Properties

Label 80.2.j.b.67.6
Level $80$
Weight $2$
Character 80.67
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 67.6
Root \(-1.08900 + 0.902261i\) of defining polynomial
Character \(\chi\) \(=\) 80.67
Dual form 80.2.j.b.43.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0660953 + 1.41267i) q^{2} +0.496487i q^{3} +(-1.99126 - 0.186742i) q^{4} +(-0.987189 + 2.00635i) q^{5} +(-0.701372 - 0.0328155i) q^{6} +(1.55426 + 1.55426i) q^{7} +(0.395417 - 2.80065i) q^{8} +2.75350 q^{9} +O(q^{10})\) \(q+(-0.0660953 + 1.41267i) q^{2} +0.496487i q^{3} +(-1.99126 - 0.186742i) q^{4} +(-0.987189 + 2.00635i) q^{5} +(-0.701372 - 0.0328155i) q^{6} +(1.55426 + 1.55426i) q^{7} +(0.395417 - 2.80065i) q^{8} +2.75350 q^{9} +(-2.76906 - 1.52718i) q^{10} +(-4.19607 - 4.19607i) q^{11} +(0.0927148 - 0.988637i) q^{12} +5.09530 q^{13} +(-2.29838 + 2.09292i) q^{14} +(-0.996130 - 0.490127i) q^{15} +(3.93026 + 0.743703i) q^{16} +(0.213542 + 0.213542i) q^{17} +(-0.181993 + 3.88978i) q^{18} +(-0.844754 - 0.844754i) q^{19} +(2.34042 - 3.81083i) q^{20} +(-0.771668 + 0.771668i) q^{21} +(6.20499 - 5.65031i) q^{22} +(1.70744 - 1.70744i) q^{23} +(1.39049 + 0.196320i) q^{24} +(-3.05092 - 3.96130i) q^{25} +(-0.336775 + 7.19797i) q^{26} +2.85654i q^{27} +(-2.80469 - 3.38518i) q^{28} +(-2.24750 + 2.24750i) q^{29} +(0.758226 - 1.37481i) q^{30} -0.818209i q^{31} +(-1.31038 + 5.50299i) q^{32} +(2.08329 - 2.08329i) q^{33} +(-0.315778 + 0.287550i) q^{34} +(-4.65273 + 1.58404i) q^{35} +(-5.48294 - 0.514193i) q^{36} -5.12639 q^{37} +(1.24919 - 1.13752i) q^{38} +2.52975i q^{39} +(5.22875 + 3.55812i) q^{40} -3.34727i q^{41} +(-1.03911 - 1.14111i) q^{42} -4.49131 q^{43} +(7.57189 + 9.13905i) q^{44} +(-2.71822 + 5.52450i) q^{45} +(2.29920 + 2.52490i) q^{46} +(-4.29355 + 4.29355i) q^{47} +(-0.369239 + 1.95132i) q^{48} -2.16858i q^{49} +(5.79766 - 4.04811i) q^{50} +(-0.106021 + 0.106021i) q^{51} +(-10.1461 - 0.951504i) q^{52} +1.00653i q^{53} +(-4.03534 - 0.188804i) q^{54} +(12.5611 - 4.27649i) q^{55} +(4.96751 - 3.73835i) q^{56} +(0.419410 - 0.419410i) q^{57} +(-3.02642 - 3.32352i) q^{58} +(7.65005 - 7.65005i) q^{59} +(1.89203 + 1.16199i) q^{60} +(-1.90291 - 1.90291i) q^{61} +(1.15586 + 0.0540798i) q^{62} +(4.27964 + 4.27964i) q^{63} +(-7.68729 - 2.21485i) q^{64} +(-5.03002 + 10.2230i) q^{65} +(2.80531 + 3.08070i) q^{66} +11.0221 q^{67} +(-0.385341 - 0.465096i) q^{68} +(0.847724 + 0.847724i) q^{69} +(-1.93020 - 6.67746i) q^{70} -10.5331 q^{71} +(1.08878 - 7.71159i) q^{72} +(-2.70854 - 2.70854i) q^{73} +(0.338831 - 7.24189i) q^{74} +(1.96674 - 1.51474i) q^{75} +(1.52438 + 1.83988i) q^{76} -13.0435i q^{77} +(-3.57370 - 0.167205i) q^{78} +8.32010 q^{79} +(-5.37204 + 7.15131i) q^{80} +6.84226 q^{81} +(4.72858 + 0.221239i) q^{82} +9.17237i q^{83} +(1.68070 - 1.39249i) q^{84} +(-0.639248 + 0.217635i) q^{85} +(0.296855 - 6.34474i) q^{86} +(-1.11585 - 1.11585i) q^{87} +(-13.4109 + 10.0925i) q^{88} +4.25101 q^{89} +(-7.62462 - 4.20509i) q^{90} +(7.91940 + 7.91940i) q^{91} +(-3.71882 + 3.08112i) q^{92} +0.406230 q^{93} +(-5.78157 - 6.34914i) q^{94} +(2.52881 - 0.860944i) q^{95} +(-2.73217 - 0.650586i) q^{96} +(-7.16000 - 7.16000i) q^{97} +(3.06348 + 0.143333i) q^{98} +(-11.5539 - 11.5539i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} + O(q^{10}) \) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 12 q^{10} - 2 q^{11} + 4 q^{12} + 12 q^{14} + 20 q^{15} - 6 q^{17} + 16 q^{18} + 2 q^{19} - 4 q^{20} - 16 q^{21} + 4 q^{22} - 2 q^{23} + 4 q^{24} + 6 q^{25} - 16 q^{26} - 4 q^{28} - 14 q^{29} + 20 q^{30} - 4 q^{32} - 8 q^{33} - 28 q^{34} - 6 q^{35} - 4 q^{36} + 8 q^{37} + 16 q^{38} + 20 q^{40} + 28 q^{42} - 44 q^{43} + 44 q^{44} - 4 q^{45} + 12 q^{46} - 38 q^{47} + 60 q^{48} + 20 q^{50} + 8 q^{51} - 40 q^{52} - 4 q^{54} - 6 q^{55} + 20 q^{56} + 24 q^{57} - 20 q^{58} - 10 q^{59} - 68 q^{60} + 14 q^{61} + 6 q^{63} - 16 q^{64} + 4 q^{66} + 12 q^{67} + 36 q^{68} + 32 q^{69} - 36 q^{70} + 24 q^{71} - 36 q^{72} + 14 q^{73} + 48 q^{74} + 64 q^{75} - 16 q^{76} - 84 q^{78} + 16 q^{79} - 20 q^{80} + 2 q^{81} - 28 q^{82} - 24 q^{84} - 10 q^{85} - 36 q^{86} + 24 q^{87} - 96 q^{88} - 12 q^{89} - 64 q^{90} + 52 q^{92} + 16 q^{93} + 28 q^{94} - 34 q^{95} - 40 q^{96} + 18 q^{97} + 32 q^{98} - 22 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0660953 + 1.41267i −0.0467365 + 0.998907i
\(3\) 0.496487i 0.286647i 0.989676 + 0.143324i \(0.0457790\pi\)
−0.989676 + 0.143324i \(0.954221\pi\)
\(4\) −1.99126 0.186742i −0.995631 0.0933708i
\(5\) −0.987189 + 2.00635i −0.441484 + 0.897269i
\(6\) −0.701372 0.0328155i −0.286334 0.0133969i
\(7\) 1.55426 + 1.55426i 0.587453 + 0.587453i 0.936941 0.349488i \(-0.113644\pi\)
−0.349488 + 0.936941i \(0.613644\pi\)
\(8\) 0.395417 2.80065i 0.139801 0.990180i
\(9\) 2.75350 0.917833
\(10\) −2.76906 1.52718i −0.875655 0.482937i
\(11\) −4.19607 4.19607i −1.26516 1.26516i −0.948558 0.316604i \(-0.897457\pi\)
−0.316604 0.948558i \(-0.602543\pi\)
\(12\) 0.0927148 0.988637i 0.0267645 0.285395i
\(13\) 5.09530 1.41318 0.706591 0.707622i \(-0.250232\pi\)
0.706591 + 0.707622i \(0.250232\pi\)
\(14\) −2.29838 + 2.09292i −0.614267 + 0.559356i
\(15\) −0.996130 0.490127i −0.257200 0.126550i
\(16\) 3.93026 + 0.743703i 0.982564 + 0.185926i
\(17\) 0.213542 + 0.213542i 0.0517916 + 0.0517916i 0.732528 0.680737i \(-0.238340\pi\)
−0.680737 + 0.732528i \(0.738340\pi\)
\(18\) −0.181993 + 3.88978i −0.0428963 + 0.916830i
\(19\) −0.844754 0.844754i −0.193800 0.193800i 0.603536 0.797336i \(-0.293758\pi\)
−0.797336 + 0.603536i \(0.793758\pi\)
\(20\) 2.34042 3.81083i 0.523334 0.852127i
\(21\) −0.771668 + 0.771668i −0.168392 + 0.168392i
\(22\) 6.20499 5.65031i 1.32291 1.20465i
\(23\) 1.70744 1.70744i 0.356027 0.356027i −0.506319 0.862346i \(-0.668994\pi\)
0.862346 + 0.506319i \(0.168994\pi\)
\(24\) 1.39049 + 0.196320i 0.283832 + 0.0400736i
\(25\) −3.05092 3.96130i −0.610183 0.792260i
\(26\) −0.336775 + 7.19797i −0.0660471 + 1.41164i
\(27\) 2.85654i 0.549741i
\(28\) −2.80469 3.38518i −0.530036 0.639738i
