Properties

Label 80.2.j.b.67.1
Level $80$
Weight $2$
Character 80.67
Analytic conductor $0.639$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 80.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.638803216170\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Defining polynomial: \(x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 67.1
Root \(0.235136 - 1.39453i\) of defining polynomial
Character \(\chi\) \(=\) 80.67
Dual form 80.2.j.b.43.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.34716 + 0.430311i) q^{2} +2.96561i q^{3} +(1.62967 - 1.15939i) q^{4} +(-2.22902 + 0.177336i) q^{5} +(-1.27613 - 3.99515i) q^{6} +(-0.115101 - 0.115101i) q^{7} +(-1.69652 + 2.26315i) q^{8} -5.79486 q^{9} +O(q^{10})\) \(q+(-1.34716 + 0.430311i) q^{2} +2.96561i q^{3} +(1.62967 - 1.15939i) q^{4} +(-2.22902 + 0.177336i) q^{5} +(-1.27613 - 3.99515i) q^{6} +(-0.115101 - 0.115101i) q^{7} +(-1.69652 + 2.26315i) q^{8} -5.79486 q^{9} +(2.92654 - 1.19807i) q^{10} +(2.95966 + 2.95966i) q^{11} +(3.43831 + 4.83296i) q^{12} +1.55822 q^{13} +(0.204588 + 0.105530i) q^{14} +(-0.525911 - 6.61042i) q^{15} +(1.31162 - 3.77884i) q^{16} +(0.299668 + 0.299668i) q^{17} +(7.80658 - 2.49359i) q^{18} +(2.26261 + 2.26261i) q^{19} +(-3.42696 + 2.87331i) q^{20} +(0.341344 - 0.341344i) q^{21} +(-5.26071 - 2.71356i) q^{22} +(4.14573 - 4.14573i) q^{23} +(-6.71162 - 5.03121i) q^{24} +(4.93710 - 0.790575i) q^{25} +(-2.09917 + 0.670518i) q^{26} -8.28846i q^{27} +(-0.321023 - 0.0541288i) q^{28} +(-0.289656 + 0.289656i) q^{29} +(3.55302 + 8.67897i) q^{30} +4.18508i q^{31} +(-0.140879 + 5.65510i) q^{32} +(-8.77721 + 8.77721i) q^{33} +(-0.532650 - 0.274749i) q^{34} +(0.276974 + 0.236151i) q^{35} +(-9.44368 + 6.71851i) q^{36} +1.63643 q^{37} +(-4.02172 - 2.07447i) q^{38} +4.62107i q^{39} +(3.38024 - 5.34546i) q^{40} -7.61648i q^{41} +(-0.312960 + 0.606729i) q^{42} -6.72651 q^{43} +(8.25467 + 1.39185i) q^{44} +(12.9169 - 1.02764i) q^{45} +(-3.80100 + 7.36890i) q^{46} +(-4.38366 + 4.38366i) q^{47} +(11.2066 + 3.88975i) q^{48} -6.97350i q^{49} +(-6.31086 + 3.18952i) q^{50} +(-0.888698 + 0.888698i) q^{51} +(2.53938 - 1.80659i) q^{52} -11.4324i q^{53} +(3.56661 + 11.1659i) q^{54} +(-7.12202 - 6.07231i) q^{55} +(0.455760 - 0.0652196i) q^{56} +(-6.71003 + 6.71003i) q^{57} +(0.265570 - 0.514854i) q^{58} +(-1.63497 + 1.63497i) q^{59} +(-8.52113 - 10.1630i) q^{60} +(-1.23034 - 1.23034i) q^{61} +(-1.80089 - 5.63796i) q^{62} +(0.666993 + 0.666993i) q^{63} +(-2.24366 - 7.67893i) q^{64} +(-3.47331 + 0.276329i) q^{65} +(8.04736 - 15.6012i) q^{66} +2.49337 q^{67} +(0.835791 + 0.140926i) q^{68} +(12.2946 + 12.2946i) q^{69} +(-0.474746 - 0.198948i) q^{70} +8.00096 q^{71} +(9.83107 - 13.1146i) q^{72} +(1.12102 + 1.12102i) q^{73} +(-2.20453 + 0.704173i) q^{74} +(2.34454 + 14.6415i) q^{75} +(6.31056 + 1.06405i) q^{76} -0.681319i q^{77} +(-1.98850 - 6.22531i) q^{78} -3.62218 q^{79} +(-2.25350 + 8.65573i) q^{80} +7.19579 q^{81} +(3.27745 + 10.2606i) q^{82} -1.62629i q^{83} +(0.160525 - 0.952029i) q^{84} +(-0.721109 - 0.614825i) q^{85} +(9.06167 - 2.89449i) q^{86} +(-0.859007 - 0.859007i) q^{87} +(-11.7193 + 1.67703i) q^{88} +15.7149 q^{89} +(-16.9589 + 6.94266i) q^{90} +(-0.179352 - 0.179352i) q^{91} +(1.94962 - 11.5627i) q^{92} -12.4113 q^{93} +(4.01915 - 7.79182i) q^{94} +(-5.44467 - 4.64218i) q^{95} +(-16.7708 - 0.417792i) q^{96} +(9.69217 + 9.69217i) q^{97} +(3.00077 + 9.39441i) q^{98} +(-17.1508 - 17.1508i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} + O(q^{10}) \) \( 18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 12 q^{10} - 2 q^{11} + 4 q^{12} + 12 q^{14} + 20 q^{15} - 6 q^{17} + 16 q^{18} + 2 q^{19} - 4 q^{20} - 16 q^{21} + 4 q^{22} - 2 q^{23} + 4 q^{24} + 6 q^{25} - 16 q^{26} - 4 q^{28} - 14 q^{29} + 20 q^{30} - 4 q^{32} - 8 q^{33} - 28 q^{34} - 6 q^{35} - 4 q^{36} + 8 q^{37} + 16 q^{38} + 20 q^{40} + 28 q^{42} - 44 q^{43} + 44 q^{44} - 4 q^{45} + 12 q^{46} - 38 q^{47} + 60 q^{48} + 20 q^{50} + 8 q^{51} - 40 q^{52} - 4 q^{54} - 6 q^{55} + 20 q^{56} + 24 q^{57} - 20 q^{58} - 10 q^{59} - 68 q^{60} + 14 q^{61} + 6 q^{63} - 16 q^{64} + 4 q^{66} + 12 q^{67} + 36 q^{68} + 32 q^{69} - 36 q^{70} + 24 q^{71} - 36 q^{72} + 14 q^{73} + 48 q^{74} + 64 q^{75} - 16 q^{76} - 84 q^{78} + 16 q^{79} - 20 q^{80} + 2 q^{81} - 28 q^{82} - 24 q^{84} - 10 q^{85} - 36 q^{86} + 24 q^{87} - 96 q^{88} - 12 q^{89} - 64 q^{90} + 52 q^{92} + 16 q^{93} + 28 q^{94} - 34 q^{95} - 40 q^{96} + 18 q^{97} + 32 q^{98} - 22 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/80\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(21\) \(31\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34716 + 0.430311i −0.952584 + 0.304276i
\(3\) 2.96561i 1.71220i 0.516813 + 0.856099i \(0.327118\pi\)
−0.516813 + 0.856099i \(0.672882\pi\)
\(4\) 1.62967 1.15939i 0.814833 0.579696i
\(5\) −2.22902 + 0.177336i −0.996850 + 0.0793073i
\(6\) −1.27613 3.99515i −0.520980 1.63101i
\(7\) −0.115101 0.115101i −0.0435040 0.0435040i 0.685020 0.728524i \(-0.259793\pi\)
−0.728524 + 0.685020i \(0.759793\pi\)
\(8\) −1.69652 + 2.26315i −0.599809 + 0.800143i
\(9\) −5.79486 −1.93162
\(10\) 2.92654 1.19807i 0.925452 0.378864i
\(11\) 2.95966 + 2.95966i 0.892372 + 0.892372i 0.994746 0.102374i \(-0.0326439\pi\)
−0.102374 + 0.994746i \(0.532644\pi\)
\(12\) 3.43831 + 4.83296i 0.992554 + 1.39515i
\(13\) 1.55822 0.432172 0.216086 0.976374i \(-0.430671\pi\)
0.216086 + 0.976374i \(0.430671\pi\)
\(14\) 0.204588 + 0.105530i 0.0546784 + 0.0282040i
\(15\) −0.525911 6.61042i −0.135790 1.70680i
\(16\) 1.31162 3.77884i 0.327905 0.944711i
