Properties

Label 80.2.j.b.67.7
Level $80$
Weight $2$
Character 80.67
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 67.7
Root \(-1.37691 - 0.322680i\) of defining polynomial
Character \(\chi\) \(=\) 80.67
Dual form 80.2.j.b.43.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.687667 - 1.23576i) q^{2} -0.614566i q^{3} +(-1.05423 - 1.69959i) q^{4} +(-2.07551 - 0.832020i) q^{5} +(-0.759459 - 0.422617i) q^{6} +(2.83610 + 2.83610i) q^{7} +(-2.82525 + 0.134028i) q^{8} +2.62231 q^{9} +O(q^{10})\) \(q+(0.687667 - 1.23576i) q^{2} -0.614566i q^{3} +(-1.05423 - 1.69959i) q^{4} +(-2.07551 - 0.832020i) q^{5} +(-0.759459 - 0.422617i) q^{6} +(2.83610 + 2.83610i) q^{7} +(-2.82525 + 0.134028i) q^{8} +2.62231 q^{9} +(-2.45544 + 1.99269i) q^{10} +(1.95928 + 1.95928i) q^{11} +(-1.04451 + 0.647893i) q^{12} -2.05493 q^{13} +(5.45504 - 1.55446i) q^{14} +(-0.511331 + 1.27554i) q^{15} +(-1.77720 + 3.58351i) q^{16} +(-4.06774 - 4.06774i) q^{17} +(1.80327 - 3.24056i) q^{18} +(0.683479 + 0.683479i) q^{19} +(0.773972 + 4.40465i) q^{20} +(1.74297 - 1.74297i) q^{21} +(3.76854 - 1.07388i) q^{22} +(-4.95014 + 4.95014i) q^{23} +(0.0823693 + 1.73630i) q^{24} +(3.61549 + 3.45373i) q^{25} +(-1.41310 + 2.53941i) q^{26} -3.45528i q^{27} +(1.83030 - 7.81010i) q^{28} +(-0.835439 + 0.835439i) q^{29} +(1.22464 + 1.50903i) q^{30} -2.35978i q^{31} +(3.20625 + 4.66047i) q^{32} +(1.20411 - 1.20411i) q^{33} +(-7.82401 + 2.22952i) q^{34} +(-3.52666 - 8.24604i) q^{35} +(-2.76451 - 4.45685i) q^{36} -4.54384 q^{37} +(1.31462 - 0.374613i) q^{38} +1.26289i q^{39} +(5.97535 + 2.07249i) q^{40} -5.07255i q^{41} +(-0.955318 - 3.35248i) q^{42} -0.849753 q^{43} +(1.26444 - 5.39549i) q^{44} +(-5.44263 - 2.18181i) q^{45} +(2.71316 + 9.52126i) q^{46} +(2.72646 - 2.72646i) q^{47} +(2.20230 + 1.09221i) q^{48} +9.08690i q^{49} +(6.75425 - 2.09287i) q^{50} +(-2.49989 + 2.49989i) q^{51} +(2.16636 + 3.49253i) q^{52} -5.17605i q^{53} +(-4.26991 - 2.37608i) q^{54} +(-2.43634 - 5.69666i) q^{55} +(-8.39280 - 7.63257i) q^{56} +(0.420043 - 0.420043i) q^{57} +(0.457903 + 1.60691i) q^{58} +(4.16328 - 4.16328i) q^{59} +(2.70695 - 0.475657i) q^{60} +(5.55706 + 5.55706i) q^{61} +(-2.91613 - 1.62274i) q^{62} +(7.43712 + 7.43712i) q^{63} +(7.96407 - 0.757328i) q^{64} +(4.26502 + 1.70974i) q^{65} +(-0.659968 - 2.31602i) q^{66} -1.73609 q^{67} +(-2.62515 + 11.2018i) q^{68} +(3.04219 + 3.04219i) q^{69} +(-12.6153 - 1.31240i) q^{70} +2.33526 q^{71} +(-7.40868 + 0.351464i) q^{72} +(4.39686 + 4.39686i) q^{73} +(-3.12465 + 5.61511i) q^{74} +(2.12255 - 2.22195i) q^{75} +(0.441090 - 1.88218i) q^{76} +11.1134i q^{77} +(1.56063 + 0.868446i) q^{78} -14.0993 q^{79} +(6.67015 - 5.95895i) q^{80} +5.74343 q^{81} +(-6.26848 - 3.48822i) q^{82} +2.75725i q^{83} +(-4.79982 - 1.12484i) q^{84} +(5.05819 + 11.8271i) q^{85} +(-0.584347 + 1.05009i) q^{86} +(0.513433 + 0.513433i) q^{87} +(-5.79805 - 5.27285i) q^{88} -11.6448 q^{89} +(-6.43892 + 5.22545i) q^{90} +(-5.82797 - 5.82797i) q^{91} +(13.6318 + 3.19462i) q^{92} -1.45024 q^{93} +(-1.49437 - 5.24417i) q^{94} +(-0.849899 - 1.98724i) q^{95} +(2.86416 - 1.97045i) q^{96} +(-3.52933 - 3.52933i) q^{97} +(11.2293 + 6.24876i) q^{98} +(5.13783 + 5.13783i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} + O(q^{10}) \) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 12 q^{10} - 2 q^{11} + 4 q^{12} + 12 q^{14} + 20 q^{15} - 6 q^{17} + 16 q^{18} + 2 q^{19} - 4 q^{20} - 16 q^{21} + 4 q^{22} - 2 q^{23} + 4 q^{24} + 6 q^{25} - 16 q^{26} - 4 q^{28} - 14 q^{29} + 20 q^{30} - 4 q^{32} - 8 q^{33} - 28 q^{34} - 6 q^{35} - 4 q^{36} + 8 q^{37} + 16 q^{38} + 20 q^{40} + 28 q^{42} - 44 q^{43} + 44 q^{44} - 4 q^{45} + 12 q^{46} - 38 q^{47} + 60 q^{48} + 20 q^{50} + 8 q^{51} - 40 q^{52} - 4 q^{54} - 6 q^{55} + 20 q^{56} + 24 q^{57} - 20 q^{58} - 10 q^{59} - 68 q^{60} + 14 q^{61} + 6 q^{63} - 16 q^{64} + 4 q^{66} + 12 q^{67} + 36 q^{68} + 32 q^{69} - 36 q^{70} + 24 q^{71} - 36 q^{72} + 14 q^{73} + 48 q^{74} + 64 q^{75} - 16 q^{76} - 84 q^{78} + 16 q^{79} - 20 q^{80} + 2 q^{81} - 28 q^{82} - 24 q^{84} - 10 q^{85} - 36 q^{86} + 24 q^{87} - 96 q^{88} - 12 q^{89} - 64 q^{90} + 52 q^{92} + 16 q^{93} + 28 q^{94} - 34 q^{95} - 40 q^{96} + 18 q^{97} + 32 q^{98} - 22 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.687667 1.23576i 0.486254 0.873818i
\(3\) 0.614566i 0.354820i −0.984137 0.177410i \(-0.943228\pi\)
0.984137 0.177410i \(-0.0567718\pi\)
\(4\) −1.05423 1.69959i −0.527114 0.849794i
\(5\) −2.07551 0.832020i −0.928196 0.372091i
\(6\) −0.759459 0.422617i −0.310048 0.172533i
\(7\) 2.83610 + 2.83610i 1.07194 + 1.07194i 0.997203 + 0.0747413i \(0.0238131\pi\)
0.0747413 + 0.997203i \(0.476187\pi\)
\(8\) −2.82525 + 0.134028i −0.998877 + 0.0473862i
\(9\) 2.62231 0.874103
\(10\) −2.45544 + 1.99269i −0.776478 + 0.630144i
\(11\) 1.95928 + 1.95928i 0.590745 + 0.590745i 0.937833 0.347088i \(-0.112829\pi\)
−0.347088 + 0.937833i \(0.612829\pi\)
\(12\) −1.04451 + 0.647893i −0.301524 + 0.187031i
\(13\) −2.05493 −0.569934 −0.284967 0.958537i \(-0.591983\pi\)
−0.284967 + 0.958537i \(0.591983\pi\)
\(14\) 5.45504 1.55446i 1.45792 0.415447i
\(15\) −0.511331 + 1.27554i −0.132025 + 0.329343i
\(16\) −1.77720 + 3.58351i −0.444301 + 0.895878i
\(17\) −4.06774 4.06774i −0.986571 0.986571i 0.0133401 0.999911i \(-0.495754\pi\)
−0.999911 + 0.0133401i \(0.995754\pi\)
\(18\) 1.80327 3.24056i 0.425036 0.763806i
\(19\) 0.683479 + 0.683479i 0.156801 + 0.156801i 0.781147 0.624347i \(-0.214635\pi\)
−0.624347 + 0.781147i \(0.714635\pi\)
\(20\) 0.773972 + 4.40465i 0.173065 + 0.984910i
\(21\) 1.74297 1.74297i 0.380347 0.380347i
\(22\) 3.76854 1.07388i 0.803455 0.228951i
\(23\) −4.95014 + 4.95014i −1.03218 + 1.03218i −0.0327113 + 0.999465i \(0.510414\pi\)
−0.999465 + 0.0327113i \(0.989586\pi\)
\(24\) 0.0823693 + 1.73630i 0.0168136 + 0.354421i
\(25\) 3.61549 + 3.45373i 0.723097 + 0.690746i
\(26\) −1.41310 + 2.53941i −0.277133 + 0.498018i
\(27\) 3.45528i 0.664969i
\(28\) 1.83030 7.81010i 0.345895 1.47597i