\(29\) −2.24750 + 2.24750i −0.417350 + 0.417350i −0.884289 0.466939i \(-0.845357\pi\)
0.466939 + 0.884289i \(0.345357\pi\)
\(30\) 0.758226 1.37481i 0.138432 0.251004i
\(31\) 0.818209i 0.146955i −0.997297 0.0734773i \(-0.976590\pi\)
0.997297 0.0734773i \(-0.0234097\pi\)
\(32\) −1.31038 + 5.50299i −0.231644 + 0.972801i
\(33\) 2.08329 2.08329i 0.362655 0.362655i
\(34\) −0.315778 + 0.287550i −0.0541556 + 0.0493144i
\(35\) −4.65273 + 1.58404i −0.786455 + 0.267752i
\(36\) −5.48294 0.514193i −0.913824 0.0856988i
\(37\) −5.12639 −0.842774 −0.421387 0.906881i \(-0.638457\pi\)
−0.421387 + 0.906881i \(0.638457\pi\)
\(38\) 1.24919 1.13752i 0.202646 0.184531i
\(39\) 2.52975i 0.405084i
\(40\) 5.22875 + 3.55812i 0.826738 + 0.562588i
\(41\) 3.34727i 0.522756i −0.965237 0.261378i \(-0.915823\pi\)
0.965237 0.261378i \(-0.0841769\pi\)
\(42\) −1.03911 1.14111i −0.160338 0.176078i
\(43\) −4.49131 −0.684919 −0.342460 0.939533i \(-0.611260\pi\)
−0.342460 + 0.939533i \(0.611260\pi\)
\(44\) 7.57189 + 9.13905i 1.14151 + 1.37776i
\(45\) −2.71822 + 5.52450i −0.405209 + 0.823543i
\(46\) 2.29920 + 2.52490i 0.338998 + 0.372277i
\(47\) −4.29355 + 4.29355i −0.626278 + 0.626278i −0.947130 0.320851i \(-0.896031\pi\)
0.320851 + 0.947130i \(0.396031\pi\)
\(48\) −0.369239 + 1.95132i −0.0532951 + 0.281649i
\(49\) 2.16858i 0.309797i
\(50\) 5.79766 4.04811i 0.819912 0.572489i
\(51\) −0.106021 + 0.106021i −0.0148459 + 0.0148459i
\(52\) −10.1461 0.951504i −1.40701 0.131950i
\(53\) 1.00653i 0.138258i 0.997608 + 0.0691291i \(0.0220220\pi\)
−0.997608 + 0.0691291i \(0.977978\pi\)
\(54\) −4.03534 0.188804i −0.549141 0.0256930i
\(55\) 12.5611 4.27649i 1.69374 0.576642i
\(56\) 4.96751 3.73835i 0.663811 0.499558i
\(57\) 0.419410 0.419410i 0.0555521 0.0555521i
\(58\) −3.02642 3.32352i −0.397388 0.436399i
\(59\) 7.65005 7.65005i 0.995952 0.995952i −0.00404030 0.999992i \(-0.501286\pi\)
0.999992 + 0.00404030i \(0.00128607\pi\)
\(60\) 1.89203 + 1.16199i 0.244260 + 0.150012i
\(61\) −1.90291 1.90291i −0.243643 0.243643i 0.574712 0.818355i \(-0.305114\pi\)
−0.818355 + 0.574712i \(0.805114\pi\)
\(62\) 1.15586 + 0.0540798i 0.146794 + 0.00686814i
\(63\) 4.27964 + 4.27964i 0.539184 + 0.539184i
\(64\) −7.68729 2.21485i −0.960911 0.276856i
\(65\) −5.03002 + 10.2230i −0.623897 + 1.26800i
\(66\) 2.80531 + 3.08070i 0.345310 + 0.379208i
\(67\) 11.0221 1.34656 0.673280 0.739387i \(-0.264885\pi\)
0.673280 + 0.739387i \(0.264885\pi\)
\(68\) −0.385341 0.465096i −0.0467295 0.0564012i
\(69\) 0.847724 + 0.847724i 0.102054 + 0.102054i
\(70\) −1.93020 6.67746i −0.230704 0.798110i
\(71\) −10.5331 −1.25005 −0.625027 0.780604i \(-0.714912\pi\)
−0.625027 + 0.780604i \(0.714912\pi\)
\(72\) 1.08878 7.71159i 0.128314 0.908820i
\(73\) −2.70854 2.70854i −0.317010 0.317010i 0.530607 0.847618i \(-0.321964\pi\)
−0.847618 + 0.530607i \(0.821964\pi\)
\(74\) 0.338831 7.24189i 0.0393883 0.841853i
\(75\) 1.96674 1.51474i 0.227099 0.174907i
\(76\) 1.52438 + 1.83988i 0.174858 + 0.211048i
\(77\) 13.0435i 1.48645i
\(78\) −3.57370 0.167205i −0.404642 0.0189322i
\(79\) 8.32010 0.936085 0.468042 0.883706i \(-0.344959\pi\)
0.468042 + 0.883706i \(0.344959\pi\)
\(80\) −5.37204 + 7.15131i −0.600612 + 0.799541i
\(81\) 6.84226 0.760252
\(82\) 4.72858 + 0.221239i 0.522185 + 0.0244317i
\(83\) 9.17237i 1.00680i 0.864054 + 0.503399i \(0.167917\pi\)
−0.864054 + 0.503399i \(0.832083\pi\)
\(84\) 1.68070 1.39249i 0.183379 0.151933i
\(85\) −0.639248 + 0.217635i −0.0693362 + 0.0236058i
\(86\) 0.296855 6.34474i 0.0320107 0.684171i
\(87\) −1.11585 1.11585i −0.119632 0.119632i
\(88\) −13.4109 + 10.0925i −1.42961 + 1.07587i
\(89\) 4.25101 0.450606 0.225303 0.974289i \(-0.427663\pi\)
0.225303 + 0.974289i \(0.427663\pi\)
\(90\) −7.62462 4.20509i −0.803706 0.443256i
\(91\) 7.91940 + 7.91940i 0.830178 + 0.830178i
\(92\) −3.71882 + 3.08112i −0.387714 + 0.321229i
\(93\) 0.406230 0.0421241
\(94\) −5.78157 6.34914i −0.596324 0.654864i
\(95\) 2.52881 0.860944i 0.259450 0.0883310i
\(96\) −2.73217 0.650586i −0.278850 0.0664001i
\(97\) −7.16000 7.16000i −0.726987 0.726987i 0.243031 0.970019i \(-0.421858\pi\)
−0.970019 + 0.243031i \(0.921858\pi\)
\(98\) 3.06348 + 0.143333i 0.309458 + 0.0144788i
\(99\) −11.5539 11.5539i −1.16121 1.16121i
\(100\) 5.33544 + 8.45772i 0.533544 + 0.845772i
\(101\) 8.38846 8.38846i 0.834683 0.834683i −0.153470 0.988153i \(-0.549045\pi\)
0.988153 + 0.153470i \(0.0490448\pi\)
\(102\) −0.142765 0.156780i −0.0141358 0.0155235i
\(103\) −5.16478 + 5.16478i −0.508901 + 0.508901i −0.914189 0.405288i \(-0.867171\pi\)
0.405288 + 0.914189i \(0.367171\pi\)
\(104\) 2.01477 14.2702i 0.197564 1.39930i
\(105\) −0.786458 2.31002i −0.0767504 0.225435i
\(106\) −1.42190 0.0665272i −0.138107 0.00646169i
\(107\) 8.97973i 0.868103i 0.900888 + 0.434052i \(0.142916\pi\)
−0.900888 + 0.434052i \(0.857084\pi\)
\(108\) 0.533435 5.68812i 0.0513298 0.547340i
\(109\) −10.9081 + 10.9081i −1.04481 + 1.04481i −0.0458592 + 0.998948i \(0.514603\pi\)
−0.998948 + 0.0458592i \(0.985397\pi\)
\(110\) 5.21103 + 18.0273i 0.496852 + 1.71884i
\(111\) 2.54519i 0.241579i
\(112\) 4.95272 + 7.26453i 0.467988 + 0.686433i
\(113\) −4.29684 + 4.29684i −0.404212 + 0.404212i −0.879715 0.475502i \(-0.842266\pi\)
0.475502 + 0.879715i \(0.342266\pi\)
\(114\) 0.564765 + 0.620208i 0.0528951 + 0.0580878i
\(115\) 1.74017 + 5.11131i 0.162271 + 0.476632i
\(116\) 4.89506 4.05566i 0.454495 0.376558i
\(117\) 14.0299 1.29707
\(118\) 10.3013 + 11.3126i 0.948316 + 1.04141i
\(119\) 0.663798i 0.0608503i
\(120\) −1.76656 + 2.59601i −0.161264 + 0.236982i
\(121\) 24.2140i 2.20127i
\(122\) 2.81396 2.56241i 0.254764 0.231990i
\(123\) 1.66188 0.149846
\(124\) −0.152794 + 1.62927i −0.0137213 + 0.146313i
\(125\) 10.9596 2.21067i 0.980257 0.197728i
\(126\) −6.32858 + 5.76285i −0.563795 + 0.513396i
\(127\) −0.759686 + 0.759686i −0.0674112 + 0.0674112i −0.740009 0.672597i \(-0.765179\pi\)
0.672597 + 0.740009i \(0.265179\pi\)
\(128\) 3.63694 10.7132i 0.321463 0.946922i
\(129\) 2.22988i 0.196330i
\(130\) −14.1092 7.78144i −1.23746 0.682478i