\(17\) 0.299668 + 0.299668i 0.0726801 + 0.0726801i 0.742512 0.669832i \(-0.233634\pi\)
−0.669832 + 0.742512i \(0.733634\pi\)
\(18\) 7.80658 2.49359i 1.84003 0.587745i
\(19\) 2.26261 + 2.26261i 0.519079 + 0.519079i 0.917293 0.398214i \(-0.130370\pi\)
−0.398214 + 0.917293i \(0.630370\pi\)
\(20\) −3.42696 + 2.87331i −0.766292 + 0.642493i
\(21\) 0.341344 0.341344i 0.0744874 0.0744874i
\(22\) −5.26071 2.71356i −1.12159 0.578532i
\(23\) 4.14573 4.14573i 0.864444 0.864444i −0.127406 0.991851i \(-0.540665\pi\)
0.991851 + 0.127406i \(0.0406652\pi\)
\(24\) −6.71162 5.03121i −1.37000 1.02699i
\(25\) 4.93710 0.790575i 0.987421 0.158115i
\(26\) −2.09917 + 0.670518i −0.411680 + 0.131499i
\(27\) 8.28846i 1.59511i
\(28\) −0.321023 0.0541288i −0.0606676 0.0102294i
\(29\) −0.289656 + 0.289656i −0.0537878 + 0.0537878i −0.733489 0.679701i \(-0.762109\pi\)
0.679701 + 0.733489i \(0.262109\pi\)
\(30\) 3.55302 + 8.67897i 0.648690 + 1.58456i
\(31\) 4.18508i 0.751663i 0.926688 + 0.375832i \(0.122643\pi\)
−0.926688 + 0.375832i \(0.877357\pi\)
\(32\) −0.140879 + 5.65510i −0.0249041 + 0.999690i
\(33\) −8.77721 + 8.77721i −1.52792 + 1.52792i
\(34\) −0.532650 0.274749i −0.0913487 0.0471191i
\(35\) 0.276974 + 0.236151i 0.0468172 + 0.0399168i
\(36\) −9.44368 + 6.71851i −1.57395 + 1.11975i
\(37\) 1.63643 0.269027 0.134514 0.990912i \(-0.457053\pi\)
0.134514 + 0.990912i \(0.457053\pi\)
\(38\) −4.02172 2.07447i −0.652410 0.336523i
\(39\) 4.62107i 0.739964i
\(40\) 3.38024 5.34546i 0.534463 0.845192i
\(41\) 7.61648i 1.18949i −0.803913 0.594747i \(-0.797252\pi\)
0.803913 0.594747i \(-0.202748\pi\)
\(42\) −0.312960 + 0.606729i −0.0482908 + 0.0936203i
\(43\) −6.72651 −1.02578 −0.512892 0.858453i \(-0.671426\pi\)
−0.512892 + 0.858453i \(0.671426\pi\)
\(44\) 8.25467 + 1.39185i 1.24444 + 0.209829i
\(45\) 12.9169 1.02764i 1.92553 0.153191i
\(46\) −3.80100 + 7.36890i −0.560427 + 1.08649i
\(47\) −4.38366 + 4.38366i −0.639423 + 0.639423i −0.950413 0.310990i \(-0.899339\pi\)
0.310990 + 0.950413i \(0.399339\pi\)
\(48\) 11.2066 + 3.88975i 1.61753 + 0.561437i
\(49\) 6.97350i 0.996215i
\(50\) −6.31086 + 3.18952i −0.892491 + 0.451066i
\(51\) −0.888698 + 0.888698i −0.124443 + 0.124443i
\(52\) 2.53938 1.80659i 0.352148 0.250529i
\(53\) 11.4324i 1.57036i −0.619265 0.785182i \(-0.712569\pi\)
0.619265 0.785182i \(-0.287431\pi\)
\(54\) 3.56661 + 11.1659i 0.485355 + 1.51948i
\(55\) −7.12202 6.07231i −0.960333 0.818790i
\(56\) 0.455760 0.0652196i 0.0609035 0.00871533i
\(57\) −6.71003 + 6.71003i −0.888766 + 0.888766i
\(58\) 0.265570 0.514854i 0.0348711 0.0676037i
\(59\) −1.63497 + 1.63497i −0.212855 + 0.212855i −0.805479 0.592624i \(-0.798092\pi\)
0.592624 + 0.805479i \(0.298092\pi\)
\(60\) −8.52113 10.1630i −1.10007 1.31204i
\(61\) −1.23034 1.23034i −0.157528 0.157528i 0.623942 0.781471i \(-0.285530\pi\)
−0.781471 + 0.623942i \(0.785530\pi\)
\(62\) −1.80089 5.63796i −0.228713 0.716022i
\(63\) 0.666993 + 0.666993i 0.0840332 + 0.0840332i
\(64\) −2.24366 7.67893i −0.280458 0.959866i
\(65\) −3.47331 + 0.276329i −0.430811 + 0.0342744i
\(66\) 8.04736 15.6012i 0.990561 1.92038i
\(67\) 2.49337 0.304614 0.152307 0.988333i \(-0.451330\pi\)
0.152307 + 0.988333i \(0.451330\pi\)
\(68\) 0.835791 + 0.140926i 0.101354 + 0.0170897i
\(69\) 12.2946 + 12.2946i 1.48010 + 1.48010i
\(70\) −0.474746 0.198948i −0.0567430 0.0237788i
\(71\) 8.00096 0.949540 0.474770 0.880110i \(-0.342531\pi\)
0.474770 + 0.880110i \(0.342531\pi\)
\(72\) 9.83107 13.1146i 1.15860 1.54557i
\(73\) 1.12102 + 1.12102i 0.131205 + 0.131205i 0.769660 0.638454i \(-0.220426\pi\)
−0.638454 + 0.769660i \(0.720426\pi\)
\(74\) −2.20453 + 0.704173i −0.256271 + 0.0818584i
\(75\) 2.34454 + 14.6415i 0.270724 + 1.69066i
\(76\) 6.31056 + 1.06405i 0.723871 + 0.122054i
\(77\) 0.681319i 0.0776435i
\(78\) −1.98850 6.22531i −0.225153 0.704878i
\(79\) −3.62218 −0.407527 −0.203763 0.979020i \(-0.565317\pi\)
−0.203763 + 0.979020i \(0.565317\pi\)
\(80\) −2.25350 + 8.65573i −0.251949 + 0.967740i
\(81\) 7.19579 0.799532
\(82\) 3.27745 + 10.2606i 0.361934 + 1.13309i
\(83\) 1.62629i 0.178509i −0.996009 0.0892545i \(-0.971552\pi\)
0.996009 0.0892545i \(-0.0284484\pi\)
\(84\) 0.160525 0.952029i 0.0175147 0.103875i
\(85\) −0.721109 0.614825i −0.0782152 0.0666871i
\(86\) 9.06167 2.89449i 0.977145 0.312121i
\(87\) −0.859007 0.859007i −0.0920953 0.0920953i
\(88\) −11.7193 + 1.67703i −1.24928 + 0.178772i
\(89\) 15.7149 1.66577 0.832887 0.553443i \(-0.186686\pi\)
0.832887 + 0.553443i \(0.186686\pi\)
\(90\) −16.9589 + 6.94266i −1.78762 + 0.731821i
\(91\) −0.179352 0.179352i −0.0188012 0.0188012i
\(92\) 1.94962 11.5627i 0.203262 1.20549i
\(93\) −12.4113 −1.28700
\(94\) 4.01915 7.79182i 0.414543 0.803665i
\(95\) −5.44467 4.64218i −0.558611 0.476277i
\(96\) −16.7708 0.417792i −1.71167 0.0426407i
\(97\) 9.69217 + 9.69217i 0.984091 + 0.984091i 0.999875 0.0157848i \(-0.00502467\pi\)
−0.0157848 + 0.999875i \(0.505025\pi\)
\(98\) 3.00077 + 9.39441i 0.303124 + 0.948978i
\(99\) −17.1508 17.1508i −1.72372 1.72372i
\(100\) 7.12924 7.01241i 0.712924 0.701241i
\(101\) −12.8067 + 12.8067i −1.27432 + 1.27432i −0.330516 + 0.943800i \(0.607223\pi\)
−0.943800 + 0.330516i \(0.892777\pi\)
\(102\) 0.814800 1.57963i 0.0806772 0.156407i
\(103\) −4.33738 + 4.33738i −0.427375 + 0.427375i −0.887733 0.460358i \(-0.847721\pi\)
0.460358 + 0.887733i \(0.347721\pi\)
\(104\) −2.64354 + 3.52648i −0.259221 + 0.345800i
\(105\) −0.700332 + 0.821398i −0.0683454 + 0.0801602i
\(106\) 4.91950 + 15.4013i 0.477824 + 1.49590i
\(107\) 11.9807i 1.15822i −0.815251 0.579108i \(-0.803401\pi\)
0.815251 0.579108i \(-0.196599\pi\)
\(108\) −9.60958 13.5074i −0.924682 1.29975i
