 0.977194i \(0.568112\pi\)
−0.977194 + 0.212350i \(0.931888\pi\)
\(662\) −8.45208 + 38.0589i −0.328499 + 1.47920i
\(663\) 8.32564 8.32564i 0.323341 0.323341i
\(664\) 4.69631 + 35.9775i 0.182252 + 1.39620i
\(665\) 0.126841 + 0.0312767i 0.00491868 + 0.00121286i
\(666\) 5.82870 + 9.15663i 0.225858 + 0.354812i
\(667\) 21.0446i 0.814848i
\(668\) −6.37103 + 2.31358i −0.246503 + 0.0895151i
\(669\) 1.61836 1.61836i 0.0625695 0.0625695i
\(670\) 2.24207 0.755725i 0.0866186 0.0291962i
\(671\) 6.14880i 0.237372i
\(672\) −10.9457 21.1208i −0.422238 0.814752i
\(673\) 29.9888 29.9888i 1.15598 1.15598i 0.170652 0.985331i \(-0.445413\pi\)
0.985331 0.170652i \(-0.0545873\pi\)
\(674\) 2.55582 11.5086i 0.0984464 0.443295i
\(675\) 13.1449 25.0336i 0.505949 0.963545i
\(676\) 8.98030 19.2215i 0.345396 0.739289i
\(677\) −33.4274 −1.28472 −0.642360 0.766403i \(-0.722044\pi\)
−0.642360 + 0.766403i \(0.722044\pi\)
\(678\) −2.95279 + 13.2961i −0.113401 + 0.510635i
\(679\) 27.0409i 1.03774i
\(680\) 27.0145 21.5540i 1.03596 0.826557i
\(681\) 17.8551i 0.684211i
\(682\) 37.8320 + 8.40169i 1.44866 + 0.321717i
\(683\) −4.07583 −0.155957 −0.0779787 0.996955i \(-0.524847\pi\)
−0.0779787 + 0.996955i \(0.524847\pi\)
\(684\) 0.0385345 0.0139934i 0.00147340 0.000535052i
\(685\) −9.20102 15.2237i −0.351553 0.581668i
\(686\) −20.3734 4.52450i −0.777858 0.172746i
\(687\) 1.36098 1.36098i 0.0519246 0.0519246i
\(688\) 5.20968 + 6.22716i 0.198617 + 0.237408i
\(689\) 11.3013i 0.430544i
\(690\) −17.5969 8.72474i −0.669901 0.332145i
\(691\) −8.69768 + 8.69768i −0.330875 + 0.330875i −0.852919 0.522044i \(-0.825170\pi\)
0.522044 + 0.852919i \(0.325170\pi\)
\(692\) 8.00177 17.1271i 0.304182 0.651074i
\(693\) 9.81330i 0.372776i
\(694\) 13.6751 8.70494i 0.519098 0.330435i
\(695\) −19.7956 32.7532i −0.750890 1.24240i
\(696\) 14.7448 + 11.3398i 0.558899 + 0.429835i
\(697\) 40.0956 40.0956i 1.51873 1.51873i
\(698\) −0.620624 0.137828i −0.0234910 0.00521685i
\(699\) −0.423347 + 0.423347i −0.0160125 + 0.0160125i
\(700\) −29.9091 4.06808i −1.13046 0.153759i
\(701\) 11.8325 + 11.8325i 0.446908 + 0.446908i 0.894325 0.447418i \(-0.147656\pi\)
−0.447418 + 0.894325i \(0.647656\pi\)
\(702\) −10.4343 + 6.64202i −0.393818 + 0.250687i
\(703\) −0.0991914 0.0991914i −0.00374108 0.00374108i
\(704\) 21.2417 + 12.3263i 0.800578 + 0.464563i
\(705\) −12.6052 + 7.61844i −0.474740 + 0.286927i
\(706\) −36.0323 8.00203i −1.35609 0.301160i
\(707\) 16.1413 0.607056
\(708\) −13.0647 + 4.74433i −0.491002 + 0.178303i
\(709\) 32.3901 + 32.3901i 1.21643 + 1.21643i 0.968872 + 0.247563i \(0.0796297\pi\)
0.247563 + 0.968872i \(0.420370\pi\)
\(710\) −0.807901 + 0.272316i −0.0303200 + 0.0102198i
\(711\) 2.97129 0.111432
\(712\) −37.5069 + 4.89594i −1.40563 + 0.183483i
\(713\) 28.1395 + 28.1395i 1.05383 + 1.05383i
\(714\) −17.4506 27.4142i −0.653074 1.02595i
\(715\) 9.08620 5.49158i 0.339805 0.205373i
\(716\) 31.3686 11.3912i 1.17230 0.425709i
\(717\) 17.4282i 0.650868i
\(718\) −18.5874 + 11.8319i −0.693676 + 0.441563i
\(719\) −4.16893 −0.155475 −0.0777374 0.996974i \(-0.524770\pi\)