\(131\) 7.59995 7.59995i 0.664010 0.664010i −0.292312 0.956323i \(-0.594425\pi\)
0.956323 + 0.292312i \(0.0944247\pi\)
\(132\) −4.53742 + 3.75935i −0.394932 + 0.327209i
\(133\) 2.62593i 0.227697i
\(134\) −0.728507 + 15.5705i −0.0629335 + 1.34509i
\(135\) −5.73123 2.81994i −0.493266 0.242702i
\(136\) 0.682495 0.513619i 0.0585235 0.0440425i
\(137\) −12.7789 + 12.7789i −1.09178 + 1.09178i −0.0964376 + 0.995339i \(0.530745\pi\)
−0.995339 + 0.0964376i \(0.969255\pi\)
\(138\) −1.25358 + 1.14152i −0.106712 + 0.0971728i
\(139\) −7.74227 + 7.74227i −0.656691 + 0.656691i −0.954596 0.297905i \(-0.903712\pi\)
0.297905 + 0.954596i \(0.403712\pi\)
\(140\) 9.56062 2.28539i 0.808020 0.193151i
\(141\) −2.13169 2.13169i −0.179521 0.179521i
\(142\) 0.696191 14.8798i 0.0584230 1.24869i
\(143\) −21.3802 21.3802i −1.78790 1.78790i
\(144\) 10.8220 + 2.04779i 0.901830 + 0.170649i
\(145\) −2.29057 6.72798i −0.190222 0.558728i
\(146\) 4.00529 3.64724i 0.331480 0.301848i
\(147\) 1.07667 0.0888024
\(148\) 10.2080 + 0.957310i 0.839092 + 0.0786904i
\(149\) −9.57165 9.57165i −0.784140 0.784140i 0.196386 0.980527i \(-0.437079\pi\)
−0.980527 + 0.196386i \(0.937079\pi\)
\(150\) 2.00984 + 2.87846i 0.164102 + 0.235025i
\(151\) −9.68791 −0.788391 −0.394195 0.919027i \(-0.628977\pi\)
−0.394195 + 0.919027i \(0.628977\pi\)
\(152\) −2.69989 + 2.03183i −0.218990 + 0.164803i
\(153\) 0.587989 + 0.587989i 0.0475361 + 0.0475361i
\(154\) 18.4262 + 0.862116i 1.48482 + 0.0694713i
\(155\) 1.64162 + 0.807726i 0.131858 + 0.0648781i
\(156\) 0.472410 5.03740i 0.0378230 0.403315i
\(157\) 9.97637i 0.796201i −0.917342 0.398101i \(-0.869669\pi\)
0.917342 0.398101i \(-0.130331\pi\)
\(158\) −0.549920 + 11.7535i −0.0437493 + 0.935062i
\(159\) −0.499732 −0.0396313
\(160\) −9.74736 8.06157i −0.770597 0.637323i
\(161\) 5.30761 0.418298
\(162\) −0.452242 + 9.66585i −0.0355315 + 0.759421i
\(163\) 9.48267i 0.742740i −0.928485 0.371370i \(-0.878888\pi\)
0.928485 0.371370i \(-0.121112\pi\)
\(164\) −0.625074 + 6.66529i −0.0488101 + 0.520472i
\(165\) 2.12322 + 6.23643i 0.165293 + 0.485506i
\(166\) −12.9575 0.606250i −1.00570 0.0470542i
\(167\) −9.43528 9.43528i −0.730124 0.730124i 0.240520 0.970644i \(-0.422682\pi\)
−0.970644 + 0.240520i \(0.922682\pi\)
\(168\) 1.85604 + 2.46630i 0.143197 + 0.190279i
\(169\) 12.9621 0.997082
\(170\) −0.265195 0.917430i −0.0203395 0.0703637i
\(171\) −2.32603 2.32603i −0.177876 0.177876i
\(172\) 8.94339 + 0.838715i 0.681927 + 0.0639514i
\(173\) 8.94716 0.680240 0.340120 0.940382i \(-0.389532\pi\)
0.340120 + 0.940382i \(0.389532\pi\)
\(174\) 1.65008 1.50258i 0.125093 0.113910i
\(175\) 1.41497 10.8988i 0.106962 0.823870i
\(176\) −13.3710 19.6122i −1.00788 1.47833i
\(177\) 3.79815 + 3.79815i 0.285487 + 0.285487i
\(178\) −0.280972 + 6.00526i −0.0210597 + 0.450114i
\(179\) 3.02430 + 3.02430i 0.226047 + 0.226047i 0.811039 0.584992i \(-0.198902\pi\)
−0.584992 + 0.811039i \(0.698902\pi\)
\(180\) 6.44435 10.4931i 0.480334 0.782111i
\(181\) −1.54845 + 1.54845i −0.115095 + 0.115095i −0.762309 0.647213i \(-0.775934\pi\)
0.647213 + 0.762309i \(0.275934\pi\)
\(182\) −11.7109 + 10.6640i −0.868071 + 0.790472i
\(183\) 0.944773 0.944773i 0.0698396 0.0698396i
\(184\) −4.10680 5.45710i −0.302757 0.402303i
\(185\) 5.06072 10.2854i 0.372071 0.756195i
\(186\) −0.0268499 + 0.573869i −0.00196873 + 0.0420781i
\(187\) 1.79208i 0.131050i
\(188\) 9.35136 7.74779i 0.682018 0.565066i
\(189\) −4.43979 + 4.43979i −0.322947 + 0.322947i
\(190\) 1.04909 + 3.62927i 0.0761087 + 0.263295i
\(191\) 20.1005i 1.45442i 0.686415 + 0.727210i \(0.259183\pi\)
−0.686415 + 0.727210i \(0.740817\pi\)
\(192\) 1.09964 3.81664i 0.0793600 0.275442i
\(193\) 3.82483 3.82483i 0.275317 0.275317i −0.555919 0.831236i \(-0.687634\pi\)
0.831236 + 0.555919i \(0.187634\pi\)
\(194\) 10.5879 9.64146i 0.760170 0.692216i
\(195\) −5.07558 2.49734i −0.363470 0.178838i
\(196\) −0.404964 + 4.31821i −0.0289260 + 0.308444i
\(197\) −1.11758 −0.0796246 −0.0398123 0.999207i \(-0.512676\pi\)
−0.0398123 + 0.999207i \(0.512676\pi\)
\(198\) 17.0854 15.5581i 1.21421 1.10567i
\(199\) 25.5830i 1.81353i 0.421635 + 0.906766i \(0.361456\pi\)
−0.421635 + 0.906766i \(0.638544\pi\)
\(200\) −12.3006 + 6.97819i −0.869784 + 0.493432i
\(201\) 5.47232i 0.385988i
\(202\) 11.2957 + 12.4046i 0.794761 + 0.872781i
\(203\) −6.98637 −0.490347
\(204\) 0.230914 0.191317i 0.0161672 0.0133949i
\(205\) 6.71581 + 3.30439i 0.469053 + 0.230788i
\(206\) −6.95475 7.63749i −0.484560 0.532129i
\(207\) 4.70145 4.70145i 0.326773 0.326773i
\(208\) 20.0258 + 3.78939i 1.38854 + 0.262747i
\(209\) 7.08929i 0.490376i
\(210\) 3.31528 0.958322i 0.228776 0.0661305i
\(211\) 0.411613 0.411613i 0.0283366 0.0283366i −0.692797 0.721133i \(-0.743622\pi\)
0.721133 + 0.692797i \(0.243622\pi\)
\(212\) 0.187962 2.00427i 0.0129093 0.137654i
\(213\) 5.22957i 0.358324i
\(214\) −12.6854 0.593518i −0.867155 0.0405721i
\(215\) 4.43378 9.01117i 0.302381 0.614557i
\(216\) 8.00017 + 1.12952i 0.544343 + 0.0768544i
\(217\) 1.27171 1.27171i 0.0863290 0.0863290i
\(218\) −14.6886 16.1305i −0.994835 1.09250i
\(219\) 1.34475 1.34475i 0.0908701 0.0908701i
\(220\) −25.8111 + 6.16993i −1.74018 + 0.415977i
\(221\) 1.08806 + 1.08806i 0.0731909 + 0.0731909i
\(222\) 3.59551 + 0.168225i 0.241315 + 0.0112905i
\(223\) 16.7466 + 16.7466i 1.12143 + 1.12143i 0.991526 + 0.129908i \(0.0414682\pi\)
0.129908 + 0.991526i \(0.458532\pi\)
\(224\) −10.5897 + 6.51639i −0.707555 + 0.435395i
\(225\) −8.40070 10.9074i −0.560047 0.727163i
\(226\) −5.78600 6.35401i −0.384879 0.422662i
\(227\) 13.7807 0.914659 0.457330 0.889297i \(-0.348806\pi\)
0.457330 + 0.889297i \(0.348806\pi\)
\(228\) −0.913476 + 0.756833i −0.0604964 + 0.0501225i
\(229\) 7.90971 + 7.90971i 0.522688 + 0.522688i 0.918382 0.395694i \(-0.129496\pi\)
−0.395694 + 0.918382i \(0.629496\pi\)
\(230\) −7.33560 + 2.12045i −0.483695 + 0.139818i
\(231\) 6.47594 0.426086
\(232\) 5.40576 + 7.18315i 0.354905 + 0.471597i
\(233\) 1.67997 + 1.67997i 0.110058 + 0.110058i 0.759991 0.649933i \(-0.225203\pi\)
−0.649933 + 0.759991i \(0.725203\pi\)