\(109\) −4.01503 + 4.01503i −0.384570 + 0.384570i −0.872746 0.488175i \(-0.837663\pi\)
0.488175 + 0.872746i \(0.337663\pi\)
\(110\) 12.2075 + 5.11567i 1.16394 + 0.487760i
\(111\) 4.85301i 0.460628i
\(112\) −0.585916 + 0.283980i −0.0553639 + 0.0268336i
\(113\) 6.47754 6.47754i 0.609356 0.609356i −0.333422 0.942778i \(-0.608203\pi\)
0.942778 + 0.333422i \(0.108203\pi\)
\(114\) 6.15207 11.9269i 0.576194 1.11705i
\(115\) −8.50575 + 9.97612i −0.793165 + 0.930278i
\(116\) −0.136217 + 0.807867i −0.0126475 + 0.0750086i
\(117\) −9.02966 −0.834792
\(118\) 1.49902 2.90611i 0.137996 0.267529i
\(119\) 0.0689840i 0.00632375i
\(120\) 15.8526 + 10.0245i 1.44714 + 0.915105i
\(121\) 6.51921i 0.592655i
\(122\) 2.18688 + 1.12803i 0.197991 + 0.102127i
\(123\) 22.5875 2.03665
\(124\) 4.85215 + 6.82028i 0.435736 + 0.612480i
\(125\) −10.8647 + 2.63774i −0.971771 + 0.235927i
\(126\) −1.18556 0.611530i −0.105618 0.0544794i
\(127\) 12.2756 12.2756i 1.08928 1.08928i 0.0936781 0.995603i \(-0.470138\pi\)
0.995603 0.0936781i \(-0.0298625\pi\)
\(128\) 6.32690 + 9.37925i 0.559224 + 0.829017i
\(129\) 19.9482i 1.75634i
\(130\) 4.56019 1.86686i 0.399955 0.163735i
\(131\) 7.99562 7.99562i 0.698581 0.698581i −0.265524 0.964104i \(-0.585545\pi\)
0.964104 + 0.265524i \(0.0855448\pi\)
\(132\) −4.12768 + 24.4802i −0.359269 + 2.13072i
\(133\) 0.520857i 0.0451641i
\(134\) −3.35896 + 1.07292i −0.290170 + 0.0926865i
\(135\) 1.46985 + 18.4752i 0.126504 + 1.59009i
\(136\) −1.18658 + 0.169801i −0.101749 + 0.0145603i
\(137\) 3.08551 3.08551i 0.263613 0.263613i −0.562907 0.826520i \(-0.690317\pi\)
0.826520 + 0.562907i \(0.190317\pi\)
\(138\) −21.8533 11.2723i −1.86028 0.959561i
\(139\) −12.2206 + 12.2206i −1.03654 + 1.03654i −0.0372284 + 0.999307i \(0.511853\pi\)
−0.999307 + 0.0372284i \(0.988147\pi\)
\(140\) 0.725167 + 0.0637253i 0.0612878 + 0.00538577i
\(141\) −13.0002 13.0002i −1.09482 1.09482i
\(142\) −10.7786 + 3.44290i −0.904516 + 0.288922i
\(143\) 4.61180 + 4.61180i 0.385658 + 0.385658i
\(144\) −7.60064 + 21.8979i −0.633386 + 1.82482i
\(145\) 0.594284 0.697017i 0.0493526 0.0578841i
\(146\) −1.99258 1.02780i −0.164907 0.0850616i
\(147\) 20.6807 1.70572
\(148\) 2.66683 1.89726i 0.219212 0.155954i
\(149\) −2.59172 2.59172i −0.212322 0.212322i 0.592931 0.805253i \(-0.297971\pi\)
−0.805253 + 0.592931i \(0.797971\pi\)
\(150\) −9.45887 18.7156i −0.772314 1.52812i
\(151\) −16.9594 −1.38014 −0.690068 0.723745i \(-0.742419\pi\)
−0.690068 + 0.723745i \(0.742419\pi\)
\(152\) −8.95919 + 1.28207i −0.726686 + 0.103989i
\(153\) −1.73653 1.73653i −0.140390 0.140390i
\(154\) 0.293179 + 0.917844i 0.0236250 + 0.0739620i
\(155\) −0.742168 9.32865i −0.0596124 0.749296i
\(156\) 5.35764 + 7.53080i 0.428954 + 0.602947i
\(157\) 8.55235i 0.682552i 0.939963 + 0.341276i \(0.110859\pi\)
−0.939963 + 0.341276i \(0.889141\pi\)
\(158\) 4.87964 1.55866i 0.388203 0.124000i
\(159\) 33.9041 2.68877
\(160\) −0.688833 12.6303i −0.0544571 0.998516i
\(161\) −0.954354 −0.0752136
\(162\) −9.69386 + 3.09643i −0.761622 + 0.243278i
\(163\) 3.57797i 0.280248i 0.990134 + 0.140124i \(0.0447501\pi\)
−0.990134 + 0.140124i \(0.955250\pi\)
\(164\) −8.83049 12.4123i −0.689545 0.969238i
\(165\) 18.0081 21.1211i 1.40193 1.64428i
\(166\) 0.699812 + 2.19087i 0.0543159 + 0.170045i
\(167\) 0.482874 + 0.482874i 0.0373659 + 0.0373659i 0.725543 0.688177i \(-0.241589\pi\)
−0.688177 + 0.725543i \(0.741589\pi\)
\(168\) 0.193416 + 1.35161i 0.0149224 + 0.104279i
\(169\) −10.5720 −0.813227
\(170\) 1.23601 + 0.517965i 0.0947978 + 0.0397261i
\(171\) −13.1115 13.1115i −1.00266 1.00266i
\(172\) −10.9620 + 7.79867i −0.835842 + 0.594643i
\(173\) 11.8189 0.898576 0.449288 0.893387i \(-0.351678\pi\)
0.449288 + 0.893387i \(0.351678\pi\)
\(174\) 1.52686 + 0.787578i 0.115751 + 0.0597061i
\(175\) −0.659260 0.477269i −0.0498354 0.0360781i
\(176\) 15.0661 7.30216i 1.13565 0.550421i
\(177\) −4.84870 4.84870i −0.364451 0.364451i
\(178\) −21.1704 + 6.76228i −1.58679 + 0.506855i
\(179\) 4.71524 + 4.71524i 0.352433 + 0.352433i 0.861014 0.508581i \(-0.169830\pi\)
−0.508581 + 0.861014i \(0.669830\pi\)
\(180\) 19.8588 16.6504i 1.48018 1.24105i
\(181\) 13.1843 13.1843i 0.979983 0.979983i −0.0198205 0.999804i \(-0.506309\pi\)
0.999804 + 0.0198205i \(0.00630948\pi\)
\(182\) 0.318793 + 0.164439i 0.0236305 + 0.0121890i
\(183\) 3.64870 3.64870i 0.269720 0.269720i
\(184\) 2.34910 + 16.4157i 0.173178 + 1.21018i
\(185\) −3.64764 + 0.290199i −0.268180 + 0.0213358i
\(186\) 16.7200 5.34073i 1.22597 0.391601i
\(187\) 1.77383i 0.129715i
\(188\) −2.06152 + 12.2263i −0.150352 + 0.891694i
\(189\) −0.954008 + 0.954008i −0.0693939 + 0.0693939i
\(190\) 9.33240 + 3.91085i 0.677043 + 0.283723i
\(191\) 13.9872i 1.01208i 0.862510 + 0.506040i \(0.168891\pi\)
−0.862510 + 0.506040i \(0.831109\pi\)
\(192\) 22.7727 6.65384i 1.64348 0.480199i
\(193\) 3.88875 3.88875i 0.279919 0.279919i −0.553158 0.833076i \(-0.686577\pi\)
0.833076 + 0.553158i \(0.186577\pi\)
\(194\) −17.2275 8.88623i −1.23686 0.637994i
\(195\) −0.819485 10.3005i −0.0586845 0.737633i
\(196\) −8.08503 11.3645i −0.577502 0.811748i
\(197\) −22.3277 −1.59078 −0.795391 0.606097i \(-0.792734\pi\)
−0.795391 + 0.606097i \(0.792734\pi\)
\(198\) 30.4850 + 15.7247i 2.16648 + 1.11750i
\(199\) 9.83847i 0.697431i −0.937229 0.348715i \(-0.886618\pi\)
0.937229 0.348715i \(-0.113382\pi\)
\(200\) −6.58669 + 12.5146i −0.465749 + 0.884917i
\(201\) 7.39437i 0.521559i
\(202\) 11.7418 22.7635i 0.826150 1.60164i
\(203\) 0.0666793 0.00467997
\(204\) −0.417931 + 2.47863i −0.0292610 + 0.173539i
\(205\) 1.35068 + 16.9773i 0.0943355 + 1.18575i