−0.0777374 + 0.996974i \(0.524770\pi\)
\(720\) −8.50896 + 4.16192i −0.317110 + 0.155106i
\(721\) −45.7603 −1.70420
\(722\) 22.6668 14.4287i 0.843572 0.536980i
\(723\) 27.2751i 1.01437i
\(724\) 2.45369 + 6.75686i 0.0911906 + 0.251117i
\(725\) 22.5350 7.01733i 0.836928 0.260617i
\(726\) 1.66724 + 2.61915i 0.0618769 + 0.0972059i
\(727\) 28.6014 + 28.6014i 1.06077 + 1.06077i 0.998030 + 0.0627368i \(0.0199829\pi\)
0.0627368 + 0.998030i \(0.480017\pi\)
\(728\) 10.4668 + 8.04978i 0.387927 + 0.298345i
\(729\) −28.6142 −1.05979
\(730\) −3.25291 1.61283i −0.120396 0.0596936i
\(731\) 7.84269 + 7.84269i 0.290072 + 0.290072i
\(732\) −1.90495 5.24577i −0.0704090 0.193889i
\(733\) 18.7069 0.690956 0.345478 0.938427i \(-0.387717\pi\)
0.345478 + 0.938427i \(0.387717\pi\)
\(734\) 10.4941 + 2.33052i 0.387345 + 0.0860212i
\(735\) −1.57446 + 6.38514i −0.0580749 + 0.235519i
\(736\) 11.6039 + 22.3910i 0.427726 + 0.825342i
\(737\) 1.62414 + 1.62414i 0.0598259 + 0.0598259i
\(738\) −13.1108 + 8.34577i −0.482616 + 0.307212i
\(739\) −34.6914 34.6914i −1.27614 1.27614i −0.942808 0.333337i \(-0.891825\pi\)
−0.333337 0.942808i \(-0.608175\pi\)
\(740\) 25.2260 + 20.3503i 0.927328 + 0.748093i
\(741\) 0.0294910 0.0294910i 0.00108338 0.00108338i
\(742\) 30.4498 + 6.76227i 1.11785 + 0.248251i
\(743\) 24.7660 24.7660i 0.908577 0.908577i −0.0875803 0.996157i \(-0.527913\pi\)
0.996157 + 0.0875803i \(0.0279134\pi\)
\(744\) −34.8788 + 4.55288i −1.27872 + 0.166917i
\(745\) −36.6959 + 22.1785i −1.34443 + 0.812558i
\(746\) 3.87042 2.46374i 0.141706 0.0902039i
\(747\) 13.5852i 0.497055i
\(748\) 30.3960 + 14.2010i 1.11139 + 0.519240i
\(749\) 23.2878 23.2878i 0.850917 0.850917i
\(750\) 3.47495 21.7524i 0.126887 0.794285i
\(751\) 45.2370i 1.65072i −0.564606 0.825361i \(-0.690972\pi\)
0.564606 0.825361i \(-0.309028\pi\)
\(752\) 18.8372 + 1.67586i 0.686922 + 0.0611124i
\(753\) −7.21340 + 7.21340i −0.262871 + 0.262871i
\(754\) −10.0793 2.23841i −0.367068 0.0815181i
\(755\) −11.0914 + 44.9808i −0.403659 + 1.63702i
\(756\) 11.6526 + 32.0883i 0.423800 + 1.16704i
\(757\) 6.44058 0.234087 0.117044 0.993127i \(-0.462658\pi\)
0.117044 + 0.993127i \(0.462658\pi\)
\(758\) −50.3123 11.1733i −1.82743 0.405833i
\(759\) 19.0672i 0.692095i
\(760\) 0.0956903 0.0763483i 0.00347105 0.00276944i
\(761\) 9.50571i 0.344582i 0.985046 + 0.172291i \(0.0551169\pi\)
−0.985046 + 0.172291i \(0.944883\pi\)
\(762\) 0.837169 3.76969i 0.0303274 0.136561i
\(763\) 38.9367 1.40960
\(764\) −9.90112 4.62580i −0.358210 0.167356i
\(765\) −11.0744 + 6.69322i −0.400395 + 0.241994i
\(766\) −0.181282 + 0.816294i −0.00654998 + 0.0294939i
\(767\) 5.45546 5.45546i 0.196985 0.196985i
\(768\) −21.9409 3.93511i −0.791724 0.141996i
\(769\) 46.8513i 1.68950i −0.535159 0.844751i \(-0.679748\pi\)
0.535159 0.844751i \(-0.320252\pi\)
\(770\) −9.35952 27.7676i −0.337294 1.00067i
\(771\) 20.6176 20.6176i 0.742526 0.742526i
\(772\) 4.65806 + 12.8271i 0.167647 + 0.461659i
\(773\) 10.9964i 0.395513i −0.980251 0.197756i \(-0.936635\pi\)
0.980251