\(234\) −0.927311 + 19.8196i −0.0606202 + 1.29565i
\(235\) −4.37583 12.8529i −0.285448 0.838432i
\(236\) −16.6618 + 13.8047i −1.08459 + 0.898608i
\(237\) 4.13083i 0.268326i
\(238\) −0.937727 0.0438740i −0.0607838 0.00284393i
\(239\) −11.7685 −0.761241 −0.380620 0.924731i \(-0.624290\pi\)
−0.380620 + 0.924731i \(0.624290\pi\)
\(240\) −3.55053 2.66715i −0.229186 0.172164i
\(241\) −13.2730 −0.854991 −0.427495 0.904018i \(-0.640604\pi\)
−0.427495 + 0.904018i \(0.640604\pi\)
\(242\) −34.2063 1.60043i −2.19886 0.102880i
\(243\) 11.9667i 0.767665i
\(244\) 3.43385 + 4.14455i 0.219830 + 0.265328i
\(245\) 4.35094 + 2.14080i 0.277971 + 0.136770i
\(246\) −0.109842 + 2.34768i −0.00700329 + 0.149683i
\(247\) −4.30427 4.30427i −0.273874 0.273874i
\(248\) −2.29152 0.323534i −0.145511 0.0205444i
\(249\) −4.55396 −0.288596
\(250\) 2.39856 + 15.6284i 0.151698 + 0.988427i
\(251\) 10.3795 + 10.3795i 0.655149 + 0.655149i 0.954228 0.299079i \(-0.0966795\pi\)
−0.299079 + 0.954228i \(0.596679\pi\)
\(252\) −7.72271 9.32108i −0.486485 0.587173i
\(253\) −14.3291 −0.900863
\(254\) −1.02297 1.12340i −0.0641870 0.0704881i
\(255\) −0.108053 0.317378i −0.00676654 0.0198750i
\(256\) 14.8938 + 5.84588i 0.930863 + 0.365368i
\(257\) 20.4353 + 20.4353i 1.27472 + 1.27472i 0.943582 + 0.331140i \(0.107433\pi\)
0.331140 + 0.943582i \(0.392567\pi\)
\(258\) 3.15008 + 0.147385i 0.196116 + 0.00917577i
\(259\) −7.96772 7.96772i −0.495090 0.495090i
\(260\) 11.9251 19.4173i 0.739566 1.20421i
\(261\) −6.18848 + 6.18848i −0.383058 + 0.383058i
\(262\) 10.2339 + 11.2385i 0.632251 + 0.694318i
\(263\) 14.0611 14.0611i 0.867047 0.867047i −0.125098 0.992144i \(-0.539924\pi\)
0.992144 + 0.125098i \(0.0399244\pi\)
\(264\) −5.01081 6.65835i −0.308394 0.409793i
\(265\) −2.01946 0.993639i −0.124055 0.0610388i
\(266\) 3.70956 + 0.173561i 0.227448 + 0.0106417i
\(267\) 2.11057i 0.129165i
\(268\) −21.9478 2.05828i −1.34068 0.125729i
\(269\) 6.61443 6.61443i 0.403289 0.403289i −0.476101 0.879390i \(-0.657950\pi\)
0.879390 + 0.476101i \(0.157950\pi\)
\(270\) 4.36245 7.90994i 0.265490 0.481384i
\(271\) 10.6219i 0.645237i −0.946529 0.322619i \(-0.895437\pi\)
0.946529 0.322619i \(-0.104563\pi\)
\(272\) 0.680463 + 0.998087i 0.0412592 + 0.0605179i
\(273\) −3.93188 + 3.93188i −0.237968 + 0.237968i
\(274\) −17.2077 18.8970i −1.03956 1.14161i
\(275\) −3.82004 + 29.4237i −0.230357 + 1.77432i
\(276\) −1.52974 1.84635i −0.0920793 0.111137i
\(277\) −8.28511 −0.497804 −0.248902 0.968529i \(-0.580070\pi\)
−0.248902 + 0.968529i \(0.580070\pi\)
\(278\) −10.4255 11.4490i −0.625282 0.686665i
\(279\) 2.25294i 0.134880i
\(280\) 2.59659 + 13.6570i 0.155176 + 0.816164i
\(281\) 21.0176i 1.25380i −0.779098 0.626902i \(-0.784323\pi\)
0.779098 0.626902i \(-0.215677\pi\)
\(282\) 3.15227 2.87048i 0.187715 0.170934i
\(283\) 14.4748 0.860436 0.430218 0.902725i \(-0.358437\pi\)
0.430218 + 0.902725i \(0.358437\pi\)
\(284\) 20.9742 + 1.96697i 1.24459 + 0.116718i
\(285\) 0.427448 + 1.25552i 0.0253198 + 0.0743706i
\(286\) 31.6163 28.7900i 1.86951 1.70239i
\(287\) 5.20251 5.20251i 0.307095 0.307095i
\(288\) −3.60812 + 15.1525i −0.212611 + 0.892869i
\(289\) 16.9088i 0.994635i
\(290\) 9.65580 2.79113i 0.567008 0.163901i
\(291\) 3.55485 3.55485i 0.208389 0.208389i
\(292\) 4.88761 + 5.89921i 0.286026 + 0.345225i
\(293\) 11.9165i 0.696171i 0.937463 + 0.348086i \(0.113168\pi\)
−0.937463 + 0.348086i \(0.886832\pi\)
\(294\) −0.0711630 + 1.52098i −0.00415031 + 0.0887054i
\(295\) 7.79667 + 22.9008i 0.453940 + 1.33333i
\(296\) −2.02706 + 14.3572i −0.117821 + 0.834497i
\(297\) 11.9862 11.9862i 0.695512 0.695512i
\(298\) 14.1542 12.8889i 0.819931 0.746635i
\(299\) 8.69993 8.69993i 0.503130 0.503130i
\(300\) −4.19915 + 2.64898i −0.242438 + 0.152939i
\(301\) −6.98065 6.98065i −0.402358 0.402358i
\(302\) 0.640325 13.6858i 0.0368466 0.787529i
\(303\) 4.16477 + 4.16477i 0.239260 + 0.239260i
\(304\) −2.69185 3.94834i −0.154388 0.226453i
\(305\) 5.69645 1.93938i 0.326178 0.111049i
\(306\) −0.869496 + 0.791769i −0.0497058 + 0.0452624i
\(307\) −25.4511 −1.45257 −0.726287 0.687392i \(-0.758755\pi\)
−0.726287 + 0.687392i \(0.758755\pi\)
\(308\) −2.43577 + 25.9731i −0.138791 + 1.47995i
\(309\) −2.56425 2.56425i −0.145875 0.145875i
\(310\) −1.24955 + 2.26567i −0.0709698 + 0.128682i
\(311\) 21.4775 1.21788 0.608939 0.793217i \(-0.291596\pi\)
0.608939 + 0.793217i \(0.291596\pi\)
\(312\) 7.08495 + 1.00031i 0.401106 + 0.0566312i
\(313\) −18.7965 18.7965i −1.06244 1.06244i −0.997916 0.0645277i \(-0.979446\pi\)
−0.0645277 0.997916i \(-0.520554\pi\)
\(314\) 14.0933 + 0.659392i 0.795331 + 0.0372116i
\(315\) −12.8113 + 4.36167i −0.721835 + 0.245752i
\(316\) −16.5675 1.55371i −0.931995 0.0874029i
\(317\) 16.2531i 0.912864i 0.889758 + 0.456432i \(0.150873\pi\)
−0.889758 + 0.456432i \(0.849127\pi\)
\(318\) 0.0330299 0.705955i 0.00185223 0.0395880i
\(319\) 18.8613 1.05603
\(320\) 12.0326 13.2370i 0.672642 0.739968i
\(321\) −4.45832 −0.248839
\(322\) −0.350808 + 7.49789i −0.0195498 + 0.417841i
\(323\) 0.360781i 0.0200744i
\(324\) −13.6247 1.27773i −0.756930 0.0709853i
\(325\) −15.5453 20.1840i −0.862300 1.11961i
\(326\) 13.3959 + 0.626760i 0.741928 + 0.0347130i
\(327\) −5.41574 5.41574i −0.299491 0.299491i
\(328\) −9.37453 1.32357i −0.517622 0.0730818i
\(329\) −13.3465 −0.735818
\(330\) −8.95034 + 2.58721i −0.492700 + 0.142421i
\(331\) −8.71558 8.71558i −0.479052 0.479052i 0.425777 0.904828i \(-0.360001\pi\)
−0.904828 + 0.425777i \(0.860001\pi\)
\(332\) 1.71286 18.2646i 0.0940055 1.00240i
\(333\) −14.1155 −0.773526
\(334\) 13.9526 12.7053i 0.763450 0.695203i
\(335\) −10.8809 + 22.1142i −0.594485 + 1.20823i
\(336\) −3.60674 + 2.45896i −0.196764 + 0.134147i
\(337\) 0.0406874 + 0.0406874i 0.00221638 + 0.00221638i 0.708214 0.705998i \(-0.249501\pi\)
−0.705998 + 0.708214i \(0.749501\pi\)
\(338\) −0.856732 + 18.3111i −0.0466001 + 0.995993i
\(339\) −2.13333 2.13333i −0.115866 0.115866i
\(340\) 1.31355 0.313994i 0.0712374 0.0170287i
\(341\) −3.43326 + 3.43326i −0.185921 + 0.185921i