\(206\) 3.97671 7.70955i 0.277071 0.537150i
\(207\) −24.0239 + 24.0239i −1.66978 + 1.66978i
\(208\) 2.04379 5.88827i 0.141711 0.408278i
\(209\) 13.3931i 0.926423i
\(210\) 0.590001 1.40791i 0.0407140 0.0971552i
\(211\) 11.0531 11.0531i 0.760925 0.760925i −0.215565 0.976490i \(-0.569159\pi\)
0.976490 + 0.215565i \(0.0691592\pi\)
\(212\) −13.2547 18.6310i −0.910334 1.27958i
\(213\) 23.7278i 1.62580i
\(214\) 5.15541 + 16.1398i 0.352417 + 1.10330i
\(215\) 14.9936 1.19286i 1.02255 0.0813521i
\(216\) 18.7580 + 14.0615i 1.27632 + 0.956764i
\(217\) 0.481706 0.481706i 0.0327004 0.0327004i
\(218\) 3.68117 7.13659i 0.249320 0.483351i
\(219\) −3.32451 + 3.32451i −0.224650 + 0.224650i
\(220\) −18.6467 1.63861i −1.25716 0.110475i
\(221\) 0.466948 + 0.466948i 0.0314103 + 0.0314103i
\(222\) −2.08830 6.53777i −0.140158 0.438787i
\(223\) −5.93975 5.93975i −0.397755 0.397755i 0.479686 0.877440i \(-0.340751\pi\)
−0.877440 + 0.479686i \(0.840751\pi\)
\(224\) 0.667122 0.634691i 0.0445740 0.0424071i
\(225\) −28.6098 + 4.58127i −1.90732 + 0.305418i
\(226\) −5.93891 + 11.5136i −0.395051 + 0.765875i
\(227\) −23.2105 −1.54054 −0.770269 0.637720i \(-0.779878\pi\)
−0.770269 + 0.637720i \(0.779878\pi\)
\(228\) −3.15555 + 18.7147i −0.208981 + 1.23941i
\(229\) −5.59944 5.59944i −0.370021 0.370021i 0.497464 0.867485i \(-0.334265\pi\)
−0.867485 + 0.497464i \(0.834265\pi\)
\(230\) 7.16574 17.0995i 0.472495 1.12751i
\(231\) 2.02053 0.132941
\(232\) −0.164128 1.14694i −0.0107755 0.0753003i
\(233\) −3.01998 3.01998i −0.197845 0.197845i 0.601230 0.799076i \(-0.294677\pi\)
−0.799076 + 0.601230i \(0.794677\pi\)
\(234\) 12.1644 3.88556i 0.795209 0.254007i
\(235\) 8.99391 10.5487i 0.586698 0.688120i
\(236\) −0.768884 + 4.56004i −0.0500501 + 0.296833i
\(237\) 10.7420i 0.697766i
\(238\) 0.0296846 + 0.0929323i 0.00192416 + 0.00602391i
\(239\) 0.00138865 8.98241e−5 4.49120e−5 1.00000i \(-0.499986\pi\)
4.49120e−5 1.00000i \(0.499986\pi\)
\(240\) −25.6696 6.68301i −1.65696 0.431387i
\(241\) −12.8578 −0.828245 −0.414123 0.910221i \(-0.635912\pi\)
−0.414123 + 0.910221i \(0.635912\pi\)
\(242\) −2.80529 8.78240i −0.180331 0.564554i
\(243\) 3.52546i 0.226158i
\(244\) −3.43148 0.578593i −0.219678 0.0370407i
\(245\) 1.23666 + 15.5441i 0.0790071 + 0.993077i
\(246\) −30.4289 + 9.71965i −1.94008 + 0.619702i
\(247\) 3.52565 + 3.52565i 0.224332 + 0.224332i
\(248\) −9.47146 7.10006i −0.601438 0.450854i
\(249\) 4.82296 0.305643
\(250\) 13.5015 8.22866i 0.853907 0.520426i
\(251\) −9.14111 9.14111i −0.576982 0.576982i 0.357089 0.934071i \(-0.383769\pi\)
−0.934071 + 0.357089i \(0.883769\pi\)
\(252\) 1.86028 + 0.313668i 0.117187 + 0.0197593i
\(253\) 24.5399 1.54281
\(254\) −11.2548 + 21.8194i −0.706190 + 1.36907i
\(255\) 1.82333 2.13853i 0.114181 0.133920i
\(256\) −12.5593 9.91280i −0.784957 0.619550i
\(257\) 21.2733 + 21.2733i 1.32699 + 1.32699i 0.907980 + 0.419013i \(0.137624\pi\)
0.419013 + 0.907980i \(0.362376\pi\)
\(258\) 8.58394 + 26.8734i 0.534413 + 1.67306i
\(259\) −0.188354 0.188354i −0.0117038 0.0117038i
\(260\) −5.33996 + 4.47725i −0.331170 + 0.277667i
\(261\) 1.67851 1.67851i 0.103897 0.103897i
\(262\) −7.33076 + 14.2120i −0.452896 + 0.878018i
\(263\) −16.7214 + 16.7214i −1.03108 + 1.03108i −0.0315818 + 0.999501i \(0.510054\pi\)
−0.999501 + 0.0315818i \(0.989946\pi\)
\(264\) −4.97343 34.7548i −0.306094 2.13901i
\(265\) 2.02739 + 25.4832i 0.124541 + 1.56542i
\(266\) 0.224131 + 0.701677i 0.0137423 + 0.0430226i
\(267\) 46.6043i 2.85213i
\(268\) 4.06336 2.89079i 0.248209 0.176583i
\(269\) −15.9096 + 15.9096i −0.970026 + 0.970026i −0.999564 0.0295378i \(-0.990596\pi\)
0.0295378 + 0.999564i \(0.490596\pi\)
\(270\) −9.93018 24.2565i −0.604332 1.47620i
\(271\) 12.3601i 0.750824i −0.926858 0.375412i \(-0.877501\pi\)
0.926858 0.375412i \(-0.122499\pi\)
\(272\) 1.52545 0.739348i 0.0924938 0.0448295i
\(273\) 0.531889 0.531889i 0.0321914 0.0321914i
\(274\) −2.82894 + 5.48440i −0.170902 + 0.331324i
\(275\) 16.9520 + 12.2723i 1.02224 + 0.740049i
\(276\) 34.2904 + 5.78183i 2.06404 + 0.348025i
\(277\) 21.0270 1.26339 0.631695 0.775217i \(-0.282359\pi\)
0.631695 + 0.775217i \(0.282359\pi\)
\(278\) 11.2044 21.7217i 0.671994 1.30278i
\(279\) 24.2520i 1.45193i
\(280\) −1.00434 + 0.226199i −0.0600205 + 0.0135180i
\(281\) 10.6807i 0.637158i −0.947896 0.318579i \(-0.896794\pi\)
0.947896 0.318579i \(-0.103206\pi\)
\(282\) 23.1075 + 11.9192i 1.37603 + 0.709780i
\(283\) 12.5946 0.748673 0.374336 0.927293i \(-0.377871\pi\)
0.374336 + 0.927293i \(0.377871\pi\)
\(284\) 13.0389 9.27626i 0.773716 0.550445i
\(285\) 13.7669 16.1468i 0.815481 0.956452i
\(286\) −8.19733 4.22832i −0.484718 0.250026i
\(287\) −0.876663 + 0.876663i −0.0517478 + 0.0517478i
\(288\) 0.816372 32.7705i 0.0481052 1.93102i
\(289\) 16.8204i 0.989435i
\(290\) −0.500660 + 1.19472i −0.0293998 + 0.0701563i
\(291\) −28.7432 + 28.7432i −1.68496 + 1.68496i
\(292\) 3.12659 + 0.527185i 0.182970 + 0.0308512i
\(293\) 3.43132i 0.200460i −0.994964 0.100230i \(-0.968042\pi\)
0.994964 0.100230i \(-0.0319579\pi\)
\(294\) −27.8602 + 8.89913i −1.62484 + 0.519008i
\(295\) 3.35446 3.93434i 0.195304 0.229066i
\(296\) −2.77623 + 3.70348i −0.161365 + 0.215260i
\(297\) 24.5310 24.5310i 1.42344 1.42344i
\(298\) 4.60670 + 2.37621i 0.266859 + 0.137650i
\(299\) 6.45996 6.45996i 0.373589 0.373589i
\(300\) 20.7961 + 21.1426i 1.20066 + 1.22067i
\(301\) 0.774227 + 0.774227i 0.0446257 + 0.0446257i
\(302\) 22.8470 7.29781i 1.31470 0.419942i
\(303\) −37.9798 37.9798i −2.18188 2.18188i
\(304\) 11.5177 5.58238i 0.660588 0.320171i
\(305\) 2.96063 + 2.52427i 0.169525 + 0.144539i