\(29\) −0.835439 + 0.835439i −0.155137 + 0.155137i −0.780408 0.625271i \(-0.784989\pi\)
0.625271 + 0.780408i \(0.284989\pi\)
\(30\) 1.22464 + 1.50903i 0.223588 + 0.275510i
\(31\) 2.35978i 0.423829i −0.977288 0.211915i \(-0.932030\pi\)
0.977288 0.211915i \(-0.0679698\pi\)
\(32\) 3.20625 + 4.66047i 0.566791 + 0.823862i
\(33\) 1.20411 1.20411i 0.209608 0.209608i
\(34\) −7.82401 + 2.22952i −1.34181 + 0.382359i
\(35\) −3.52666 8.24604i −0.596114 1.39384i
\(36\) −2.76451 4.45685i −0.460752 0.742808i
\(37\) −4.54384 −0.747002 −0.373501 0.927630i \(-0.621843\pi\)
−0.373501 + 0.927630i \(0.621843\pi\)
\(38\) 1.31462 0.374613i 0.213260 0.0607703i
\(39\) 1.26289i 0.202224i
\(40\) 5.97535 + 2.07249i 0.944786 + 0.327689i
\(41\) 5.07255i 0.792199i −0.918208 0.396100i \(-0.870364\pi\)
0.918208 0.396100i \(-0.129636\pi\)
\(42\) −0.955318 3.35248i −0.147409 0.517299i
\(43\) −0.849753 −0.129586 −0.0647930 0.997899i \(-0.520639\pi\)
−0.0647930 + 0.997899i \(0.520639\pi\)
\(44\) 1.26444 5.39549i 0.190621 0.813401i
\(45\) −5.44263 2.18181i −0.811339 0.325245i
\(46\) 2.71316 + 9.52126i 0.400034 + 1.40383i
\(47\) 2.72646 2.72646i 0.397696 0.397696i −0.479724 0.877419i \(-0.659263\pi\)
0.877419 + 0.479724i \(0.159263\pi\)
\(48\) 2.20230 + 1.09221i 0.317875 + 0.157647i
\(49\) 9.08690i 1.29813i
\(50\) 6.75425 2.09287i 0.955195 0.295977i
\(51\) −2.49989 + 2.49989i −0.350055 + 0.350055i
\(52\) 2.16636 + 3.49253i 0.300420 + 0.484327i
\(53\) 5.17605i 0.710985i −0.934679 0.355492i \(-0.884313\pi\)
0.934679 0.355492i \(-0.115687\pi\)
\(54\) −4.26991 2.37608i −0.581062 0.323344i
\(55\) −2.43634 5.69666i −0.328517 0.768138i
\(56\) −8.39280 7.63257i −1.12154 1.01994i
\(57\) 0.420043 0.420043i 0.0556360 0.0556360i
\(58\) 0.457903 + 1.60691i 0.0601256 + 0.210998i
\(59\) 4.16328 4.16328i 0.542013 0.542013i −0.382105 0.924119i \(-0.624801\pi\)
0.924119 + 0.382105i \(0.124801\pi\)
\(60\) 2.70695 0.475657i 0.349466 0.0614070i
\(61\) 5.55706 + 5.55706i 0.711509 + 0.711509i 0.966851 0.255342i \(-0.0821880\pi\)
−0.255342 + 0.966851i \(0.582188\pi\)
\(62\) −2.91613 1.62274i −0.370349 0.206088i
\(63\) 7.43712 + 7.43712i 0.936990 + 0.936990i
\(64\) 7.96407 0.757328i 0.995509 0.0946660i
\(65\) 4.26502 + 1.70974i 0.529011 + 0.212067i
\(66\) −0.659968 2.31602i −0.0812364 0.285082i
\(67\) −1.73609 −0.212097 −0.106048 0.994361i \(-0.533820\pi\)
−0.106048 + 0.994361i \(0.533820\pi\)
\(68\) −2.62515 + 11.2018i −0.318347 + 1.35842i
\(69\) 3.04219 + 3.04219i 0.366237 + 0.366237i
\(70\) −12.6153 1.31240i −1.50782 0.156862i
\(71\) 2.33526 0.277144 0.138572 0.990352i \(-0.455749\pi\)
0.138572 + 0.990352i \(0.455749\pi\)
\(72\) −7.40868 + 0.351464i −0.873121 + 0.0414204i
\(73\) 4.39686 + 4.39686i 0.514613 + 0.514613i 0.915936 0.401323i \(-0.131450\pi\)
−0.401323 + 0.915936i \(0.631450\pi\)
\(74\) −3.12465 + 5.61511i −0.363233 + 0.652744i
\(75\) 2.12255 2.22195i 0.245091 0.256569i
\(76\) 0.441090 1.88218i 0.0505964 0.215900i
\(77\) 11.1134i 1.26649i
\(78\) 1.56063 + 0.868446i 0.176707 + 0.0983321i
\(79\) −14.0993 −1.58629 −0.793146 0.609032i \(-0.791558\pi\)
−0.793146 + 0.609032i \(0.791558\pi\)
\(80\) 6.67015 5.95895i 0.745746 0.666230i
\(81\) 5.74343 0.638159
\(82\) −6.26848 3.48822i −0.692238 0.385210i
\(83\) 2.75725i 0.302648i 0.988484 + 0.151324i \(0.0483536\pi\)
−0.988484 + 0.151324i \(0.951646\pi\)
\(84\) −4.79982 1.12484i −0.523703 0.122730i
\(85\) 5.05819 + 11.8271i 0.548638 + 1.28283i
\(86\) −0.584347 + 1.05009i −0.0630117 + 0.113235i
\(87\) 0.513433 + 0.513433i 0.0550458 + 0.0550458i
\(88\) −5.79805 5.27285i −0.618074 0.562088i
\(89\) −11.6448 −1.23435 −0.617173 0.786828i \(-0.711722\pi\)
−0.617173 + 0.786828i \(0.711722\pi\)
\(90\) −6.43892 + 5.22545i −0.678722 + 0.550811i
\(91\) −5.82797 5.82797i −0.610937 0.610937i
\(92\) 13.6318 + 3.19462i 1.42121 + 0.333062i
\(93\) −1.45024 −0.150383
\(94\) −1.49437 5.24417i −0.154132 0.540894i
\(95\) −0.849899 1.98724i −0.0871978 0.203886i
\(96\) 2.86416 1.97045i 0.292322 0.201109i
\(97\) −3.52933 3.52933i −0.358349 0.358349i 0.504855 0.863204i \(-0.331546\pi\)
−0.863204 + 0.504855i \(0.831546\pi\)
\(98\) 11.2293 + 6.24876i 1.13433 + 0.631220i
\(99\) 5.13783 + 5.13783i 0.516372 + 0.516372i
\(100\) 2.05837 9.78586i 0.205837 0.978586i
\(101\) 7.39467 7.39467i 0.735797 0.735797i −0.235964 0.971762i \(-0.575825\pi\)
0.971762 + 0.235964i \(0.0758249\pi\)
\(102\) 1.37019 + 4.80837i 0.135669 + 0.476100i
\(103\) 3.72605 3.72605i 0.367139 0.367139i −0.499294 0.866433i \(-0.666407\pi\)
0.866433 + 0.499294i \(0.166407\pi\)
\(104\) 5.80568 0.275419i 0.569294 0.0270070i
\(105\) −5.06774 + 2.16737i −0.494560 + 0.211513i
\(106\) −6.39637 3.55939i −0.621271 0.345719i
\(107\) 16.4605i 1.59130i 0.605758 + 0.795649i \(0.292870\pi\)
−0.605758 + 0.795649i \(0.707130\pi\)
\(108\) −5.87255 + 3.64266i −0.565087 + 0.350515i
\(109\) 12.8554 12.8554i 1.23133 1.23133i 0.267870 0.963455i \(-0.413680\pi\)
0.963455 0.267870i \(-0.0863199\pi\)
\(110\) −8.71512 0.906656i −0.830955 0.0864463i
\(111\) 2.79249i 0.265051i
\(112\) −15.2035 + 5.12287i −1.43660 + 0.484065i
\(113\) 0.863630 0.863630i 0.0812435 0.0812435i −0.665317 0.746561i \(-0.731704\pi\)
0.746561 + 0.665317i \(0.231704\pi\)
\(114\) −0.230225 0.807924i −0.0215625 0.0756690i
\(115\) 14.3927 6.15546i 1.34213 0.573999i
\(116\) 2.30065 + 0.539159i 0.213610 + 0.0500596i
\(117\) −5.38865 −0.498181
\(118\) −2.28189 8.00779i −0.210065 0.737177i
\(119\) 23.0730i 2.11510i
\(120\) 1.27368 3.67225i 0.116271 0.335229i
\(121\) 3.32246i 0.302042i
\(122\) 10.6886 3.04582i 0.967703 0.275755i
\(123\) −3.11742 −0.281088
\(124\) −4.01066 + 2.48775i −0.360168 + 0.223406i
\(125\) −4.63041 10.1764i −0.414156 0.910206i
\(126\) 14.3048 4.07627i 1.27437 0.363143i
\(127\) 11.7944 11.7944i 1.04659 1.04659i 0.0477265 0.998860i \(-0.484802\pi\)
0.998860 0.0477265i \(-0.0151976\pi\)
\(128\) 4.54075 10.3625i 0.401349 0.915925i
\(129\) 0.522229i 0.0459797i
\(130\) 5.04575 4.09483i 0.442541 0.359140i