\(342\) 3.43965 3.13217i 0.185995 0.169368i
\(343\) 14.2503 14.2503i 0.769445 0.769445i
\(344\) −1.77594 + 12.5786i −0.0957524 + 0.678193i
\(345\) −2.53770 + 0.863971i −0.136625 + 0.0465146i
\(346\) −0.591366 + 12.6394i −0.0317920 + 0.679497i
\(347\) 35.7094i 1.91698i −0.285124 0.958491i \(-0.592035\pi\)
0.285124 0.958491i \(-0.407965\pi\)
\(348\) 2.01358 + 2.43033i 0.107939 + 0.130280i
\(349\) 0.274452 0.274452i 0.0146911 0.0146911i −0.699723 0.714414i \(-0.746693\pi\)
0.714414 + 0.699723i \(0.246693\pi\)
\(350\) 15.3028 + 2.71924i 0.817971 + 0.145350i
\(351\) 14.5549i 0.776884i
\(352\) 28.5894 17.5925i 1.52382 0.937683i
\(353\) −15.6215 + 15.6215i −0.831446 + 0.831446i −0.987715 0.156268i \(-0.950054\pi\)
0.156268 + 0.987715i \(0.450054\pi\)
\(354\) −5.61657 + 5.11449i −0.298517 + 0.271832i
\(355\) 10.3982 21.1332i 0.551879 1.12163i
\(356\) −8.46487 0.793840i −0.448637 0.0420734i
\(357\) −0.329567 −0.0174426
\(358\) −4.47222 + 4.07244i −0.236364 + 0.215235i
\(359\) 0.768787i 0.0405750i −0.999794 0.0202875i \(-0.993542\pi\)
0.999794 0.0202875i \(-0.00645816\pi\)
\(360\) 14.3974 + 9.79728i 0.758807 + 0.516362i
\(361\) 17.5728i 0.924883i
\(362\) −2.08510 2.28979i −0.109591 0.120349i
\(363\) −12.0219 −0.630988
\(364\) −14.2907 17.2485i −0.749037 0.904066i
\(365\) 8.10812 2.76045i 0.424399 0.144488i
\(366\) 1.27221 + 1.39710i 0.0664992 + 0.0730273i
\(367\) −13.7849 + 13.7849i −0.719568 + 0.719568i −0.968517 0.248949i \(-0.919915\pi\)
0.248949 + 0.968517i \(0.419915\pi\)
\(368\) 7.98052 5.44086i 0.416013 0.283624i
\(369\) 9.21671i 0.479803i
\(370\) 14.1953 + 7.82893i 0.737979 + 0.407007i
\(371\) −1.56441 + 1.56441i −0.0812202 + 0.0812202i
\(372\) −0.808911 0.0758601i −0.0419401 0.00393316i
\(373\) 21.4003i 1.10806i 0.832496 + 0.554031i \(0.186911\pi\)
−0.832496 + 0.554031i \(0.813089\pi\)
\(374\) 2.53161 + 0.118448i 0.130906 + 0.00612479i
\(375\) 1.09757 + 5.44131i 0.0566782 + 0.280988i
\(376\) 10.3270 + 13.7225i 0.532573 + 0.707682i
\(377\) −11.4517 + 11.4517i −0.589791 + 0.589791i
\(378\) −5.97851 6.56540i −0.307501 0.337688i
\(379\) −11.3922 + 11.3922i −0.585180 + 0.585180i −0.936322 0.351142i \(-0.885793\pi\)
0.351142 + 0.936322i \(0.385793\pi\)
\(380\) −5.19629 + 1.24213i −0.266564 + 0.0637201i
\(381\) −0.377174 0.377174i −0.0193232 0.0193232i
\(382\) −28.3953 1.32855i −1.45283 0.0679744i
\(383\) −4.42635 4.42635i −0.226176 0.226176i 0.584917 0.811093i \(-0.301127\pi\)
−0.811093 + 0.584917i \(0.801127\pi\)
\(384\) 5.31897 + 1.80570i 0.271432 + 0.0921465i
\(385\) 26.1699 + 12.8764i 1.33374 + 0.656243i
\(386\) 5.15041 + 5.65602i 0.262149 + 0.287884i
\(387\) −12.3668 −0.628642
\(388\) 12.9204 + 15.5945i 0.655932 + 0.791691i
\(389\) −12.3502 12.3502i −0.626180 0.626180i 0.320924 0.947105i \(-0.396006\pi\)
−0.947105 + 0.320924i \(0.896006\pi\)
\(390\) 3.86339 7.00505i 0.195630 0.354714i
\(391\) 0.729222 0.0368784
\(392\) −6.07343 0.857493i −0.306755 0.0433099i
\(393\) 3.77328 + 3.77328i 0.190337 + 0.190337i
\(394\) 0.0738671 1.57878i 0.00372137 0.0795376i
\(395\) −8.21351 + 16.6931i −0.413267 + 0.839920i
\(396\) 20.8492 + 25.1644i 1.04771 + 1.26456i
\(397\) 17.9832i 0.902551i 0.892385 + 0.451275i \(0.149031\pi\)
−0.892385 + 0.451275i \(0.850969\pi\)
\(398\) −36.1403 1.69092i −1.81155 0.0847580i
\(399\) 1.30374 0.0652686
\(400\) −9.04485 17.8379i −0.452242 0.891895i
\(401\) 9.06570 0.452720 0.226360 0.974044i \(-0.427317\pi\)
0.226360 + 0.974044i \(0.427317\pi\)
\(402\) −7.73057 0.361695i −0.385566 0.0180397i
\(403\) 4.16902i 0.207674i
\(404\) −18.2701 + 15.1372i −0.908972 + 0.753102i
\(405\) −6.75461 + 13.7280i −0.335639 + 0.682150i
\(406\) 0.461766 9.86942i 0.0229171 0.489811i
\(407\) 21.5107 + 21.5107i 1.06625 + 1.06625i
\(408\) 0.255005 + 0.338850i 0.0126246 + 0.0167756i
\(409\) 30.0616 1.48645 0.743226 0.669040i \(-0.233295\pi\)
0.743226 + 0.669040i \(0.233295\pi\)
\(410\) −5.11189 + 9.26881i −0.252458 + 0.457754i
\(411\) −6.34457 6.34457i −0.312955 0.312955i
\(412\) 11.2489 9.31995i 0.554194 0.459161i
\(413\) 23.7803 1.17015
\(414\) 6.33084 + 6.95233i 0.311144 + 0.341688i
\(415\) −18.4030 9.05486i −0.903369 0.444485i
\(416\) −6.67676 + 28.0394i −0.327355 + 1.37474i
\(417\) −3.84394 3.84394i −0.188239 0.188239i
\(418\) −10.0148 0.468569i −0.489840 0.0229184i
\(419\) 15.3986 + 15.3986i 0.752271 + 0.752271i 0.974903 0.222631i \(-0.0714646\pi\)
−0.222631 + 0.974903i \(0.571465\pi\)
\(420\) 1.13467 + 4.74673i 0.0553661 + 0.231616i
\(421\) −3.86468 + 3.86468i −0.188353 + 0.188353i −0.794984 0.606631i \(-0.792521\pi\)
0.606631 + 0.794984i \(0.292521\pi\)
\(422\) 0.554267 + 0.608679i 0.0269813 + 0.0296300i
\(423\) −11.8223 + 11.8223i −0.574819 + 0.574819i
\(424\) 2.81895 + 0.398001i 0.136900 + 0.0193286i
\(425\) 0.194406 1.49740i 0.00943006 0.0726348i
\(426\) 7.38764 + 0.345650i 0.357933 + 0.0167468i
\(427\) 5.91523i 0.286258i
\(428\) 1.67689 17.8810i 0.0810555 0.864311i
\(429\) 10.6150 10.6150i 0.512497 0.512497i
\(430\) 12.4367 + 6.85905i 0.599753 + 0.330773i
\(431\) 27.2692i 1.31351i −0.754103 0.656756i \(-0.771928\pi\)
0.754103 0.656756i \(-0.228072\pi\)
\(432\) −2.12442 + 11.2269i −0.102211 + 0.540156i
\(433\) 19.1435 19.1435i 0.919978 0.919978i −0.0770497 0.997027i \(-0.524550\pi\)
0.997027 + 0.0770497i \(0.0245500\pi\)
\(434\) 1.71244 + 1.88055i 0.0821999 + 0.0902694i
\(435\) 3.34036 1.13724i 0.160158 0.0545265i
\(436\) 23.7579 19.6839i 1.13780 0.942688i
\(437\) −2.88474 −0.137996
\(438\) 1.81081 + 1.98857i 0.0865238 + 0.0950177i
\(439\) 30.1995i 1.44134i −0.693276 0.720672i \(-0.743833\pi\)
0.693276 0.720672i \(-0.256167\pi\)
\(440\) −7.01007 36.8703i −0.334192 1.75772i
\(441\) 5.97118i 0.284342i
\(442\) −1.60899 + 1.46515i −0.0765316 + 0.0696903i
\(443\) 27.7051 1.31631 0.658153 0.752884i \(-0.271338\pi\)
0.658153 + 0.752884i \(0.271338\pi\)
\(444\) −0.475292 + 5.06814i −0.0225564 + 0.240523i
\(445\) −4.19655 + 8.52903i −0.198935 + 0.404315i
\(446\) −24.7642 + 22.5505i −1.17262 + 1.06780i
\(447\) 4.75220 4.75220i 0.224772 0.224772i