\(306\) 3.08663 + 1.59213i 0.176451 + 0.0910162i
\(307\) −11.8104 −0.674053 −0.337027 0.941495i \(-0.609421\pi\)
−0.337027 + 0.941495i \(0.609421\pi\)
\(308\) −0.789916 1.11032i −0.0450097 0.0632665i
\(309\) −12.8630 12.8630i −0.731750 0.731750i
\(310\) 5.01404 + 12.2478i 0.284778 + 0.695628i
\(311\) 22.6262 1.28301 0.641506 0.767118i \(-0.278310\pi\)
0.641506 + 0.767118i \(0.278310\pi\)
\(312\) −10.4582 7.83973i −0.592077 0.443837i
\(313\) −7.08945 7.08945i −0.400719 0.400719i 0.477767 0.878486i \(-0.341446\pi\)
−0.878486 + 0.477767i \(0.841446\pi\)
\(314\) −3.68017 11.5214i −0.207684 0.650188i
\(315\) −1.60503 1.36846i −0.0904329 0.0771040i
\(316\) −5.90294 + 4.19952i −0.332066 + 0.236242i
\(317\) 25.1265i 1.41124i −0.708589 0.705621i \(-0.750668\pi\)
0.708589 0.705621i \(-0.249332\pi\)
\(318\) −45.6742 + 14.5893i −2.56128 + 0.818128i
\(319\) −1.71457 −0.0959974
\(320\) 6.36294 + 16.7186i 0.355699 + 0.934601i
\(321\) 35.5300 1.98309
\(322\) 1.28566 0.410669i 0.0716473 0.0228857i
\(323\) 1.35606i 0.0754535i
\(324\) 11.7267 8.34274i 0.651485 0.463486i
\(325\) 7.69309 1.23189i 0.426736 0.0683329i
\(326\) −1.53964 4.82008i −0.0852726 0.266960i
\(327\) −11.9070 11.9070i −0.658460 0.658460i
\(328\) 17.2372 + 12.9215i 0.951765 + 0.713469i
\(329\) 1.00913 0.0556349
\(330\) −15.1711 + 36.2026i −0.835141 + 1.99289i
\(331\) 5.80829 + 5.80829i 0.319253 + 0.319253i 0.848480 0.529227i \(-0.177518\pi\)
−0.529227 + 0.848480i \(0.677518\pi\)
\(332\) −1.88551 2.65032i −0.103481 0.145455i
\(333\) −9.48287 −0.519658
\(334\) −0.858293 0.442721i −0.0469637 0.0242246i
\(335\) −5.55778 + 0.442166i −0.303654 + 0.0241581i
\(336\) −0.842174 1.73760i −0.0459443 0.0947939i
\(337\) −7.41679 7.41679i −0.404019 0.404019i 0.475628 0.879647i \(-0.342221\pi\)
−0.879647 + 0.475628i \(0.842221\pi\)
\(338\) 14.2421 4.54923i 0.774667 0.247445i
\(339\) 19.2099 + 19.2099i 1.04334 + 1.04334i
\(340\) −1.88799 0.165910i −0.102391 0.00899776i
\(341\) −12.3864 + 12.3864i −0.670763 + 0.670763i
\(342\) 23.3053 + 12.0213i 1.26021 + 0.650035i
\(343\) −1.60836 + 1.60836i −0.0868434 + 0.0868434i
\(344\) 11.4116 15.2231i 0.615274 0.820774i
\(345\) −29.5853 25.2247i −1.59282 1.35805i
\(346\) −15.9220 + 5.08581i −0.855970 + 0.273415i
\(347\) 18.2493i 0.979673i −0.871814 0.489837i \(-0.837056\pi\)
0.871814 0.489837i \(-0.162944\pi\)
\(348\) −2.39582 0.403968i −0.128430 0.0216549i
\(349\) 19.4413 19.4413i 1.04067 1.04067i 0.0415330 0.999137i \(-0.486776\pi\)
0.999137 0.0415330i \(-0.0132242\pi\)
\(350\) 1.09350 + 0.359269i 0.0584501 + 0.0192038i
\(351\) 12.9152i 0.689364i
\(352\) −17.1541 + 16.3202i −0.914319 + 0.869871i
\(353\) −1.13598 + 1.13598i −0.0604622 + 0.0604622i −0.736691 0.676229i \(-0.763613\pi\)
0.676229 + 0.736691i \(0.263613\pi\)
\(354\) 8.61841 + 4.44551i 0.458063 + 0.236276i
\(355\) −17.8343 + 1.41886i −0.946549 + 0.0753054i
\(356\) 25.6100 18.2197i 1.35733 0.965643i
\(357\) 0.204580 0.0108275
\(358\) −8.38118 4.32315i −0.442959 0.228485i
\(359\) 28.4140i 1.49963i 0.661645 + 0.749817i \(0.269859\pi\)
−0.661645 + 0.749817i \(0.730141\pi\)
\(360\) −19.5880 + 30.9762i −1.03238 + 1.63259i
\(361\) 8.76116i 0.461114i
\(362\) −12.0880 + 23.4347i −0.635331 + 1.23170i
\(363\) −19.3334 −1.01474
\(364\) −0.500224 0.0843445i −0.0262189 0.00442085i
\(365\) −2.69758 2.29998i −0.141198 0.120387i
\(366\) −3.34530 + 6.48545i −0.174861 + 0.339000i
\(367\) 2.29692 2.29692i 0.119898 0.119898i −0.644612 0.764510i \(-0.722981\pi\)
0.764510 + 0.644612i \(0.222981\pi\)
\(368\) −10.2285 21.1037i −0.533195 1.10011i
\(369\) 44.1364i 2.29765i
\(370\) 4.78907 1.96056i 0.248972 0.101925i
\(371\) −1.31588 + 1.31588i −0.0683172 + 0.0683172i
\(372\) −20.2263 + 14.3896i −1.04869 + 0.746066i
\(373\) 18.0787i 0.936081i 0.883707 + 0.468040i \(0.155040\pi\)
−0.883707 + 0.468040i \(0.844960\pi\)
\(374\) −0.763298 2.38963i −0.0394692 0.123565i
\(375\) −7.82251 32.2206i −0.403953 1.66386i
\(376\) −2.48392 17.3578i −0.128098 0.895162i
\(377\) −0.451348 + 0.451348i −0.0232456 + 0.0232456i
\(378\) 0.874679 1.69572i 0.0449886 0.0872184i
\(379\) 2.79031 2.79031i 0.143328 0.143328i −0.631802 0.775130i \(-0.717684\pi\)
0.775130 + 0.631802i \(0.217684\pi\)
\(380\) −14.2551 1.25269i −0.731271 0.0642617i
\(381\) 36.4046 + 36.4046i 1.86506 + 1.86506i
\(382\) −6.01885 18.8430i −0.307951 0.964090i
\(383\) 8.12206 + 8.12206i 0.415018 + 0.415018i 0.883482 0.468464i \(-0.155193\pi\)
−0.468464 + 0.883482i \(0.655193\pi\)
\(384\) −27.8152 + 18.7631i −1.41944 + 0.957501i
\(385\) 0.120823 + 1.51868i 0.00615770 + 0.0773990i
\(386\) −3.56539 + 6.91213i −0.181474 + 0.351818i
\(387\) 38.9792 1.98142
\(388\) 27.0320 + 4.55796i 1.37234 + 0.231396i
\(389\) 14.4341 + 14.4341i 0.731839 + 0.731839i 0.970984 0.239145i \(-0.0768670\pi\)
−0.239145 + 0.970984i \(0.576867\pi\)
\(390\) 5.53639 + 13.5237i 0.280346 + 0.684801i
\(391\) 2.48468 0.125656
\(392\) 15.7821 + 11.8307i 0.797114 + 0.597539i
\(393\) 23.7119 + 23.7119i 1.19611 + 1.19611i
\(394\) 30.0789 9.60785i 1.51535 0.484036i
\(395\) 8.07392 0.642344i 0.406243 0.0323198i
\(396\) −47.8346 8.06556i −2.40378 0.405310i
\(397\) 35.1624i 1.76475i −0.470549 0.882374i \(-0.655944\pi\)
0.470549 0.882374i \(-0.344056\pi\)
\(398\) 4.23360 + 13.2540i 0.212211 + 0.664362i
\(399\) 1.54466 0.0773298
\(400\) 3.48814 19.6935i 0.174407 0.984674i
\(401\) −23.5164 −1.17435 −0.587176 0.809459i \(-0.699760\pi\)
−0.587176 + 0.809459i \(0.699760\pi\)
\(402\) −3.18188 9.96138i −0.158698 0.496828i
\(403\) 6.52128i 0.324848i
\(404\) −6.02265 + 35.7187i −0.299638 + 1.77707i
\(405\) −16.0396 + 1.27608i −0.797014 + 0.0634087i