\(131\) −15.9756 + 15.9756i −1.39579 + 1.39579i −0.584132 + 0.811659i \(0.698565\pi\)
−0.811659 + 0.584132i \(0.801435\pi\)
\(132\) −3.31589 0.777081i −0.288611 0.0676362i
\(133\) 3.87683i 0.336163i
\(134\) −1.19385 + 2.14539i −0.103133 + 0.185334i
\(135\) −2.87486 + 7.17147i −0.247429 + 0.617222i
\(136\) 12.0376 + 10.9472i 1.03221 + 0.938713i
\(137\) −1.29423 + 1.29423i −0.110573 + 0.110573i −0.760229 0.649655i \(-0.774913\pi\)
0.649655 + 0.760229i \(0.274913\pi\)
\(138\) 5.85144 1.66742i 0.498108 0.141940i
\(139\) −8.61413 + 8.61413i −0.730641 + 0.730641i −0.970747 0.240106i \(-0.922818\pi\)
0.240106 + 0.970747i \(0.422818\pi\)
\(140\) −10.2970 + 14.6871i −0.870253 + 1.24129i
\(141\) −1.67559 1.67559i −0.141110 0.141110i
\(142\) 1.60588 2.88583i 0.134762 0.242173i
\(143\) −4.02617 4.02617i −0.336685 0.336685i
\(144\) −4.66037 + 9.39707i −0.388364 + 0.783089i
\(145\) 2.42906 1.03886i 0.201723 0.0862727i
\(146\) 8.45705 2.40991i 0.699911 0.199445i
\(147\) 5.58450 0.460602
\(148\) 4.79025 + 7.72265i 0.393756 + 0.634798i
\(149\) −0.0806133 0.0806133i −0.00660410 0.00660410i 0.703797 0.710401i \(-0.251486\pi\)
−0.710401 + 0.703797i \(0.751486\pi\)
\(150\) −1.28621 4.15093i −0.105019 0.338922i
\(151\) −3.25198 −0.264643 −0.132321 0.991207i \(-0.542243\pi\)
−0.132321 + 0.991207i \(0.542243\pi\)
\(152\) −2.02260 1.83939i −0.164055 0.149194i
\(153\) −10.6669 10.6669i −0.862364 0.862364i
\(154\) 13.7336 + 7.64232i 1.10668 + 0.615836i
\(155\) −1.96338 + 4.89775i −0.157703 + 0.393397i
\(156\) 2.14639 1.33137i 0.171849 0.106595i
\(157\) 9.06652i 0.723587i −0.932258 0.361793i \(-0.882165\pi\)
0.932258 0.361793i \(-0.117835\pi\)
\(158\) −9.69559 + 17.4234i −0.771340 + 1.38613i
\(159\) −3.18102 −0.252271
\(160\) −2.77701 12.3405i −0.219542 0.975603i
\(161\) −28.0782 −2.21287
\(162\) 3.94956 7.09753i 0.310307 0.557634i
\(163\) 3.93313i 0.308067i −0.988066 0.154033i \(-0.950774\pi\)
0.988066 0.154033i \(-0.0492263\pi\)
\(164\) −8.62125 + 5.34763i −0.673206 + 0.417580i
\(165\) −3.50097 + 1.49729i −0.272550 + 0.116564i
\(166\) 3.40731 + 1.89607i 0.264459 + 0.147164i
\(167\) 8.13216 + 8.13216i 0.629285 + 0.629285i 0.947888 0.318603i \(-0.103214\pi\)
−0.318603 + 0.947888i \(0.603214\pi\)
\(168\) −4.69072 + 5.15793i −0.361897 + 0.397943i
\(169\) −8.77728 −0.675175
\(170\) 18.0938 + 1.88235i 1.38773 + 0.144369i
\(171\) 1.79229 + 1.79229i 0.137060 + 0.137060i
\(172\) 0.895834 + 1.44423i 0.0683067 + 0.110121i
\(173\) 6.86735 0.522115 0.261057 0.965323i \(-0.415929\pi\)
0.261057 + 0.965323i \(0.415929\pi\)
\(174\) 0.987552 0.281411i 0.0748662 0.0213337i
\(175\) 0.458751 + 20.0490i 0.0346784 + 1.51556i
\(176\) −10.5031 + 3.53906i −0.791703 + 0.266767i
\(177\) −2.55861 2.55861i −0.192317 0.192317i
\(178\) −8.00774 + 14.3902i −0.600205 + 1.07859i
\(179\) 15.7117 + 15.7117i 1.17435 + 1.17435i 0.981163 + 0.193183i \(0.0618811\pi\)
0.193183 + 0.981163i \(0.438119\pi\)
\(180\) 2.02959 + 11.5504i 0.151277 + 0.860913i
\(181\) −13.9112 + 13.9112i −1.03401 + 1.03401i −0.0346142 + 0.999401i \(0.511020\pi\)
−0.999401 + 0.0346142i \(0.988980\pi\)
\(182\) −11.2097 + 3.19430i −0.830919 + 0.236777i
\(183\) 3.41518 3.41518i 0.252458 0.252458i
\(184\) 13.3219 14.6489i 0.982106 1.07993i
\(185\) 9.43078 + 3.78056i 0.693365 + 0.277953i
\(186\) −0.997282 + 1.79216i −0.0731243 + 0.131407i
\(187\) 15.9397i 1.16562i
\(188\) −7.50818 1.75955i −0.547591 0.128328i
\(189\) 9.79951 9.79951i 0.712810 0.712810i
\(190\) −3.04020 0.316280i −0.220559 0.0229454i
\(191\) 10.3393i 0.748123i −0.927404 0.374061i \(-0.877965\pi\)
0.927404 0.374061i \(-0.122035\pi\)
\(192\) −0.465428 4.89445i −0.0335894 0.353226i
\(193\) 13.2080 13.2080i 0.950734 0.950734i −0.0481079 0.998842i \(-0.515319\pi\)
0.998842 + 0.0481079i \(0.0153191\pi\)
\(194\) −6.78843 + 1.93442i −0.487381 + 0.138883i
\(195\) 1.05075 2.62114i 0.0752456 0.187704i
\(196\) 15.4440 9.57968i 1.10314 0.684263i
\(197\) 15.2437 1.08607 0.543036 0.839709i \(-0.317275\pi\)
0.543036 + 0.839709i \(0.317275\pi\)
\(198\) 9.88227 2.81604i 0.702302 0.200127i
\(199\) 4.98761i 0.353562i 0.984250 + 0.176781i \(0.0565684\pi\)
−0.984250 + 0.176781i \(0.943432\pi\)
\(200\) −10.6775 9.27308i −0.755017 0.655706i
\(201\) 1.06694i 0.0752561i
\(202\) −4.05300 14.2231i −0.285168 1.00074i
\(203\) −4.73878 −0.332597
\(204\) 6.88425 + 1.61333i 0.481994 + 0.112956i
\(205\) −4.22046 + 10.5281i −0.294770 + 0.735316i
\(206\) −2.04224 7.16680i −0.142290 0.499335i
\(207\) −12.9808 + 12.9808i −0.902228 + 0.902228i
\(208\) 3.65202 7.36385i 0.253222 0.510591i
\(209\) 2.67825i 0.185258i
\(210\) −0.806559 + 7.75296i −0.0556579 + 0.535005i
\(211\) 10.3803 10.3803i 0.714608 0.714608i −0.252887 0.967496i \(-0.581380\pi\)
0.967496 + 0.252887i \(0.0813802\pi\)
\(212\) −8.79715 + 5.45674i −0.604191 + 0.374770i
\(213\) 1.43517i 0.0983362i
\(214\) 20.3413 + 11.3193i 1.39050 + 0.773774i
\(215\) 1.76367 + 0.707011i 0.120281 + 0.0482178i
\(216\) 0.463106 + 9.76203i 0.0315104 + 0.664222i
\(217\) 6.69257 6.69257i 0.454321 0.454321i
\(218\) −7.04603 24.7265i −0.477217 1.67469i
\(219\) 2.70216 2.70216i 0.182595 0.182595i
\(220\) −7.11352 + 10.1464i −0.479593 + 0.684068i
\(221\) 8.35890 + 8.35890i 0.562280 + 0.562280i
\(222\) 3.45086 + 1.92030i 0.231606 + 0.128882i
\(223\) −1.49853 1.49853i −0.100349 0.100349i 0.655150 0.755499i \(-0.272605\pi\)
−0.755499 + 0.655150i \(0.772605\pi\)
\(224\) −4.12429 + 22.3108i −0.275566 + 1.49070i
\(225\) 9.48092 + 9.05675i 0.632061 + 0.603783i
\(226\) −0.473354 1.66113i −0.0314870 0.110497i
\(227\) −15.6346 −1.03771 −0.518853 0.854864i \(-0.673641\pi\)
−0.518853 + 0.854864i \(0.673641\pi\)
\(228\) −1.15672 0.271079i −0.0766057 0.0179526i
\(229\) −9.74097 9.74097i −0.643702 0.643702i 0.307762 0.951463i \(-0.400420\pi\)
−0.951463 + 0.307762i \(0.900420\pi\)
\(230\) 2.29068 22.0189i 0.151043 1.45188i
\(231\) 6.82992 0.449376
\(232\) 2.24835 2.47230i 0.147612 0.162314i
\(233\) 0.509123 + 0.509123i 0.0333538 + 0.0333538i 0.723587 0.690233i \(-0.242492\pi\)
−0.690233 + 0.723587i \(0.742492\pi\)