\(448\) −8.50557 15.3905i −0.401851 0.727131i
\(449\) 9.78315i 0.461695i 0.972990 + 0.230848i \(0.0741499\pi\)
−0.972990 + 0.230848i \(0.925850\pi\)
\(450\) 15.9638 11.1465i 0.752543 0.525450i
\(451\) −14.0454 + 14.0454i −0.661371 + 0.661371i
\(452\) 9.35853 7.75373i 0.440188 0.364705i
\(453\) 4.80992i 0.225990i
\(454\) −0.910842 + 19.4676i −0.0427479 + 0.913660i
\(455\) −23.7071 + 8.07118i −1.11140 + 0.378383i
\(456\) −1.00878 1.34046i −0.0472404 0.0627729i
\(457\) 0.557108 0.557108i 0.0260604 0.0260604i −0.693957 0.720017i \(-0.744134\pi\)
0.720017 + 0.693957i \(0.244134\pi\)
\(458\) −11.6966 + 10.6510i −0.546546 + 0.497689i
\(459\) −0.609992 + 0.609992i −0.0284720 + 0.0284720i
\(460\) −2.51064 10.5029i −0.117059 0.489701i
\(461\) −12.5791 12.5791i −0.585865 0.585865i 0.350644 0.936509i \(-0.385963\pi\)
−0.936509 + 0.350644i \(0.885963\pi\)
\(462\) −0.428030 + 9.14836i −0.0199137 + 0.425620i
\(463\) 3.29549 + 3.29549i 0.153154 + 0.153154i 0.779525 0.626371i \(-0.215460\pi\)
−0.626371 + 0.779525i \(0.715460\pi\)
\(464\) −10.5047 + 7.16177i −0.487669 + 0.332477i
\(465\) −0.401026 + 0.815042i −0.0185971 + 0.0377967i
\(466\) −2.48427 + 2.26220i −0.115082 + 0.104794i
\(467\) 10.1995 0.471979 0.235989 0.971756i \(-0.424167\pi\)
0.235989 + 0.971756i \(0.424167\pi\)
\(468\) −27.9372 2.61997i −1.29140 0.121108i
\(469\) 17.1311 + 17.1311i 0.791042 + 0.791042i
\(470\) 18.4461 5.33208i 0.850856 0.245951i
\(471\) 4.95314 0.228229
\(472\) −18.4002 24.4501i −0.846936 1.12541i
\(473\) 18.8459 + 18.8459i 0.866534 + 0.866534i
\(474\) −5.83549 0.273028i −0.268033 0.0125406i
\(475\) −0.769051 + 5.92360i −0.0352865 + 0.271793i
\(476\) 0.123959 1.32180i 0.00568164 0.0605845i
\(477\) 2.77149i 0.126898i
\(478\) 0.777843 16.6250i 0.0355777 0.760409i
\(479\) −5.65795 −0.258518 −0.129259 0.991611i \(-0.541260\pi\)
−0.129259 + 0.991611i \(0.541260\pi\)
\(480\) 4.00247 4.83944i 0.182687 0.220889i
\(481\) −26.1205 −1.19099
\(482\) 0.877285 18.7504i 0.0399592 0.854057i
\(483\) 2.63516i 0.119904i
\(484\) 4.52175 48.2164i 0.205534 2.19165i
\(485\) 21.4338 7.29722i 0.973257 0.331350i
\(486\) −16.9050 0.790944i −0.766826 0.0358780i
\(487\) −19.7470 19.7470i −0.894823 0.894823i 0.100149 0.994972i \(-0.468068\pi\)
−0.994972 + 0.100149i \(0.968068\pi\)
\(488\) −6.08184 + 4.57695i −0.275312 + 0.207189i
\(489\) 4.70802 0.212904
\(490\) −3.31181 + 6.00494i −0.149612 + 0.271275i
\(491\) −4.21405 4.21405i −0.190177 0.190177i 0.605595 0.795773i \(-0.292935\pi\)
−0.795773 + 0.605595i \(0.792935\pi\)
\(492\) −3.30923 0.310341i −0.149192 0.0139913i
\(493\) −0.959871 −0.0432304
\(494\) 6.36500 5.79602i 0.286375 0.260775i
\(495\) 34.5870 11.7753i 1.55457 0.529261i
\(496\) 0.608504 3.21577i 0.0273226 0.144392i
\(497\) −16.3712 16.3712i −0.734348 0.734348i
\(498\) 0.300996 6.43324i 0.0134879 0.288280i
\(499\) 16.8862 + 16.8862i 0.755928 + 0.755928i 0.975579 0.219650i \(-0.0704917\pi\)
−0.219650 + 0.975579i \(0.570492\pi\)
\(500\) −22.2363 + 2.35541i −0.994437 + 0.105337i
\(501\) 4.68450 4.68450i 0.209288 0.209288i
\(502\) −15.3488 + 13.9768i −0.685053 + 0.623814i
\(503\) −20.3714 + 20.3714i −0.908317 + 0.908317i −0.996136 0.0878190i \(-0.972010\pi\)
0.0878190 + 0.996136i \(0.472010\pi\)
\(504\) 13.6780 10.2935i 0.609268 0.458511i
\(505\) 8.54923 + 25.1112i 0.380436 + 1.11744i
\(506\) 0.947086 20.2423i 0.0421031 0.899878i
\(507\) 6.43550i 0.285811i
\(508\) 1.65460 1.37087i 0.0734110 0.0608225i
\(509\) 20.6309 20.6309i 0.914448 0.914448i −0.0821701 0.996618i \(-0.526185\pi\)
0.996618 + 0.0821701i \(0.0261851\pi\)
\(510\) 0.455492 0.131666i 0.0201695 0.00583026i
\(511\) 8.41952i 0.372458i
\(512\) −9.24271 + 20.6536i −0.408474 + 0.912770i
\(513\) 2.41307 2.41307i 0.106540 0.106540i
\(514\) −30.2190 + 27.5177i −1.33290 + 1.21375i
\(515\) −5.26376 15.4610i −0.231949 0.681293i
\(516\) −0.416411 + 4.44028i −0.0183315 + 0.195472i
\(517\) 36.0320 1.58469
\(518\) 11.7824 10.7291i 0.517688 0.471411i
\(519\) 4.44215i 0.194989i
\(520\) 26.6420 + 18.1297i 1.16833 + 0.795039i
\(521\) 19.0433i 0.834300i 0.908838 + 0.417150i \(0.136971\pi\)
−0.908838 + 0.417150i \(0.863029\pi\)
\(522\) −8.33325 9.15131i −0.364736 0.400542i
\(523\) −19.1782 −0.838603 −0.419301 0.907847i \(-0.637725\pi\)
−0.419301 + 0.907847i \(0.637725\pi\)
\(524\) −16.5527 + 13.7143i −0.723109 + 0.599110i
\(525\) 5.41111 + 0.702515i 0.236160 + 0.0306603i
\(526\) 18.9343 + 20.7931i 0.825577 + 0.906622i
\(527\) 0.174722 0.174722i 0.00761101 0.00761101i
\(528\) 9.73723 6.63853i 0.423759 0.288905i
\(529\) 17.1693i 0.746490i
\(530\) 1.53716 2.78716i 0.0667700 0.121066i
\(531\) 21.0644 21.0644i 0.914118 0.914118i
\(532\) −0.490369 + 5.22891i −0.0212602 + 0.226702i
\(533\) 17.0553i 0.738749i
\(534\) −2.98154 0.139499i −0.129024 0.00603671i
\(535\) −18.0165 8.86469i −0.778922 0.383254i
\(536\) 4.35831 30.8690i 0.188251 1.33334i
\(537\) −1.50153 + 1.50153i −0.0647957 + 0.0647957i
\(538\) 8.90681 + 9.78118i 0.384000 + 0.421697i
\(539\) −9.09950 + 9.09950i −0.391943 + 0.391943i
\(540\) 10.8858 + 6.68551i 0.468450 + 0.287699i
\(541\) 14.5231 + 14.5231i 0.624398 + 0.624398i 0.946653 0.322255i \(-0.104441\pi\)
−0.322255 + 0.946653i \(0.604441\pi\)
\(542\) 15.0053 + 0.702061i 0.644532 + 0.0301561i
\(543\) −0.768787 0.768787i −0.0329918 0.0329918i
\(544\) −1.45494 + 0.895300i −0.0623801 + 0.0383857i
\(545\) −11.1172 32.6539i −0.476207 1.39874i
\(546\) −5.29456 5.81432i −0.226586 0.248830i
\(547\) −9.97058 −0.426311 −0.213156 0.977018i \(-0.568374\pi\)
−0.213156 + 0.977018i \(0.568374\pi\)
\(548\) 27.8325 23.0598i 1.18895 0.985067i
\(549\) −5.23967 5.23967i −0.223624 0.223624i
\(550\) −41.3135 7.34122i −1.76161 0.313030i
\(551\) 3.79716 0.161765
\(552\) 2.70938 2.03897i 0.115319 0.0867845i
\(553\) 12.9316 + 12.9316i 0.549906 + 0.549906i
\(554\) 0.547607 11.7041i 0.0232656 0.497260i
\(555\) 5.10655 + 2.51258i 0.216761 + 0.106653i
\(556\) 16.8627 13.9711i 0.715138 0.592506i
\(557\) 11.4424i 0.484831i 0.970173 + 0.242416i \(0.0779397\pi\)
−0.970173 + 0.242416i \(0.922060\pi\)