\(406\) −0.0898275 + 0.0286928i −0.00445806 + 0.00142400i
\(407\) 4.84328 + 4.84328i 0.240072 + 0.240072i
\(408\) −0.503563 3.51895i −0.0249301 0.174214i
\(409\) −23.2595 −1.15011 −0.575054 0.818115i \(-0.695019\pi\)
−0.575054 + 0.818115i \(0.695019\pi\)
\(410\) −9.12510 22.2899i −0.450657 1.10082i
\(411\) 9.15043 + 9.15043i 0.451357 + 0.451357i
\(412\) −2.03975 + 12.0972i −0.100491 + 0.595986i
\(413\) 0.376374 0.0185201
\(414\) 22.0262 42.7017i 1.08253 2.09868i
\(415\) 0.288401 + 3.62505i 0.0141571 + 0.177947i
\(416\) −0.219520 + 8.81188i −0.0107628 + 0.432038i
\(417\) −36.2415 36.2415i −1.77475 1.77475i
\(418\) −5.76322 18.0427i −0.281888 0.882496i
\(419\) −6.63975 6.63975i −0.324373 0.324373i 0.526069 0.850442i \(-0.323665\pi\)
−0.850442 + 0.526069i \(0.823665\pi\)
\(420\) −0.188985 + 2.15056i −0.00922151 + 0.104937i
\(421\) 7.28216 7.28216i 0.354911 0.354911i −0.507022 0.861933i \(-0.669254\pi\)
0.861933 + 0.507022i \(0.169254\pi\)
\(422\) −10.1340 + 19.6465i −0.493314 + 0.956376i
\(423\) 25.4027 25.4027i 1.23512 1.23512i
\(424\) 25.8733 + 19.3953i 1.25652 + 0.941919i
\(425\) 1.71640 + 1.24258i 0.0832576 + 0.0602740i
\(426\) −10.2103 31.9650i −0.494691 1.54871i
\(427\) 0.283225i 0.0137062i
\(428\) −13.8903 19.5245i −0.671413 0.943751i
\(429\) −13.6768 + 13.6768i −0.660323 + 0.660323i
\(430\) −19.6854 + 8.05886i −0.949314 + 0.388633i
\(431\) 11.7250i 0.564771i 0.959301 + 0.282386i \(0.0911258\pi\)
−0.959301 + 0.282386i \(0.908874\pi\)
\(432\) −31.3208 10.8713i −1.50692 0.523045i
\(433\) −20.8827 + 20.8827i −1.00356 + 1.00356i −0.00356603 + 0.999994i \(0.501135\pi\)
−0.999994 + 0.00356603i \(0.998865\pi\)
\(434\) −0.441651 + 0.856218i −0.0211999 + 0.0410998i
\(435\) 2.06708 + 1.76242i 0.0991090 + 0.0845014i
\(436\) −1.88816 + 11.1982i −0.0904265 + 0.536294i
\(437\) 18.7604 0.897430
\(438\) 3.04807 5.90921i 0.145642 0.282353i
\(439\) 7.53661i 0.359703i −0.983694 0.179851i \(-0.942438\pi\)
0.983694 0.179851i \(-0.0575617\pi\)
\(440\) 25.8251 5.81640i 1.23117 0.277286i
\(441\) 40.4105i 1.92431i
\(442\) −0.829985 0.428120i −0.0394784 0.0203636i
\(443\) −25.7280 −1.22237 −0.611187 0.791486i \(-0.709308\pi\)
−0.611187 + 0.791486i \(0.709308\pi\)
\(444\) 5.62655 + 7.90879i 0.267024 + 0.375334i
\(445\) −35.0289 + 2.78682i −1.66053 + 0.132108i
\(446\) 10.5577 + 5.44584i 0.499922 + 0.257868i
\(447\) 7.68604 7.68604i 0.363537 0.363537i
\(448\) −0.625604 + 1.14210i −0.0295570 + 0.0539591i
\(449\) 2.33824i 0.110348i 0.998477 + 0.0551741i \(0.0175714\pi\)
−0.998477 + 0.0551741i \(0.982429\pi\)
\(450\) 36.5705 18.4828i 1.72395 0.871287i
\(451\) 22.5422 22.5422i 1.06147 1.06147i
\(452\) 3.04621 18.0662i 0.143282 0.849765i
\(453\) 50.2950i 2.36306i
\(454\) 31.2682 9.98774i 1.46749 0.468748i
\(455\) 0.431586 + 0.367975i 0.0202331 + 0.0172509i
\(456\) −3.80211 26.5695i −0.178050 1.24423i
\(457\) −10.4561 + 10.4561i −0.489115 + 0.489115i −0.908027 0.418912i \(-0.862412\pi\)
0.418912 + 0.908027i \(0.362412\pi\)
\(458\) 9.95282 + 5.13383i 0.465065 + 0.239888i
\(459\) 2.48378 2.48378i 0.115933 0.115933i
\(460\) −2.29528 + 26.1192i −0.107018 + 1.21782i
\(461\) 15.6903 + 15.6903i 0.730769 + 0.730769i 0.970772 0.240003i \(-0.0771484\pi\)
−0.240003 + 0.970772i \(0.577148\pi\)
\(462\) −2.72197 + 0.869455i −0.126637 + 0.0404507i
\(463\) 19.6332 + 19.6332i 0.912434 + 0.912434i 0.996463 0.0840297i \(-0.0267791\pi\)
−0.0840297 + 0.996463i \(0.526779\pi\)
\(464\) 0.714647 + 1.47448i 0.0331766 + 0.0684511i
\(465\) 27.6652 2.20098i 1.28294 0.102068i
\(466\) 5.36791 + 2.76886i 0.248664 + 0.128265i
\(467\) −24.4862 −1.13309 −0.566543 0.824032i \(-0.691719\pi\)
−0.566543 + 0.824032i \(0.691719\pi\)
\(468\) −14.7153 + 10.4689i −0.680216 + 0.483926i
\(469\) −0.286989 0.286989i −0.0132519 0.0132519i
\(470\) −7.57700 + 18.0809i −0.349501 + 0.834010i
\(471\) −25.3630 −1.16866
\(472\) −0.926426 6.47395i −0.0426422 0.297987i
\(473\) −19.9082 19.9082i −0.915380 0.915380i
\(474\) 4.62239 + 14.4711i 0.212313 + 0.664681i
\(475\) 12.9595 + 9.38199i 0.594624 + 0.430475i
\(476\) −0.0799795 0.112421i −0.00366586 0.00515280i
\(477\) 66.2493i 3.03335i
\(478\) −0.00187073 0.000597550i −8.55650e−5 2.73313e-5i
\(479\) −37.0609 −1.69335 −0.846677 0.532108i \(-0.821400\pi\)
−0.846677 + 0.532108i \(0.821400\pi\)
\(480\) 37.4567 2.04281i 1.70966 0.0932412i
\(481\) 2.54991 0.116266
\(482\) 17.3215 5.53286i 0.788973 0.252015i
\(483\) 2.83024i 0.128781i
\(484\) 7.55832 + 10.6241i 0.343560 + 0.482915i
\(485\) −23.3229 19.8853i −1.05904 0.902945i
\(486\) 1.51704 + 4.74935i 0.0688145 + 0.215435i
\(487\) 20.1912 + 20.1912i 0.914950 + 0.914950i 0.996656 0.0817061i \(-0.0260369\pi\)
−0.0817061 + 0.996656i \(0.526037\pi\)
\(488\) 4.87172 0.697145i 0.220532 0.0315583i
\(489\) −10.6109 −0.479840
\(490\) −8.35477 20.4082i −0.377430 0.921949i
\(491\) −7.45822 7.45822i −0.336585 0.336585i 0.518496 0.855080i \(-0.326492\pi\)
−0.855080 + 0.518496i \(0.826492\pi\)
\(492\) 36.8101 26.1878i 1.65953 1.18064i
\(493\) −0.173601 −0.00781860
\(494\) −6.26673 3.23248i −0.281953 0.145436i
\(495\) 41.2711 + 35.1881i 1.85500 + 1.58159i
\(496\) 15.8148 + 5.48923i 0.710104 + 0.246474i
\(497\) −0.920917 0.920917i −0.0413088 0.0413088i
\(498\) −6.49728 + 2.07537i −0.291150 + 0.0929996i
\(499\) −8.17420 8.17420i −0.365927 0.365927i 0.500062 0.865990i \(-0.333311\pi\)
−0.865990 + 0.500062i \(0.833311\pi\)
\(500\) −14.6477 + 16.8951i −0.655065 + 0.755573i
\(501\) −1.43202 + 1.43202i −0.0639778 + 0.0639778i
\(502\) 16.2480 + 8.38100i 0.725185 + 0.374062i
\(503\) −29.2327 + 29.2327i −1.30342 + 1.30342i −0.377348 + 0.926072i \(0.623164\pi\)