\(234\) −3.70560 + 6.65910i −0.242242 + 0.435319i
\(235\) −7.92727 + 3.39033i −0.517118 + 0.221161i
\(236\) −11.4649 2.68681i −0.746303 0.174897i
\(237\) 8.66493i 0.562848i
\(238\) −28.5128 15.8665i −1.84821 1.02847i
\(239\) 8.19486 0.530081 0.265041 0.964237i \(-0.414615\pi\)
0.265041 + 0.964237i \(0.414615\pi\)
\(240\) −3.66217 4.09925i −0.236392 0.264605i
\(241\) 5.66775 0.365092 0.182546 0.983197i \(-0.441566\pi\)
0.182546 + 0.983197i \(0.441566\pi\)
\(242\) −4.10578 2.28474i −0.263929 0.146869i
\(243\) 13.8956i 0.891400i
\(244\) 3.58630 15.3031i 0.229590 0.979683i
\(245\) 7.56048 18.8600i 0.483022 1.20492i
\(246\) −2.14374 + 3.85239i −0.136680 + 0.245620i
\(247\) −1.40450 1.40450i −0.0893661 0.0893661i
\(248\) 0.316278 + 6.66697i 0.0200837 + 0.423353i
\(249\) 1.69451 0.107385
\(250\) −15.7598 1.27589i −0.996739 0.0806942i
\(251\) 14.7484 + 14.7484i 0.930911 + 0.930911i 0.997763 0.0668521i \(-0.0212956\pi\)
−0.0668521 + 0.997763i \(0.521296\pi\)
\(252\) 4.79962 20.4805i 0.302348 1.29015i
\(253\) −19.3974 −1.21951
\(254\) −6.46451 22.6858i −0.405619 1.42343i
\(255\) 7.26851 3.10859i 0.455172 0.194668i
\(256\) −9.68310 12.7373i −0.605194 0.796078i
\(257\) 3.61143 + 3.61143i 0.225275 + 0.225275i 0.810715 0.585440i \(-0.199078\pi\)
−0.585440 + 0.810715i \(0.699078\pi\)
\(258\) 0.645352 + 0.359120i 0.0401779 + 0.0223578i
\(259\) −12.8868 12.8868i −0.800745 0.800745i
\(260\) −1.59045 9.05124i −0.0986358 0.561334i
\(261\) −2.19078 + 2.19078i −0.135606 + 0.135606i
\(262\) 8.75617 + 30.7279i 0.540958 + 1.89838i
\(263\) −6.80041 + 6.80041i −0.419331 + 0.419331i −0.884973 0.465642i \(-0.845823\pi\)
0.465642 + 0.884973i \(0.345823\pi\)
\(264\) −3.24052 + 3.56328i −0.199440 + 0.219305i
\(265\) −4.30657 + 10.7429i −0.264551 + 0.659933i
\(266\) 4.79084 + 2.66596i 0.293746 + 0.163461i
\(267\) 7.15650i 0.437970i
\(268\) 1.83023 + 2.95063i 0.111799 + 0.180238i
\(269\) −1.20010 + 1.20010i −0.0731711 + 0.0731711i −0.742745 0.669574i \(-0.766477\pi\)
0.669574 + 0.742745i \(0.266477\pi\)
\(270\) 6.88530 + 8.48423i 0.419026 + 0.516334i
\(271\) 2.79591i 0.169840i −0.996388 0.0849199i \(-0.972937\pi\)
0.996388 0.0849199i \(-0.0270634\pi\)
\(272\) 21.8060 7.34759i 1.32218 0.445513i
\(273\) −3.58167 + 3.58167i −0.216773 + 0.216773i
\(274\) 0.709364 + 2.48936i 0.0428543 + 0.150388i
\(275\) 0.316922 + 13.8506i 0.0191111 + 0.835220i
\(276\) 1.96331 8.37764i 0.118177 0.504274i
\(277\) 13.8115 0.829852 0.414926 0.909855i \(-0.363807\pi\)
0.414926 + 0.909855i \(0.363807\pi\)
\(278\) 4.72139 + 16.5687i 0.283170 + 0.993724i
\(279\) 6.18807i 0.370470i
\(280\) 11.0689 + 22.8244i 0.661493 + 1.36402i
\(281\) 7.21718i 0.430541i 0.976554 + 0.215270i \(0.0690633\pi\)
−0.976554 + 0.215270i \(0.930937\pi\)
\(282\) −3.22289 + 0.918389i −0.191920 + 0.0546892i
\(283\) 25.2988 1.50386 0.751930 0.659243i \(-0.229123\pi\)
0.751930 + 0.659243i \(0.229123\pi\)
\(284\) −2.46190 3.96898i −0.146087 0.235515i
\(285\) −1.22129 + 0.522319i −0.0723428 + 0.0309395i
\(286\) −7.74407 + 2.20674i −0.457916 + 0.130487i
\(287\) 14.3862 14.3862i 0.849193 0.849193i
\(288\) 8.40779 + 12.2212i 0.495434 + 0.720140i
\(289\) 16.0930i 0.946644i
\(290\) 0.386600 3.71614i 0.0227019 0.218219i
\(291\) −2.16901 + 2.16901i −0.127149 + 0.127149i
\(292\) 2.83755 12.1081i 0.166055 0.708575i
\(293\) 14.1276i 0.825344i 0.910880 + 0.412672i \(0.135404\pi\)
−0.910880 + 0.412672i \(0.864596\pi\)
\(294\) 3.84028 6.90113i 0.223969 0.402482i
\(295\) −12.1049 + 5.17700i −0.704773 + 0.301417i
\(296\) 12.8375 0.609004i 0.746163 0.0353976i
\(297\) 6.76985 6.76985i 0.392827 0.392827i
\(298\) −0.155054 + 0.0441840i −0.00898204 + 0.00255951i
\(299\) 10.1722 10.1722i 0.588272 0.588272i
\(300\) −6.01406 1.26501i −0.347222 0.0730351i
\(301\) −2.40998 2.40998i −0.138909 0.138909i
\(302\) −2.23628 + 4.01869i −0.128683 + 0.231249i
\(303\) −4.54451 4.54451i −0.261076 0.261076i
\(304\) −3.66393 + 1.23457i −0.210141 + 0.0708076i
\(305\) −6.91016 16.1573i −0.395674 0.925166i
\(306\) −20.5170 + 5.84648i −1.17288 + 0.334221i
\(307\) −22.6081 −1.29031 −0.645156 0.764051i \(-0.723208\pi\)
−0.645156 + 0.764051i \(0.723208\pi\)
\(308\) 18.8882 11.7161i 1.07626 0.667586i
\(309\) −2.28990 2.28990i −0.130268 0.130268i
\(310\) 4.70231 + 5.79430i 0.267073 + 0.329094i
\(311\) −10.7903 −0.611859 −0.305929 0.952054i \(-0.598967\pi\)
−0.305929 + 0.952054i \(0.598967\pi\)
\(312\) −0.169263 3.56797i −0.00958263 0.201997i
\(313\) 20.6842 + 20.6842i 1.16914 + 1.16914i 0.982412 + 0.186727i \(0.0597879\pi\)
0.186727 + 0.982412i \(0.440212\pi\)
\(314\) −11.2041 6.23474i −0.632283 0.351847i
\(315\) −9.24799 21.6237i −0.521065 1.21836i
\(316\) 14.8639 + 23.9629i 0.836157 + 1.34802i
\(317\) 23.8207i 1.33791i 0.743305 + 0.668953i \(0.233257\pi\)
−0.743305 + 0.668953i \(0.766743\pi\)
\(318\) −2.18748 + 3.93099i −0.122668 + 0.220439i
\(319\) −3.27372 −0.183293
\(320\) −17.1596 5.05442i −0.959252 0.282551i
\(321\) 10.1161 0.564624
\(322\) −19.3084 + 34.6980i −1.07602 + 1.93365i
\(323\) 5.56042i 0.309390i
\(324\) −6.05489 9.76146i −0.336383 0.542304i
\(325\) −7.42956 7.09716i −0.412118 0.393680i
\(326\) −4.86043 2.70469i −0.269194 0.149799i
\(327\) −7.90050 7.90050i −0.436899 0.436899i
\(328\) 0.679866 + 14.3312i 0.0375393 + 0.791309i
\(329\) 15.4650 0.852615
\(330\) −0.557200 + 5.35602i −0.0306729 + 0.294839i
\(331\) −19.7688 19.7688i −1.08659 1.08659i −0.995877 0.0907155i \(-0.971085\pi\)
−0.0907155 0.995877i \(-0.528915\pi\)
\(332\) 4.68619 2.90677i 0.257188 0.159530i
\(333\) −11.9153 −0.652957
\(334\) 15.6417 4.45722i 0.855873 0.243888i
\(335\) 3.60326 + 1.44446i 0.196867 + 0.0789191i
\(336\) 3.14834 + 9.34356i 0.171756 + 0.509733i
\(337\) 7.26955 + 7.26955i 0.395998 + 0.395998i 0.876819 0.480821i \(-0.159661\pi\)
−0.480821 + 0.876819i \(0.659661\pi\)
\(338\) −6.03584 + 10.8467i −0.328307 + 0.589980i
\(339\) −0.530758 0.530758i −0.0288268 0.0288268i
\(340\) 14.7687 21.0653i 0.800943 1.14243i
\(341\) 4.62347 4.62347i 0.250375 0.250375i