\(558\) 3.18265 + 0.148909i 0.134732 + 0.00630381i
\(559\) −22.8846 −0.967915
\(560\) −19.4645 + 2.76545i −0.822524 + 0.116861i
\(561\) 0.889743 0.0375650
\(562\) 29.6909 + 1.38916i 1.25243 + 0.0585984i
\(563\) 47.0585i 1.98328i −0.129034 0.991640i \(-0.541188\pi\)
0.129034 0.991640i \(-0.458812\pi\)
\(564\) 3.84668 + 4.64283i 0.161975 + 0.195499i
\(565\) −4.37919 12.8628i −0.184234 0.541141i
\(566\) −0.956715 + 20.4481i −0.0402137 + 0.859496i
\(567\) 10.6346 + 10.6346i 0.446612 + 0.446612i
\(568\) −4.16498 + 29.4996i −0.174759 + 1.23778i
\(569\) −41.4684 −1.73845 −0.869224 0.494419i \(-0.835381\pi\)
−0.869224 + 0.494419i \(0.835381\pi\)
\(570\) −1.80189 + 0.520858i −0.0754727 + 0.0218163i
\(571\) 16.1745 + 16.1745i 0.676881 + 0.676881i 0.959293 0.282412i \(-0.0911347\pi\)
−0.282412 + 0.959293i \(0.591135\pi\)
\(572\) 38.5811 + 46.5662i 1.61316 + 1.94703i
\(573\) −9.97963 −0.416905
\(574\) 7.00556 + 7.69329i 0.292407 + 0.321112i
\(575\) −11.9730 1.55443i −0.499307 0.0648242i
\(576\) −21.1670 6.09859i −0.881957 0.254108i
\(577\) 20.0316 + 20.0316i 0.833926 + 0.833926i 0.988051 0.154125i \(-0.0492560\pi\)
−0.154125 + 0.988051i \(0.549256\pi\)
\(578\) 23.8865 + 1.11759i 0.993548 + 0.0464857i
\(579\) 1.89898 + 1.89898i 0.0789189 + 0.0789189i
\(580\) 3.30474 + 13.8249i 0.137222 + 0.574049i
\(581\) −14.2562 + 14.2562i −0.591447 + 0.591447i
\(582\) 4.78686 + 5.25678i 0.198422 + 0.217900i
\(583\) 4.22349 4.22349i 0.174919 0.174919i
\(584\) −8.65667 + 6.51467i −0.358215 + 0.269579i
\(585\) −13.8502 + 28.1490i −0.572634 + 1.16382i
\(586\) −16.8341 0.787627i −0.695411 0.0325366i
\(587\) 29.1190i 1.20187i 0.799298 + 0.600935i \(0.205205\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(588\) −2.14394 0.201059i −0.0884145 0.00829155i
\(589\) −0.691185 + 0.691185i −0.0284798 + 0.0284798i
\(590\) −32.8665 + 9.50047i −1.35309 + 0.391128i
\(591\) 0.554866i 0.0228242i
\(592\) −20.1480 3.81251i −0.828079 0.156693i
\(593\) −10.3431 + 10.3431i −0.424740 + 0.424740i −0.886832 0.462092i \(-0.847099\pi\)
0.462092 + 0.886832i \(0.347099\pi\)
\(594\) 16.1403 + 17.7248i 0.662246 + 0.727258i
\(595\) −1.33181 0.655294i −0.0545991 0.0268644i
\(596\) 17.2722 + 20.8471i 0.707499 + 0.853930i
\(597\) −12.7016 −0.519843
\(598\) 11.7151 + 12.8651i 0.479066 + 0.526095i
\(599\) 2.59479i 0.106020i −0.998594 0.0530101i \(-0.983118\pi\)
0.998594 0.0530101i \(-0.0168816\pi\)
\(600\) −3.46458 6.10710i −0.141441 0.249321i
\(601\) 14.4092i 0.587765i −0.955842 0.293882i \(-0.905053\pi\)
0.955842 0.293882i \(-0.0949474\pi\)
\(602\) 10.3227 9.39996i 0.420723 0.383114i
\(603\) 30.3493 1.23592
\(604\) 19.2912 + 1.80913i 0.784946 + 0.0736126i
\(605\) −48.5818 23.9038i −1.97513 0.971826i
\(606\) −6.15870 + 5.60816i −0.250180 + 0.227816i
\(607\) 11.8502 11.8502i 0.480985 0.480985i −0.424461 0.905446i \(-0.639536\pi\)
0.905446 + 0.424461i \(0.139536\pi\)
\(608\) 5.75562 3.54173i 0.233421 0.143636i
\(609\) 3.46864i 0.140557i
\(610\) 2.36320 + 8.17538i 0.0956831 + 0.331012i
\(611\) −21.8769 + 21.8769i −0.885045 + 0.885045i
\(612\) −1.06104 1.28064i −0.0428899 0.0517669i
\(613\) 16.8256i 0.679579i −0.940502 0.339789i \(-0.889644\pi\)
0.940502 0.339789i \(-0.110356\pi\)
\(614\) 1.68220 35.9540i 0.0678881 1.45099i
\(615\) −1.64059 + 3.33431i −0.0661548 + 0.134453i
\(616\) −36.5304 5.15763i −1.47185 0.207807i
\(617\) 22.4849 22.4849i 0.905209 0.905209i −0.0906720 0.995881i \(-0.528902\pi\)
0.995881 + 0.0906720i \(0.0289015\pi\)
\(618\) 3.79191 3.45295i 0.152533 0.138898i
\(619\) 14.1269 14.1269i 0.567809 0.567809i −0.363705 0.931514i \(-0.618488\pi\)
0.931514 + 0.363705i \(0.118488\pi\)
\(620\) −3.11805 1.91495i −0.125224 0.0769064i
\(621\) 4.87738 + 4.87738i 0.195723 + 0.195723i
\(622\) −1.41956 + 30.3406i −0.0569193 + 1.21655i
\(623\) 6.60715 + 6.60715i 0.264710 + 0.264710i
\(624\) −1.88138 + 9.94257i −0.0753156 + 0.398021i
\(625\) −6.38382 + 24.1712i −0.255353 + 0.966848i
\(626\) 27.7956 25.3109i 1.11094 1.01163i
\(627\) −3.51974 −0.140565
\(628\) −1.86300 + 19.8656i −0.0743419 + 0.792723i
\(629\) −1.09470 1.09470i −0.0436486 0.0436486i
\(630\) −5.31482 18.3864i −0.211747 0.732532i
\(631\) −33.9235 −1.35047 −0.675236 0.737601i \(-0.735958\pi\)
−0.675236 + 0.737601i \(0.735958\pi\)
\(632\) 3.28991 23.3017i 0.130866 0.926892i
\(633\) 0.204361 + 0.204361i 0.00812261 + 0.00812261i
\(634\) −22.9602 1.07425i −0.911867 0.0426640i
\(635\) −0.774246 2.27415i −0.0307250 0.0902470i
\(636\) 0.995097 + 0.0933206i 0.0394582 + 0.00370040i
\(637\) 11.0496i 0.437799i
\(638\) −1.24664 + 26.6448i −0.0493551 + 1.05488i
\(639\) −29.0030 −1.14734
\(640\) 17.9041 + 17.8729i 0.707723 + 0.706490i
\(641\) 18.8495 0.744509 0.372254 0.928131i \(-0.378585\pi\)
0.372254 + 0.928131i \(0.378585\pi\)
\(642\) 0.294674 6.29813i 0.0116299 0.248567i
\(643\) 16.4916i 0.650364i 0.945652 + 0.325182i \(0.105426\pi\)
−0.945652 + 0.325182i \(0.894574\pi\)
\(644\) −10.5688 0.991150i −0.416471 0.0390568i
\(645\) 4.47393 + 2.20131i 0.176161 + 0.0866766i
\(646\) 0.509664 + 0.0238459i 0.0200525 + 0.000938206i
\(647\) −0.316870 0.316870i −0.0124574 0.0124574i 0.700851 0.713308i \(-0.252804\pi\)
−0.713308 + 0.700851i \(0.752804\pi\)
\(648\) 2.70555 19.1628i 0.106284 0.752786i
\(649\) −64.2002 −2.52008
\(650\) 29.5408 20.6263i 1.15869 0.809031i
\(651\) 0.631386 + 0.631386i 0.0247460 + 0.0247460i
\(652\) −1.77081 + 18.8825i −0.0693502 + 0.739495i
\(653\) −17.0751 −0.668200 −0.334100 0.942538i \(-0.608432\pi\)
−0.334100 + 0.942538i \(0.608432\pi\)
\(654\) 8.00859 7.29268i 0.313161 0.285167i
\(655\) 7.74560 + 22.7508i 0.302646 + 0.888946i
\(656\) 2.48937 13.1556i 0.0971937 0.513641i
\(657\) −7.45796 7.45796i −0.290963 0.290963i
\(658\) 0.882144 18.8542i 0.0343895 0.735014i
\(659\) 7.42245 + 7.42245i 0.289138 + 0.289138i 0.836739 0.547601i \(-0.184459\pi\)
−0.547601 + 0.836739i \(0.684459\pi\)
\(660\) −3.06329 12.8149i −0.119239 0.498818i
\(661\) 31.7614 31.7614i 1.23538 1.23538i 0.273507 0.961870i \(-0.411816\pi\)
0.961870 0.273507i \(-0.0881837\pi\)
\(662\) 12.8883 11.7362i 0.500917 0.456139i