−0.926072 + 0.377348i \(0.876836\pi\)
\(504\) −2.64107 + 0.377938i −0.117642 + 0.0168347i
\(505\) 26.2754 30.8176i 1.16924 1.37136i
\(506\) −33.0591 + 10.5598i −1.46966 + 0.469440i
\(507\) 31.3523i 1.39241i
\(508\) 5.77287 34.2373i 0.256130 1.51903i
\(509\) 20.0340 20.0340i 0.887992 0.887992i −0.106338 0.994330i \(-0.533912\pi\)
0.994330 + 0.106338i \(0.0339125\pi\)
\(510\) −1.53608 + 3.66553i −0.0680189 + 0.162313i
\(511\) 0.258061i 0.0114159i
\(512\) 21.1850 + 7.94969i 0.936252 + 0.351330i
\(513\) 18.7536 18.7536i 0.827991 0.827991i
\(514\) −37.8126 19.5044i −1.66784 0.860301i
\(515\) 8.89895 10.4373i 0.392135 0.459922i
\(516\) −23.1278 32.5089i −1.01815 1.43113i
\(517\) −25.9483 −1.14121
\(518\) 0.334794 + 0.172692i 0.0147100 + 0.00758765i
\(519\) 35.0504i 1.53854i
\(520\) 5.26715 8.32940i 0.230980 0.365269i
\(521\) 5.89264i 0.258161i 0.991634 + 0.129081i \(0.0412026\pi\)
−0.991634 + 0.129081i \(0.958797\pi\)
\(522\) −1.53894 + 2.98351i −0.0673576 + 0.130585i
\(523\) −24.6537 −1.07803 −0.539015 0.842296i \(-0.681203\pi\)
−0.539015 + 0.842296i \(0.681203\pi\)
\(524\) 3.76012 22.3003i 0.164262 0.974191i
\(525\) 1.41539 1.95511i 0.0617729 0.0853280i
\(526\) 15.3309 29.7217i 0.668460 1.29593i
\(527\) −1.25413 + 1.25413i −0.0546309 + 0.0546309i
\(528\) 21.6554 + 44.6801i 0.942429 + 1.94445i
\(529\) 11.3742i 0.494528i
\(530\) −13.6969 33.4574i −0.594955 1.45330i
\(531\) 9.47444 9.47444i 0.411156 0.411156i
\(532\) −0.603878 0.848823i −0.0261814 0.0368012i
\(533\) 11.8681i 0.514066i
\(534\) −20.0543 62.7833i −0.867835 2.71690i
\(535\) 2.12461 + 26.7052i 0.0918549 + 1.15457i
\(536\) −4.23004 + 5.64286i −0.182710 + 0.243735i
\(537\) −13.9836 + 13.9836i −0.603435 + 0.603435i
\(538\) 14.5867 28.2788i 0.628876 1.21919i
\(539\) 20.6392 20.6392i 0.888994 0.888994i
\(540\) 23.8153 + 28.4042i 1.02485 + 1.22232i
\(541\) −27.1762 27.1762i −1.16840 1.16840i −0.982585 0.185812i \(-0.940508\pi\)
−0.185812 0.982585i \(-0.559492\pi\)
\(542\) 5.31869 + 16.6510i 0.228457 + 0.715223i
\(543\) 39.0996 + 39.0996i 1.67792 + 1.67792i
\(544\) −1.73687 + 1.65243i −0.0744676 + 0.0708475i
\(545\) 8.23759 9.66162i 0.352860 0.413858i
\(546\) −0.487661 + 0.945416i −0.0208700 + 0.0404601i
\(547\) 3.69225 0.157869 0.0789347 0.996880i \(-0.474848\pi\)
0.0789347 + 0.996880i \(0.474848\pi\)
\(548\) 1.45103 8.60567i 0.0619850 0.367616i
\(549\) 7.12962 + 7.12962i 0.304285 + 0.304285i
\(550\) −28.1179 9.23813i −1.19895 0.393915i
\(551\) −1.31076 −0.0558402
\(552\) −48.6826 + 6.96651i −2.07207 + 0.296514i
\(553\) 0.416915 + 0.416915i 0.0177290 + 0.0177290i
\(554\) −28.3267 + 9.04815i −1.20349 + 0.384419i
\(555\) −0.860616 10.8175i −0.0365311 0.459177i
\(556\) −5.74700 + 34.0839i −0.243727 + 1.44548i
\(557\) 12.2117i 0.517426i 0.965954 + 0.258713i \(0.0832984\pi\)
−0.965954 + 0.258713i \(0.916702\pi\)
\(558\) 10.4359 + 32.6712i 0.441786 + 1.38308i
\(559\) −10.4814 −0.443315
\(560\) 1.25566 0.736902i 0.0530614 0.0311398i
\(561\) −5.26049 −0.222098
\(562\) 4.59603 + 14.3886i 0.193872 + 0.606947i
\(563\) 12.2211i 0.515057i 0.966271 + 0.257528i \(0.0829081\pi\)
−0.966271 + 0.257528i \(0.917092\pi\)
\(564\) −36.2584 6.11366i −1.52676 0.257432i
\(565\) −13.2899 + 15.5873i −0.559110 + 0.655763i
\(566\) −16.9669 + 5.41960i −0.713174 + 0.227803i
\(567\) −0.828241 0.828241i −0.0347829 0.0347829i
\(568\) −13.5738 + 18.1074i −0.569543 + 0.759768i
\(569\) 30.9592 1.29788 0.648938 0.760841i \(-0.275213\pi\)
0.648938 + 0.760841i \(0.275213\pi\)
\(570\) −11.5981 + 27.6763i −0.485789 + 1.15923i
\(571\) 30.1508 + 30.1508i 1.26177 + 1.26177i 0.950233 + 0.311539i \(0.100844\pi\)
0.311539 + 0.950233i \(0.399156\pi\)
\(572\) 12.8626 + 2.16881i 0.537812 + 0.0906823i
\(573\) −41.4806 −1.73288
\(574\) 0.803765 1.55824i 0.0335485 0.0650397i
\(575\) 17.1904 23.7454i 0.716889 0.990252i
\(576\) 13.0017 + 44.4983i 0.541738 + 1.85410i
\(577\) 1.98215 + 1.98215i 0.0825181 + 0.0825181i 0.747161 0.664643i \(-0.231416\pi\)
−0.664643 + 0.747161i \(0.731416\pi\)
\(578\) 7.23800 + 22.6597i 0.301061 + 0.942520i
\(579\) 11.5325 + 11.5325i 0.479276 + 0.479276i
\(580\) 0.160367 1.82491i 0.00665890 0.0757754i
\(581\) −0.187188 + 0.187188i −0.00776586 + 0.00776586i
\(582\) 26.3531 51.0901i 1.09237 2.11775i
\(583\) 33.8361 33.8361i 1.40135 1.40135i
\(584\) −4.43886 + 0.635204i −0.183681 + 0.0262849i
\(585\) 20.1273 1.60129i 0.832163 0.0662051i
\(586\) 1.47653 + 4.62253i 0.0609951 + 0.190955i
\(587\) 26.9680i 1.11309i 0.830818 + 0.556544i \(0.187873\pi\)
−0.830818 + 0.556544i \(0.812127\pi\)
\(588\) 33.7026 23.9771i 1.38987 0.988797i
\(589\) −9.46923 + 9.46923i −0.390173 + 0.390173i
\(590\) −2.82599 + 6.74363i −0.116344 + 0.277631i
\(591\) 66.2153i 2.72373i
\(592\) 2.14637 6.18381i 0.0882152 0.254153i
\(593\) 16.6701 16.6701i 0.684560 0.684560i −0.276464 0.961024i \(-0.589163\pi\)
0.961024 + 0.276464i \(0.0891626\pi\)
\(594\) −22.4912 + 43.6032i −0.922825 + 1.78906i
\(595\) 0.0122334 + 0.153767i 0.000501520 + 0.00630383i
\(596\) −7.22846 1.21882i −0.296089 0.0499247i
\(597\) 29.1771 1.19414
\(598\) −5.92279 + 11.4824i −0.242201 + 0.469549i
\(599\) 28.8376i 1.17827i −0.808033 0.589137i \(-0.799468\pi\)
0.808033 0.589137i \(-0.200532\pi\)
\(600\) −37.1135 19.5336i −1.51515 0.797455i
\(601\) 1.91377i 0.0780642i 0.999238 + 0.0390321i \(0.0124275\pi\)
−0.999238 + 0.0390321i \(0.987573\pi\)
\(602\) −1.37616 0.709847i −0.0560882 0.0289312i
\(603\) −14.4487 −0.588397
\(604\) −27.6381 + 19.6626i −1.12458 + 0.800059i
\(605\) −1.15609 14.5315i −0.0470019 0.590789i
\(606\) 67.5078 + 34.8216i 2.74232 + 1.41453i
\(607\) 7.89049 7.89049i 0.320265 0.320265i −0.528604 0.848869i \(-0.677284\pi\)