\(342\) 3.44735 0.982352i 0.186411 0.0531195i
\(343\) −5.91866 + 5.91866i −0.319578 + 0.319578i
\(344\) 2.40076 0.113891i 0.129440 0.00614059i
\(345\) −3.78293 8.84526i −0.203666 0.476213i
\(346\) 4.72245 8.48642i 0.253880 0.456233i
\(347\) 23.4667i 1.25976i −0.776692 0.629880i \(-0.783104\pi\)
0.776692 0.629880i \(-0.216896\pi\)
\(348\) 0.331349 1.41390i 0.0177622 0.0757930i
\(349\) −23.2089 + 23.2089i −1.24234 + 1.24234i −0.283315 + 0.959027i \(0.591434\pi\)
−0.959027 + 0.283315i \(0.908566\pi\)
\(350\) 25.0913 + 13.2201i 1.34119 + 0.706645i
\(351\) 7.10035i 0.378988i
\(352\) −2.84921 + 15.4131i −0.151863 + 0.821521i
\(353\) −13.3220 + 13.3220i −0.709059 + 0.709059i −0.966337 0.257278i \(-0.917174\pi\)
0.257278 + 0.966337i \(0.417174\pi\)
\(354\) −4.92131 + 1.40237i −0.261565 + 0.0745351i
\(355\) −4.84685 1.94298i −0.257244 0.103123i
\(356\) 12.2763 + 19.7914i 0.650642 + 1.04894i
\(357\) −14.1799 −0.750479
\(358\) 30.2203 8.61154i 1.59719 0.455134i
\(359\) 26.9902i 1.42449i 0.701932 + 0.712244i \(0.252321\pi\)
−0.701932 + 0.712244i \(0.747679\pi\)
\(360\) 15.6692 + 5.43470i 0.825840 + 0.286434i
\(361\) 18.0657i 0.950827i
\(362\) 7.62473 + 26.7573i 0.400747 + 1.40633i
\(363\) −2.04187 −0.107170
\(364\) −3.76114 + 16.0492i −0.197137 + 0.841205i
\(365\) −5.46745 12.7840i −0.286179 0.669145i
\(366\) −1.87185 6.56887i −0.0978434 0.343360i
\(367\) −19.4758 + 19.4758i −1.01663 + 1.01663i −0.0167684 + 0.999859i \(0.505338\pi\)
−0.999859 + 0.0167684i \(0.994662\pi\)
\(368\) −8.94148 26.5363i −0.466107 1.38330i
\(369\) 13.3018i 0.692464i
\(370\) 11.1571 9.05446i 0.580031 0.470719i
\(371\) 14.6798 14.6798i 0.762136 0.762136i
\(372\) 1.52889 + 2.46481i 0.0792690 + 0.127795i
\(373\) 4.87069i 0.252195i −0.992018 0.126097i \(-0.959755\pi\)
0.992018 0.126097i \(-0.0402452\pi\)
\(374\) −19.6977 10.9612i −1.01854 0.566789i
\(375\) −6.25408 + 2.84569i −0.322959 + 0.146951i
\(376\) −7.33752 + 8.06836i −0.378404 + 0.416094i
\(377\) 1.71677 1.71677i 0.0884180 0.0884180i
\(378\) −5.37109 18.8487i −0.276259 0.969472i
\(379\) 2.54450 2.54450i 0.130702 0.130702i −0.638729 0.769432i \(-0.720540\pi\)
0.769432 + 0.638729i \(0.220540\pi\)
\(380\) −2.48149 + 3.53948i −0.127298 + 0.181571i
\(381\) −7.24846 7.24846i −0.371350 0.371350i
\(382\) −12.7769 7.10996i −0.653723 0.363777i
\(383\) 0.193238 + 0.193238i 0.00987399 + 0.00987399i 0.712027 0.702153i \(-0.247778\pi\)
−0.702153 + 0.712027i \(0.747778\pi\)
\(384\) −6.36845 2.79059i −0.324988 0.142407i
\(385\) 9.24658 23.0660i 0.471249 1.17555i
\(386\) −7.23929 25.4047i −0.368470 1.29307i
\(387\) −2.22831 −0.113272
\(388\) −2.27769 + 9.71914i −0.115632 + 0.493414i
\(389\) 2.01528 + 2.01528i 0.102179 + 0.102179i 0.756348 0.654169i \(-0.226982\pi\)
−0.654169 + 0.756348i \(0.726982\pi\)
\(390\) −2.51654 3.10095i −0.127430 0.157022i
\(391\) 40.2718 2.03663
\(392\) −1.21790 25.6728i −0.0615134 1.29667i
\(393\) 9.81803 + 9.81803i 0.495254 + 0.495254i
\(394\) 10.4826 18.8377i 0.528107 0.949029i
\(395\) 29.2632 + 11.7309i 1.47239 + 0.590244i
\(396\) 3.31575 14.1487i 0.166623 0.710997i
\(397\) 21.5509i 1.08161i −0.841149 0.540804i \(-0.818120\pi\)
0.841149 0.540804i \(-0.181880\pi\)
\(398\) 6.16351 + 3.42981i 0.308949 + 0.171921i
\(399\) 2.38257 0.119277
\(400\) −18.8019 + 6.81815i −0.940097 + 0.340908i
\(401\) −10.3965 −0.519176 −0.259588 0.965719i \(-0.583587\pi\)
−0.259588 + 0.965719i \(0.583587\pi\)
\(402\) 1.31849 + 0.733699i 0.0657601 + 0.0365936i
\(403\) 4.84917i 0.241555i
\(404\) −20.3636 4.77222i −1.01313 0.237427i
\(405\) −11.9205 4.77865i −0.592337 0.237453i
\(406\) −3.25870 + 5.85601i −0.161726 + 0.290629i
\(407\) −8.90264 8.90264i −0.441288 0.441288i
\(408\) 6.72776 7.39788i 0.333074 0.366250i
\(409\) −0.330732 −0.0163536 −0.00817682 0.999967i \(-0.502603\pi\)
−0.00817682 + 0.999967i \(0.502603\pi\)
\(410\) 10.1080 + 12.4553i 0.499199 + 0.615125i
\(411\) 0.795389 + 0.795389i 0.0392337 + 0.0392337i
\(412\) −10.2609 2.40464i −0.505516 0.118468i
\(413\) 23.6150 1.16202
\(414\) 7.11475 + 24.9677i 0.349671 + 1.22709i
\(415\) 2.29409 5.72270i 0.112612 0.280917i
\(416\) −6.58861 9.57691i −0.323033 0.469547i
\(417\) 5.29395 + 5.29395i 0.259246 + 0.259246i
\(418\) 3.30969 + 1.84174i 0.161882 + 0.0900826i
\(419\) −6.71354 6.71354i −0.327978 0.327978i 0.523839 0.851817i \(-0.324499\pi\)
−0.851817 + 0.523839i \(0.824499\pi\)
\(420\) 9.02618 + 6.32817i 0.440433 + 0.308783i
\(421\) 2.99831 2.99831i 0.146129 0.146129i −0.630258 0.776386i \(-0.717051\pi\)
0.776386 + 0.630258i \(0.217051\pi\)
\(422\) −5.68941 19.9658i −0.276956 0.971918i
\(423\) 7.14963 7.14963i 0.347627 0.347627i
\(424\) 0.693737 + 14.6236i 0.0336909 + 0.710186i
\(425\) −0.657974 28.7557i −0.0319164 1.39486i
\(426\) −1.77353 0.986918i −0.0859279 0.0478163i
\(427\) 31.5208i 1.52540i
\(428\) 27.9761 17.3531i 1.35228 0.838796i
\(429\) −2.47435 + 2.47435i −0.119463 + 0.119463i
\(430\) 2.08652 1.69329i 0.100621 0.0816579i
\(431\) 19.9548i 0.961191i −0.876942 0.480596i \(-0.840420\pi\)
0.876942 0.480596i \(-0.159580\pi\)
\(432\) 12.3820 + 6.14073i 0.595731 + 0.295446i
\(433\) −16.1910 + 16.1910i −0.778092 + 0.778092i −0.979506 0.201414i \(-0.935446\pi\)
0.201414 + 0.979506i \(0.435446\pi\)
\(434\) −3.66818 12.8727i −0.176078 0.617909i
\(435\) −0.638449 1.49282i −0.0306113 0.0715753i
\(436\) −35.4015 8.29636i −1.69542 0.397324i
\(437\) −6.76664 −0.323692
\(438\) −1.48105 5.19742i −0.0707672 0.248342i
\(439\) 29.3734i 1.40191i 0.713204 + 0.700957i \(0.247243\pi\)
−0.713204 + 0.700957i \(0.752757\pi\)
\(440\) 7.64679 + 15.7679i 0.364547 + 0.751708i
\(441\) 23.8287i 1.13470i
\(442\) 16.0778 4.58150i 0.764741 0.217920i
\(443\) −19.8713 −0.944115 −0.472057 0.881568i \(-0.656489\pi\)
−0.472057 + 0.881568i \(0.656489\pi\)
\(444\) 4.74608 2.94392i 0.225239 0.139712i
\(445\) 24.1689 + 9.68870i 1.14572 + 0.459288i
\(446\) −2.88232 + 0.821341i −0.136482 + 0.0388916i
\(447\) −0.0495422 + 0.0495422i −0.00234326 + 0.00234326i
\(448\) 24.7347 + 20.4390i 1.16861 + 0.965654i