\(663\) −0.540209 + 0.540209i −0.0209800 + 0.0209800i
\(664\) 25.6886 + 3.62691i 0.996911 + 0.140751i
\(665\) 5.26854 + 2.59229i 0.204305 + 0.100525i
\(666\) 0.932970 19.9406i 0.0361519 0.772681i
\(667\) 7.67495i 0.297175i
\(668\) 17.0262 + 20.5501i 0.658762 + 0.795107i
\(669\) −8.31446 + 8.31446i −0.321456 + 0.321456i
\(670\) −30.5208 16.8327i −1.17912 0.650304i
\(671\) 15.9695i 0.616496i
\(672\) −3.23531 5.25766i −0.124805 0.202819i
\(673\) 4.14672 4.14672i 0.159844 0.159844i −0.622653 0.782498i \(-0.713945\pi\)
0.782498 + 0.622653i \(0.213945\pi\)
\(674\) −0.0601670 + 0.0547885i −0.00231755 + 0.00211037i
\(675\) 11.3156 8.71507i 0.435538 0.335443i
\(676\) −25.8109 2.42056i −0.992727 0.0930983i
\(677\) −25.2618 −0.970890 −0.485445 0.874267i \(-0.661342\pi\)
−0.485445 + 0.874267i \(0.661342\pi\)
\(678\) 3.15468 2.87268i 0.121155 0.110325i
\(679\) 22.2569i 0.854143i
\(680\) 0.356750 + 1.87637i 0.0136807 + 0.0719554i
\(681\) 6.84196i 0.262184i
\(682\) −4.62313 5.07698i −0.177029 0.194408i
\(683\) −8.20306 −0.313881 −0.156941 0.987608i \(-0.550163\pi\)
−0.156941 + 0.987608i \(0.550163\pi\)
\(684\) 4.19737 + 5.06610i 0.160490 + 0.193707i
\(685\) −13.0238 38.2542i −0.497615 1.46162i
\(686\) 19.1891 + 21.0728i 0.732643 + 0.804565i
\(687\) −3.92707 + 3.92707i −0.149827 + 0.149827i
\(688\) −17.6520 3.34020i −0.672977 0.127344i
\(689\) 5.12859i 0.195384i
\(690\) −1.05277 3.64203i −0.0400784 0.138650i
\(691\) −7.89158 + 7.89158i −0.300210 + 0.300210i −0.841096 0.540886i \(-0.818089\pi\)
0.540886 + 0.841096i \(0.318089\pi\)
\(692\) −17.8162 1.67081i −0.677268 0.0635145i
\(693\) 35.9153i 1.36431i
\(694\) 50.4455 + 2.36022i 1.91489 + 0.0895929i
\(695\) −7.89066 23.1768i −0.299310 0.879147i
\(696\) −3.56635 + 2.68389i −0.135182 + 0.101733i
\(697\) 0.714783 0.714783i 0.0270744 0.0270744i
\(698\) 0.369570 + 0.405850i 0.0139884 + 0.0153616i
\(699\) −0.834083 + 0.834083i −0.0315479 + 0.0315479i
\(700\) −4.85283 + 21.4381i −0.183420 + 0.810284i
\(701\) 1.50228 + 1.50228i 0.0567405 + 0.0567405i 0.734908 0.678167i \(-0.237225\pi\)
−0.678167 + 0.734908i \(0.737225\pi\)
\(702\) −20.5613 0.962012i −0.776036 0.0363088i
\(703\) 4.33054 + 4.33054i 0.163329 + 0.163329i
\(704\) 22.9627 + 41.5501i 0.865441 + 1.56598i
\(705\) 6.38131 2.17255i 0.240334 0.0818228i
\(706\) −21.0354 23.1004i −0.791679 0.869397i
\(707\) 26.0756 0.980675
\(708\) −6.85385 8.27239i −0.257583 0.310896i
\(709\) 36.0738 + 36.0738i 1.35478 + 1.35478i 0.880228 + 0.474551i \(0.157390\pi\)
0.474551 + 0.880228i \(0.342610\pi\)
\(710\) 29.1669 + 16.0860i 1.09462 + 0.603697i
\(711\) 22.9094 0.859170
\(712\) 1.68092 11.9056i 0.0629952 0.446181i
\(713\) −1.39704 1.39704i −0.0523197 0.0523197i
\(714\) 0.0217829 0.465570i 0.000815203 0.0174235i
\(715\) 64.0026 21.7900i 2.39356 0.814899i
\(716\) −5.45741 6.58694i −0.203953 0.246165i
\(717\) 5.84291i 0.218207i
\(718\) 1.08604 + 0.0508132i 0.0405307 + 0.00189633i
\(719\) 35.0340 1.30655 0.653274 0.757121i \(-0.273395\pi\)
0.653274 + 0.757121i \(0.273395\pi\)
\(720\) −14.7919 + 19.6911i −0.551262 + 0.733845i
\(721\) −16.0548 −0.597911
\(722\) 24.8245 + 1.16148i 0.923873 + 0.0432258i
\(723\) 6.58989i 0.245081i
\(724\) 3.37253 2.79421i 0.125339 0.103846i
\(725\) 15.7599 + 2.04609i 0.585310 + 0.0759898i
\(726\) 0.794593 16.9830i 0.0294901 0.630298i
\(727\) 25.4241 + 25.4241i 0.942928 + 0.942928i 0.998457 0.0555295i \(-0.0176847\pi\)
−0.0555295 + 0.998457i \(0.517685\pi\)
\(728\) 25.3109 19.0480i 0.938085 0.705966i
\(729\) 14.5855 0.540203
\(730\) 3.36369 + 11.6365i 0.124496 + 0.430688i
\(731\) −0.959085 0.959085i −0.0354731 0.0354731i
\(732\) −2.05772 + 1.70486i −0.0760555 + 0.0630135i
\(733\) −7.37554 −0.272422 −0.136211 0.990680i \(-0.543492\pi\)
−0.136211 + 0.990680i \(0.543492\pi\)
\(734\) −18.5624 20.3847i −0.685151 0.752411i
\(735\) −1.06288 + 2.16019i −0.0392049 + 0.0796797i
\(736\) 7.15865 + 11.6334i 0.263871 + 0.428814i
\(737\) −46.2494 46.2494i −1.70362 1.70362i
\(738\) 13.0202 + 0.609181i 0.479278 + 0.0224243i
\(739\) −5.55025 5.55025i −0.204169 0.204169i 0.597614 0.801784i \(-0.296115\pi\)
−0.801784 + 0.597614i \(0.796115\pi\)
\(740\) −11.9979 + 19.5358i −0.441052 + 0.718151i
\(741\) 2.13702 2.13702i 0.0785053 0.0785053i
\(742\) −2.10659 2.31339i −0.0773355 0.0849274i
\(743\) −6.78835 + 6.78835i −0.249040 + 0.249040i −0.820577 0.571536i \(-0.806348\pi\)
0.571536 + 0.820577i \(0.306348\pi\)
\(744\) 0.160630 1.13771i 0.00588899 0.0417104i
\(745\) 28.6532 9.75510i 1.04977 0.357399i
\(746\) −30.2315 1.41446i −1.10685 0.0517869i
\(747\) 25.2561i 0.924073i
\(748\) −0.334655 + 3.56849i −0.0122362 + 0.130477i
\(749\) −13.9568 + 13.9568i −0.509970 + 0.509970i
\(750\) −7.75930 + 1.19086i −0.283330 + 0.0434839i
\(751\) 3.93385i 0.143548i −0.997421 0.0717742i \(-0.977134\pi\)
0.997421 0.0717742i \(-0.0228661\pi\)
\(752\) −20.0679 + 13.6816i −0.731799 + 0.498917i
\(753\) −5.15330 + 5.15330i −0.187797 + 0.187797i
\(754\) −15.4205 16.9343i −0.561582 0.616711i
\(755\) 9.56379 19.4374i 0.348062 0.707398i
\(756\) 9.66989 8.01170i 0.351690 0.291383i
\(757\) −21.8327 −0.793525 −0.396762 0.917921i \(-0.629866\pi\)
−0.396762 + 0.917921i \(0.629866\pi\)
\(758\) −15.3405 16.8464i −0.557191 0.611890i
\(759\) 7.11421i 0.258230i
\(760\) −1.41127 7.42274i −0.0511922 0.269251i
\(761\) 4.27291i 0.154893i 0.996997 + 0.0774464i \(0.0246767\pi\)
−0.996997 + 0.0774464i \(0.975323\pi\)
\(762\) 0.557752 0.507893i 0.0202052 0.0183990i
\(763\) −33.9080 −1.22755
\(764\) 3.75359 40.0253i 0.135800 1.44807i
\(765\) −1.76017 + 0.599258i −0.0636391 + 0.0216662i
\(766\) 6.54552 5.96040i 0.236499 0.215358i
\(767\) 38.9793 38.9793i 1.40746 1.40746i
\(768\) −2.90241 + 7.39459i −0.104732 + 0.266829i
\(769\) 26.1800i 0.944074i 0.881579 + 0.472037i \(0.156481\pi\)
−0.881579 + 0.472037i \(0.843519\pi\)
\(770\) −19.9198 + 36.1184i −0.717860 + 1.30162i
\(771\) −10.1459 + 10.1459i −0.365395 + 0.365395i
\(772\) −8.33049 + 6.90198i −0.299821 + 0.248408i
\(773\) 15.0077i 0.539791i 0.962890 + 0.269895