\(449\) 16.7577i 0.790844i −0.918500 0.395422i \(-0.870598\pi\)
0.918500 0.395422i \(-0.129402\pi\)
\(450\) 17.7117 5.48816i 0.834939 0.258714i
\(451\) 9.93854 9.93854i 0.467987 0.467987i
\(452\) −2.37828 0.557352i −0.111865 0.0262156i
\(453\) 1.99856i 0.0939005i
\(454\) −10.7514 + 19.3207i −0.504588 + 0.906766i
\(455\) 7.24703 + 16.9450i 0.339746 + 0.794394i
\(456\) −1.13043 + 1.24302i −0.0529372 + 0.0582099i
\(457\) −5.00267 + 5.00267i −0.234015 + 0.234015i −0.814366 0.580351i \(-0.802915\pi\)
0.580351 + 0.814366i \(0.302915\pi\)
\(458\) −18.7361 + 5.33901i −0.875480 + 0.249475i
\(459\) −14.0552 + 14.0552i −0.656039 + 0.656039i
\(460\) −25.6349 17.9724i −1.19523 0.837967i
\(461\) 2.71518 + 2.71518i 0.126459 + 0.126459i 0.767503 0.641045i \(-0.221499\pi\)
−0.641045 + 0.767503i \(0.721499\pi\)
\(462\) 4.69671 8.44018i 0.218511 0.392673i
\(463\) 9.18551 + 9.18551i 0.426887 + 0.426887i 0.887566 0.460680i \(-0.152394\pi\)
−0.460680 + 0.887566i \(0.652394\pi\)
\(464\) −1.50906 4.47855i −0.0700564 0.207912i
\(465\) 3.00999 + 1.20663i 0.139585 + 0.0559561i
\(466\) 0.979263 0.279049i 0.0453635 0.0129267i
\(467\) −1.06405 −0.0492385 −0.0246193 0.999697i \(-0.507837\pi\)
−0.0246193 + 0.999697i \(0.507837\pi\)
\(468\) 5.68087 + 9.15849i 0.262598 + 0.423351i
\(469\) −4.92371 4.92371i −0.227356 0.227356i
\(470\) −1.26167 + 12.1277i −0.0581966 + 0.559407i
\(471\) −5.57197 −0.256743
\(472\) −11.2043 + 12.3203i −0.515720 + 0.567088i
\(473\) −1.66490 1.66490i −0.0765523 0.0765523i
\(474\) 10.7078 + 5.95858i 0.491826 + 0.273687i
\(475\) 0.110556 + 4.83166i 0.00507265 + 0.221692i
\(476\) −39.2146 + 24.3242i −1.79740 + 1.11490i
\(477\) 13.5732i 0.621474i
\(478\) 5.63533 10.1269i 0.257754 0.463194i
\(479\) 15.8658 0.724926 0.362463 0.931998i \(-0.381936\pi\)
0.362463 + 0.931998i \(0.381936\pi\)
\(480\) −7.58406 + 1.70666i −0.346163 + 0.0778979i
\(481\) 9.33725 0.425742
\(482\) 3.89752 7.00400i 0.177527 0.319024i
\(483\) 17.2559i 0.785170i
\(484\) −5.64681 + 3.50263i −0.256673 + 0.159210i
\(485\) 4.38869 + 10.2616i 0.199280 + 0.465957i
\(486\) −17.1716 9.55551i −0.778921 0.433447i
\(487\) −13.7947 13.7947i −0.625099 0.625099i 0.321732 0.946831i \(-0.395735\pi\)
−0.946831 + 0.321732i \(0.895735\pi\)
\(488\) −16.4449 14.9553i −0.744426 0.676994i
\(489\) −2.41717 −0.109308
\(490\) −18.1074 22.3123i −0.818008 1.00797i
\(491\) 19.4471 + 19.4471i 0.877637 + 0.877637i 0.993290 0.115652i \(-0.0368958\pi\)
−0.115652 + 0.993290i \(0.536896\pi\)
\(492\) 3.28647 + 5.29833i 0.148166 + 0.238867i
\(493\) 6.79669 0.306108
\(494\) −2.70146 + 0.769803i −0.121544 + 0.0346351i
\(495\) −6.38885 14.9384i −0.287157 0.671431i
\(496\) 8.45630 + 4.19381i 0.379699 + 0.188308i
\(497\) 6.62302 + 6.62302i 0.297083 + 0.297083i
\(498\) 1.16526 2.09402i 0.0522166 0.0938353i
\(499\) 23.0141 + 23.0141i 1.03025 + 1.03025i 0.999528 + 0.0307258i \(0.00978185\pi\)
0.0307258 + 0.999528i \(0.490218\pi\)
\(500\) −12.4142 + 18.5981i −0.555180 + 0.831730i
\(501\) 4.99775 4.99775i 0.223283 0.223283i
\(502\) 28.3675 8.08357i 1.26611 0.360787i
\(503\) 6.63364 6.63364i 0.295780 0.295780i −0.543579 0.839358i \(-0.682931\pi\)
0.839358 + 0.543579i \(0.182931\pi\)
\(504\) −22.0085 20.0149i −0.980337 0.891537i
\(505\) −21.5002 + 9.19520i −0.956748 + 0.409181i
\(506\) −13.3390 + 23.9706i −0.592989 + 1.06562i
\(507\) 5.39422i 0.239566i
\(508\) −32.4797 7.61165i −1.44105 0.337712i
\(509\) 8.04140 8.04140i 0.356429 0.356429i −0.506066 0.862495i \(-0.668901\pi\)
0.862495 + 0.506066i \(0.168901\pi\)
\(510\) 1.15683 11.1198i 0.0512251 0.492395i
\(511\) 24.9398i 1.10327i
\(512\) −22.3990 + 3.20705i −0.989905 + 0.141733i
\(513\) 2.36161 2.36161i 0.104268 0.104268i
\(514\) 6.94634 1.97942i 0.306390 0.0873084i
\(515\) −10.8336 + 4.63331i −0.477386 + 0.204168i
\(516\) 0.887575 0.550549i 0.0390733 0.0242366i
\(517\) 10.6838 0.469873
\(518\) −24.7868 + 7.06321i −1.08907 + 0.310340i
\(519\) 4.22044i 0.185257i
\(520\) −12.2789 4.25881i −0.538465 0.186761i
\(521\) 32.8549i 1.43940i 0.694285 + 0.719700i \(0.255721\pi\)
−0.694285 + 0.719700i \(0.744279\pi\)
\(522\) 1.20076 + 4.21381i 0.0525559 + 0.184434i
\(523\) −2.46341 −0.107717 −0.0538587 0.998549i \(-0.517152\pi\)
−0.0538587 + 0.998549i \(0.517152\pi\)
\(524\) 43.9938 + 10.3100i 1.92188 + 0.450393i
\(525\) 12.3214 0.281933i 0.537751 0.0123046i
\(526\) 3.72729 + 13.0801i 0.162518 + 0.570321i
\(527\) −9.59896 + 9.59896i −0.418137 + 0.418137i
\(528\) 2.17499 + 6.45487i 0.0946541 + 0.280912i
\(529\) 26.0078i 1.13078i
\(530\) 10.3143 + 12.7095i 0.448023 + 0.552064i
\(531\) 10.9174 10.9174i 0.473775 0.473775i
\(532\) 6.58901 4.08706i 0.285670 0.177197i
\(533\) 10.4237i 0.451501i
\(534\) 8.84375 + 4.92128i 0.382706 + 0.212965i
\(535\) 13.6955 34.1640i 0.592107 1.47704i
\(536\) 4.90487 0.232685i 0.211858 0.0100505i
\(537\) 9.65586 9.65586i 0.416681 0.416681i
\(538\) 0.657770 + 2.30830i 0.0283585 + 0.0995180i
\(539\) −17.8038 + 17.8038i −0.766863 + 0.766863i
\(540\) 15.2193 2.67429i 0.654935 0.115083i
\(541\) −18.0772 18.0772i −0.777198 0.777198i 0.202156 0.979353i \(-0.435205\pi\)
−0.979353 + 0.202156i \(0.935205\pi\)
\(542\) −3.45509 1.92266i −0.148409 0.0825852i
\(543\) 8.54938 + 8.54938i 0.366889 + 0.366889i
\(544\) 5.91535 31.9997i 0.253619 1.37198i
\(545\) −37.3775 + 15.9856i −1.60108 + 0.684747i
\(546\) 1.96311 + 6.88910i 0.0840133 + 0.294826i
\(547\) 43.6742 1.86738 0.933688 0.358089i \(-0.116572\pi\)
0.933688 + 0.358089i \(0.116572\pi\)
\(548\) 3.56407 + 0.835243i 0.152250 + 0.0356798i
\(549\) 14.5723 + 14.5723i 0.621932 + 0.621932i
\(550\) 17.3340 + 9.13293i 0.739123 + 0.389429i
\(551\) −1.14201 −0.0486513
\(552\) −9.00269 8.18721i −0.383180 0.348471i
\(553\) −39.9869 39.9869i −1.70042 1.70042i
\(554\) 9.49770 17.0677i 0.403519 0.725139i
\(555\) 2.32341 5.79584i 0.0986231 0.246020i
\(556\) 23.7217 + 5.55921i 1.00603 + 0.235763i
\(557\) 5.18948i 0.219885i −0.993938 0.109943i \(-0.964933\pi\)
0.993938 0.109943i \(-0.0350667\pi\)
\(558\) −7.64700 4.25533i −0.323723 0.180143i
\(559\) 1.74618 0.0738555
\(560\) 35.8174 + 2.01706i 1.51356 + 0.0852362i
\(561\) −9.79597 −0.413586
\(562\) 8.91874 + 4.96301i 0.376214 + 0.209352i
\(563\) 11.3756i 0.479423i −0.970844 0.239711i \(-0.922947\pi\)
0.970844 0.239711i \(-0.0770528\pi\)
\(564\) −1.08136 + 4.61427i −0.0455334 + 0.194296i
\(565\) −2.51103 + 1.07392i −0.105640 + 0.0451800i
\(566\) 17.3972 31.2634i 0.731257 1.31410i
\(567\) 16.2889 + 16.2889i 0.684071 + 0.684071i
\(568\) −6.59768 + 0.312991i −0.276833 + 0.0131328i
\(569\) −7.51787 −0.315165 −0.157583 0.987506i \(-0.550370\pi\)
−0.157583 + 0.987506i \(0.550370\pi\)
\(570\) −0.194375 + 1.86841i −0.00814147 + 0.0782589i
\(571\) −7.76889 7.76889i −0.325118 0.325118i 0.525609 0.850726i \(-0.323838\pi\)
−0.850726 + 0.525609i \(0.823838\pi\)
\(572\) −2.59833 + 11.0873i −0.108642 + 0.463585i
\(573\) −6.35416 −0.265449
\(574\) −7.88507 27.6710i −0.329117 1.15496i
\(575\) −34.9936 + 0.800708i −1.45934 + 0.0333918i
\(576\) 20.8843 1.98595i 0.870177 0.0827478i
\(577\) −9.84819 9.84819i −0.409986 0.409986i 0.471748 0.881733i \(-0.343623\pi\)
−0.881733 + 0.471748i \(0.843623\pi\)
\(578\) 19.8871 + 11.0666i 0.827195 + 0.460309i
\(579\) −8.11720 8.11720i −0.337339 0.337339i
\(580\) −4.32643 3.03321i −0.179645 0.125947i
\(581\) −7.81984 + 7.81984i −0.324421 + 0.324421i
\(582\) 1.18883 + 4.17194i 0.0492785 + 0.172932i
\(583\) 10.1413 10.1413i 0.420010 0.420010i
\(584\) −13.0115 11.8329i −0.538421 0.489650i
\(585\) 11.1842 + 4.48346i 0.462410 + 0.185368i
\(586\) 17.4584 + 9.71509i 0.721200 + 0.401327i
\(587\) 33.0447i 1.36390i −0.731398 0.681951i \(-0.761132\pi\)
0.731398 0.681951i \(-0.238868\pi\)
\(588\) −5.88734 9.49136i −0.242790 0.391417i
\(589\) 1.61286 1.61286i 0.0664567 0.0664567i
\(590\) −1.92656 + 18.5188i −0.0793152 + 0.762408i
\(591\) 9.36829i 0.385360i
\(592\) 8.07532 16.2829i 0.331894 0.669223i
\(593\) 18.5424 18.5424i 0.761445 0.761445i −0.215139 0.976584i \(-0.569020\pi\)
0.976584 + 0.215139i \(0.0690203\pi\)
\(594\) −3.71054 13.0214i −0.152245 0.534273i
\(595\) −19.1972 + 47.8882i −0.787008 + 1.96323i
\(596\) −0.0520245 + 0.221994i −0.00213101 + 0.00909324i
\(597\) 3.06521 0.125451
\(598\) −5.57535 19.5655i −0.227993 0.800092i
\(599\) 28.3117i 1.15678i −0.815759 0.578392i \(-0.803681\pi\)
0.815759 0.578392i \(-0.196319\pi\)
\(600\) −5.69892 + 6.56206i −0.232657 + 0.267895i
\(601\) 41.7630i 1.70355i −0.523909 0.851774i \(-0.675527\pi\)
0.523909 0.851774i \(-0.324473\pi\)
\(602\) −4.63543 + 1.32091i −0.188926 + 0.0538361i
\(603\) −4.55255 −0.185394
\(604\) 3.42833 + 5.52703i 0.139497 + 0.224892i
\(605\) −2.76435 + 6.89579i −0.112387 + 0.280354i
\(606\) −8.74106 + 2.49084i −0.355081 + 0.101183i
\(607\) 4.01973 4.01973i 0.163156 0.163156i −0.620807 0.783963i \(-0.713195\pi\)
0.783963 + 0.620807i \(0.213195\pi\)
\(608\) −0.993923 + 5.37674i −0.0403089 + 0.218055i
\(609\) 2.91229i 0.118012i
\(610\) −24.7185 2.57153i −1.00082 0.104118i
\(611\) −5.60268 + 5.60268i −0.226660 + 0.226660i
\(612\) −6.88396 + 29.3746i −0.278268 + 1.18740i
\(613\) 21.5230i 0.869305i −0.900598 0.434652i \(-0.856871\pi\)
0.900598 0.434652i \(-0.143129\pi\)
\(614\) −15.5468 + 27.9383i −0.627419 + 1.12750i
\(615\) 6.47023 + 2.59375i 0.260905 + 0.104590i
\(616\) −1.48951 31.3982i −0.0600142 1.26507i
\(617\) −26.4655 + 26.4655i −1.06546 + 1.06546i −0.0677580 + 0.997702i \(0.521585\pi\)
−0.997702 + 0.0677580i \(0.978415\pi\)
\(618\) −4.40447 + 1.25509i −0.177174 + 0.0504872i
\(619\) 21.7935 21.7935i 0.875955 0.875955i −0.117158 0.993113i \(-0.537378\pi\)
0.993113 + 0.117158i \(0.0373784\pi\)
\(620\) 10.3940 1.82640i 0.417434 0.0733501i
\(621\) 17.1041 + 17.1041i 0.686365 + 0.686365i
\(622\) −7.42010 + 13.3342i −0.297519 + 0.534653i
\(623\) −33.0258 33.0258i −1.32315 1.32315i
\(624\) −4.52557 2.24441i −0.181168 0.0898482i
\(625\) 1.14348 + 24.9738i 0.0457391 + 0.998953i
\(626\) 39.7846 11.3370i 1.59011 0.453116i
\(627\) 1.64596 0.0657334
\(628\) −15.4093 + 9.55818i −0.614900 + 0.381413i
\(629\) 18.4831 + 18.4831i 0.736971 + 0.736971i
\(630\) −33.0813 3.44153i −1.31799 0.137114i
\(631\) −42.7412 −1.70150 −0.850751 0.525570i \(-0.823852\pi\)
−0.850751 + 0.525570i \(0.823852\pi\)
\(632\) 39.8339 1.88970i 1.58451 0.0751683i
\(633\) −6.37937 6.37937i −0.253557 0.253557i
\(634\) 29.4368 + 16.3807i 1.16909 + 0.650562i
\(635\) −34.2927 + 14.6663i −1.36086 + 0.582013i
\(636\) 3.35353 + 5.40643i 0.132976 + 0.214379i
\(637\) 18.6729i 0.739848i
\(638\) −2.25123 + 4.04554i −0.0891269 + 0.160165i
\(639\) 6.12376 0.242252
\(640\) −18.0462 + 17.7295i −0.713338 + 0.700820i
\(641\) 45.4930 1.79687 0.898433 0.439110i \(-0.144706\pi\)
0.898433 + 0.439110i \(0.144706\pi\)
\(642\) 6.95648 12.5011i 0.274551 0.493378i
\(643\) 31.3531i 1.23645i 0.786002 + 0.618224i \(0.212147\pi\)
−0.786002 + 0.618224i \(0.787853\pi\)
\(644\) 29.6008 + 47.7214i 1.16644 + 1.88048i
\(645\) 0.434505 1.08389i 0.0171086 0.0426782i
\(646\) −6.87137 3.82372i −0.270351 0.150442i
\(647\) −24.0355 24.0355i −0.944932 0.944932i 0.0536292 0.998561i \(-0.482921\pi\)
−0.998561 + 0.0536292i \(0.982921\pi\)
\(648\) −16.2266 + 0.769783i −0.637442 + 0.0302399i
\(649\) 16.3141 0.640383
\(650\) −13.8795 + 4.30070i −0.544398 + 0.168687i
\(651\) −4.11303 4.11303i −0.161202 0.161202i
\(652\) −6.68471 + 4.14642i −0.261793 + 0.162387i
\(653\) 15.4153 0.603248 0.301624 0.953427i \(-0.402471\pi\)
0.301624 + 0.953427i \(0.402471\pi\)
\(654\) −15.1961 + 4.33025i −0.594213 + 0.169326i
\(655\) 46.4494 19.8654i 1.81493 0.776207i
\(656\) 18.1775 + 9.01495i 0.709714 + 0.351975i
\(657\) 11.5299 + 11.5299i 0.449825 + 0.449825i
\(658\) 10.6348 19.1111i 0.414587 0.745030i
\(659\) −30.4355 30.4355i −1.18560 1.18560i −0.978272 0.207327i \(-0.933524\pi\)
−0.207327 0.978272i \(-0.566476\pi\)
\(660\) 6.23561 + 4.37172i 0.242721 + 0.170169i
\(661\) −11.2208 + 11.2208i −0.436437 + 0.436437i −0.890811 0.454374i \(-0.849863\pi\)
0.454374 + 0.890811i \(0.349863\pi\)
\(662\) −38.0240 + 10.8352i −1.47784 + 0.421124i
\(663\) 5.13709 5.13709i 0.199508 0.199508i
\(664\) −0.369550 7.78992i −0.0143413 0.302308i
\(665\) 3.22560 8.04639i 0.125083 0.312026i
\(666\) −8.19379 + 14.7246i −0.317503 + 0.570565i
\(667\) 8.27109i 0.320258i
\(668\) 5.24817 22.3945i 0.203058 0.866469i
\(669\) −0.920946 + 0.920946i −0.0356058 + 0.0356058i
\(670\) 4.26285 3.45948i 0.164688 0.133651i
\(671\) 21.7757i 0.840640i
\(672\) 13.7115 + 2.53465i 0.528931 + 0.0977761i
\(673\) −29.2965 + 29.2965i −1.12930 + 1.12930i −0.139006 + 0.990291i \(0.544391\pi\)
−0.990291 + 0.139006i \(0.955609\pi\)
\(674\) 13.9825 3.98443i 0.538585 0.153474i
\(675\) 11.9336 12.4925i 0.459325 0.480837i
\(676\) 9.25326 + 14.9178i 0.355895 + 0.573760i
\(677\) 2.74511 0.105503 0.0527516 0.998608i \(-0.483201\pi\)
0.0527516 + 0.998608i \(0.483201\pi\)
\(678\) −1.02088 + 0.290907i −0.0392065 + 0.0111722i
\(679\) 20.0191i 0.768261i
\(680\) −15.8758 32.7365i −0.608810 1.25539i
\(681\) 9.60850i 0.368199i
\(682\) −2.53411 8.89292i −0.0970362 0.340528i
\(683\) −33.0796 −1.26576 −0.632878 0.774251i \(-0.718127\pi\)
−0.632878 + 0.774251i \(0.718127\pi\)
\(684\) 1.15667 4.93565i 0.0442265 0.188719i
\(685\) 3.76301 1.60936i 0.143777 0.0614905i
\(686\) 3.24401 + 11.3841i 0.123857 + 0.434648i
\(687\) −5.98647 + 5.98647i −0.228398 + 0.228398i
\(688\) 1.51018 3.04510i 0.0575752 0.116093i
\(689\) 10.6364i 0.405214i
\(690\) −13.5321 1.40777i −0.515157 0.0535930i
\(691\) −30.8216 + 30.8216i −1.17251 + 1.17251i −0.190899 + 0.981610i \(0.561140\pi\)
−0.981610 + 0.190899i \(0.938860\pi\)
\(692\) −7.23976 11.6717i −0.275214 0.443690i
\(693\) 29.1428i 1.10704i
\(694\) −28.9994 16.1373i −1.10080 0.612563i
\(695\) 25.0458 10.7116i 0.950043 0.406314i
\(696\) −1.51939 1.38176i −0.0575923 0.0523755i
\(697\) −20.6338 + 20.6338i −0.781561 + 0.781561i
\(698\) 12.7207 + 44.6407i 0.481487 + 1.68967i
\(699\) 0.312890 0.312890i 0.0118346 0.0118346i
\(700\) 33.5914 21.9159i 1.26964 0.828344i
\(701\) −22.1242 22.1242i −0.835619 0.835619i 0.152660 0.988279i \(-0.451216\pi\)
−0.988279 + 0.152660i \(0.951216\pi\)
\(702\) 8.77436 + 4.88267i 0.331167 + 0.184285i
\(703\) −3.10562 3.10562i −0.117131 0.117131i
\(704\) 17.0877 + 14.1200i 0.644015 + 0.532168i
\(705\) 2.08358 + 4.87183i 0.0784723 + 0.183484i
\(706\) 7.30177 + 25.6240i 0.274806 + 0.964371i
\(707\) 41.9440 1.57747
\(708\) −1.65122 + 7.04595i −0.0620568 + 0.264803i
\(709\) −7.09244 7.09244i −0.266362 0.266362i 0.561270 0.827632i \(-0.310313\pi\)
−0.827632 + 0.561270i \(0.810313\pi\)
\(710\) −5.73408 + 4.65344i −0.215196 + 0.174641i
\(711\) −36.9726 −1.38658
\(712\) 32.8995 1.56073i 1.23296 0.0584910i
\(713\) 11.6812 + 11.6812i 0.437466 + 0.437466i
\(714\) −9.75103 + 17.5230i −0.364923 + 0.655782i
\(715\) 5.00651 + 11.7062i 0.187233 + 0.437788i
\(716\) 10.1397 43.2671i 0.378938 1.61697i
\(717\) 5.03628i 0.188083i
\(718\) 33.3535 + 18.5603i 1.24474 + 0.692663i
\(719\) 30.2949 1.12981 0.564905 0.825156i \(-0.308913\pi\)
0.564905 + 0.825156i \(0.308913\pi\)
\(720\) 17.4912 15.6262i 0.651859 0.582354i
\(721\) 21.1349 0.787104
\(722\) −22.3250 12.4232i −0.830849 0.462343i
\(723\) 3.48320i 0.129542i
\(724\) 38.3090 + 8.97776i 1.42374 + 0.333656i
\(725\) −5.90590 + 0.135136i −0.219340 + 0.00501883i
\(726\) −1.40413 + 2.52327i −0.0521120 + 0.0936473i
\(727\) 15.9503 + 15.9503i 0.591566 + 0.591566i 0.938054 0.346489i \(-0.112626\pi\)
−0.346489 + 0.938054i \(0.612626\pi\)
\(728\) 17.2466 + 15.6844i 0.639201 + 0.581301i
\(729\) 8.69055 0.321872
\(730\) −19.5578 2.03465i −0.723866 0.0753056i
\(731\) 3.45657 + 3.45657i 0.127846 + 0.127846i
\(732\) −9.40479 2.20402i −0.347611 0.0814630i
\(733\) 35.8535 1.32428 0.662140 0.749380i \(-0.269648\pi\)
0.662140 + 0.749380i \(0.269648\pi\)
\(734\) 10.6746 + 37.4603i 0.394008 + 1.38269i
\(735\) −11.5907 4.64642i −0.427529 0.171386i
\(736\) −38.9414 7.19856i −1.43540 0.265342i
\(737\) −3.40147 3.40147i −0.125295 0.125295i
\(738\) −16.4379 9.14720i −0.605087 0.336713i
\(739\) −21.4532 21.4532i −0.789168 0.789168i 0.192190 0.981358i \(-0.438441\pi\)
−0.981358 + 0.192190i \(0.938441\pi\)
\(740\) −3.51680 20.0140i −0.129280 0.735730i
\(741\) −0.863157 + 0.863157i −0.0317089 + 0.0317089i
\(742\) −8.04595 28.2355i −0.295376 1.03656i
\(743\) 13.0311 13.0311i 0.478063 0.478063i −0.426449 0.904512i \(-0.640235\pi\)
0.904512 + 0.426449i \(0.140235\pi\)
\(744\) 4.09729 0.194374i 0.150214 0.00712608i
\(745\) 0.100242 + 0.234385i 0.00367258 + 0.00858722i
\(746\) −6.01903 3.34941i −0.220372 0.122631i
\(747\) 7.23036i 0.264545i
\(748\) −27.0909 + 16.8040i −0.990540 + 0.614417i
\(749\) −46.6836 + 46.6836i −1.70578 + 1.70578i
\(750\) −0.784117 + 9.68545i −0.0286319 + 0.353663i
\(751\) 22.4879i 0.820595i 0.911952 + 0.410297i \(0.134575\pi\)
−0.911952 + 0.410297i \(0.865425\pi\)
\(752\) 4.92483 + 14.6158i 0.179590 + 0.532983i
\(753\) 9.06387 9.06387i 0.330306 0.330306i
\(754\) −0.940956 3.30208i −0.0342676 0.120255i
\(755\) 6.74952 + 2.70571i 0.245640 + 0.0984710i
\(756\) −26.9861 6.32421i −0.981474 0.230009i
\(757\) 15.8781 0.577100 0.288550 0.957465i \(-0.406827\pi\)
0.288550 + 0.957465i \(0.406827\pi\)
\(758\) −1.39464 4.89418i −0.0506555 0.177764i
\(759\) 11.9210i 0.432705i
\(760\) 2.66752 + 5.50052i 0.0967613 + 0.199525i
\(761\) 19.5227i 0.707696i −0.935303 0.353848i \(-0.884873\pi\)
0.935303 0.353848i \(-0.115127\pi\)
\(762\) −13.9419 + 3.97287i −0.505062 + 0.143922i
\(763\) 72.9184 2.63982
\(764\) −17.5725 + 10.8999i −0.635750 + 0.394346i
\(765\) 13.2641 + 31.0142i 0.479566 + 1.12132i
\(766\) 0.371680 0.105913i 0.0134293 0.00382680i
\(767\) −8.55524 + 8.55524i −0.308912 + 0.308912i
\(768\) −7.82788 + 5.95091i −0.282464 + 0.214735i
\(769\) 8.03843i 0.289873i −0.989441 0.144937i \(-0.953702\pi\)
0.989441 0.144937i \(-0.0462978\pi\)
\(770\) −22.1456 27.2883i −0.798071 0.983403i
\(771\) 2.21946 2.21946i 0.0799320 0.0799320i
\(772\) −36.3725 8.52392i −1.30907 0.306783i
\(773\) 40.5118i 1.45711i −0.684988 0.728554i \(-0.740193\pi\)