0.848869 + 0.528604i \(0.177284\pi\)
\(608\) −13.1141 + 12.4766i −0.531845 + 0.505991i
\(609\) 0.197745i 0.00801303i
\(610\) −5.07466 2.12659i −0.205467 0.0861031i
\(611\) −6.83071 + 6.83071i −0.276341 + 0.276341i
\(612\) −4.84329 0.816643i −0.195778 0.0330109i
\(613\) 40.1035i 1.61976i 0.586592 + 0.809882i \(0.300469\pi\)
−0.586592 + 0.809882i \(0.699531\pi\)
\(614\) 15.9104 5.08213i 0.642092 0.205098i
\(615\) −50.3481 + 4.00559i −2.03023 + 0.161521i
\(616\) 1.54193 + 1.15587i 0.0621259 + 0.0465713i
\(617\) −14.5821 + 14.5821i −0.587052 + 0.587052i −0.936832 0.349780i \(-0.886256\pi\)
0.349780 + 0.936832i \(0.386256\pi\)
\(618\) 22.8635 + 11.7934i 0.919707 + 0.474399i
\(619\) 4.01752 4.01752i 0.161478 0.161478i −0.621743 0.783221i \(-0.713575\pi\)
0.783221 + 0.621743i \(0.213575\pi\)
\(620\) −12.0251 14.3421i −0.482938 0.575993i
\(621\) −34.3617 34.3617i −1.37889 1.37889i
\(622\) −30.4810 + 9.73628i −1.22218 + 0.390389i
\(623\) −1.80880 1.80880i −0.0724679 0.0724679i
\(624\) 17.4623 + 6.06108i 0.699052 + 0.242638i
\(625\) 23.7500 7.80630i 0.949999 0.312252i
\(626\) 12.6013 + 6.49993i 0.503648 + 0.259790i
\(627\) −39.7189 −1.58622
\(628\) 9.91553 + 13.9375i 0.395673 + 0.556166i
\(629\) 0.490385 + 0.490385i 0.0195529 + 0.0195529i
\(630\) 2.75108 + 1.15287i 0.109606 + 0.0459315i
\(631\) −26.9309 −1.07210 −0.536052 0.844185i \(-0.680085\pi\)
−0.536052 + 0.844185i \(0.680085\pi\)
\(632\) 6.14508 8.19752i 0.244438 0.326080i
\(633\) 32.7791 + 32.7791i 1.30285 + 1.30285i
\(634\) 10.8122 + 33.8493i 0.429407 + 1.34433i
\(635\) −25.1856 + 29.5395i −0.999462 + 1.17224i
\(636\) 55.2524 39.3082i 2.19090 1.55867i
\(637\) 10.8662i 0.430536i
\(638\) 2.30979 0.737797i 0.0914456 0.0292097i
\(639\) −46.3644 −1.83415
\(640\) −15.7661 19.7846i −0.623209 0.782055i
\(641\) 18.6880 0.738131 0.369065 0.929403i \(-0.379678\pi\)
0.369065 + 0.929403i \(0.379678\pi\)
\(642\) −47.8645 + 15.2890i −1.88906 + 0.603407i
\(643\) 29.6249i 1.16829i −0.811648 0.584146i \(-0.801429\pi\)
0.811648 0.584146i \(-0.198571\pi\)
\(644\) −1.55528 + 1.10647i −0.0612865 + 0.0436011i
\(645\) 3.53755 + 44.4651i 0.139291 + 1.75081i
\(646\) −0.583529 1.82683i −0.0229586 0.0718758i
\(647\) −5.04426 5.04426i −0.198310 0.198310i 0.600965 0.799275i \(-0.294783\pi\)
−0.799275 + 0.600965i \(0.794783\pi\)
\(648\) −12.2078 + 16.2851i −0.479567 + 0.639740i
\(649\) −9.67794 −0.379893
\(650\) −9.83371 + 4.96997i −0.385710 + 0.194938i
\(651\) 1.42855 + 1.42855i 0.0559895 + 0.0559895i
\(652\) 4.14827 + 5.83089i 0.162459 + 0.228355i
\(653\) 3.04934 0.119330 0.0596649 0.998218i \(-0.480997\pi\)
0.0596649 + 0.998218i \(0.480997\pi\)
\(654\) 21.1644 + 10.9169i 0.827592 + 0.426885i
\(655\) −16.4045 + 19.2404i −0.640978 + 0.751783i
\(656\) −28.7815 9.98991i −1.12373 0.390040i
\(657\) −6.49615 6.49615i −0.253439 0.253439i
\(658\) −1.35945 + 0.434238i −0.0529970 + 0.0169284i
\(659\) −22.0441 22.0441i −0.858718 0.858718i 0.132469 0.991187i \(-0.457709\pi\)
−0.991187 + 0.132469i \(0.957709\pi\)
\(660\) 4.85949 55.2989i 0.189155 2.15251i
\(661\) 8.09788 8.09788i 0.314971 0.314971i −0.531861 0.846832i \(-0.678507\pi\)
0.846832 + 0.531861i \(0.178507\pi\)
\(662\) −10.3241 5.32531i −0.401256 0.206974i
\(663\) −1.38479 + 1.38479i −0.0537807 + 0.0537807i
\(664\) 3.68054 + 2.75904i 0.142833 + 0.107071i
\(665\) 0.0923670 + 1.16100i 0.00358184 + 0.0450218i
\(666\) 12.7749 4.08058i 0.495018 0.158119i
\(667\) 2.40167i 0.0929931i
\(668\) 1.34676 + 0.227083i 0.0521078 + 0.00878609i
\(669\) 17.6150 17.6150i 0.681035 0.681035i
\(670\) 7.29694 2.98724i 0.281905 0.115407i
\(671\) 7.28276i 0.281148i
\(672\) 1.88225 + 1.97842i 0.0726093 + 0.0763194i
\(673\) −27.1768 + 27.1768i −1.04759 + 1.04759i −0.0487786 + 0.998810i \(0.515533\pi\)
−0.998810 + 0.0487786i \(0.984467\pi\)
\(674\) 13.1831 + 6.80006i 0.507795 + 0.261929i
\(675\) −6.55265 40.9210i −0.252212 1.57505i
\(676\) −17.2287 + 12.2570i −0.662644 + 0.471425i
\(677\) 28.6501 1.10111 0.550557 0.834798i \(-0.314415\pi\)
0.550557 + 0.834798i \(0.314415\pi\)
\(678\) −34.1450 17.6125i −1.31133 0.676405i
\(679\) 2.23115i 0.0856238i
\(680\) 2.61481 0.588915i 0.100273 0.0225838i
\(681\) 68.8334i 2.63770i
\(682\) 11.3565 22.0165i 0.434861 0.843055i
\(683\) 30.8472 1.18034 0.590168 0.807281i \(-0.299062\pi\)
0.590168 + 0.807281i \(0.299062\pi\)
\(684\) −36.5688 6.16599i −1.39824 0.235763i
\(685\) −6.33051 + 7.42485i −0.241876 + 0.283689i
\(686\) 1.47462 2.85881i 0.0563013 0.109150i
\(687\) 16.6058 16.6058i 0.633549 0.633549i
\(688\) −8.82261 + 25.4184i −0.336359 + 0.969069i
\(689\) 17.8142i 0.678668i
\(690\) 50.7106 + 21.2508i 1.93052 + 0.809005i
\(691\) 0.253186 0.253186i 0.00963164 0.00963164i −0.702275 0.711906i \(-0.747832\pi\)
0.711906 + 0.702275i \(0.247832\pi\)
\(692\) 19.2609 13.7028i 0.732189 0.520901i
\(693\) 3.94815i 0.149978i
\(694\) 7.85286 + 24.5847i 0.298091 + 0.933221i
\(695\) 25.0728 29.4071i 0.951066 1.11548i
\(696\) 3.40138 0.486740i 0.128929 0.0184498i
\(697\) 2.28241 2.28241i 0.0864525 0.0864525i
\(698\) −17.8247 + 34.5563i −0.674675 + 1.30798i
\(699\) 8.95608 8.95608i 0.338750 0.338750i
\(700\) −1.62772 0.0134468i −0.0615219 0.000508242i
\(701\) 10.5238 + 10.5238i 0.397479 + 0.397479i 0.877343 0.479864i \(-0.159314\pi\)
−0.479864 + 0.877343i \(0.659314\pi\)
\(702\) 5.55756 + 17.3989i 0.209757 + 0.656677i
\(703\) 3.70261 + 3.70261i 0.139646 + 0.139646i
\(704\) 16.0866 29.3675i 0.606285 1.10683i
\(705\) 31.2833 + 26.6725i 1.17820 + 1.00454i
\(706\) 1.04152 2.01917i 0.0391982 0.0759925i
\(707\) 2.94813 0.110876
\(708\) −13.5233 2.28021i −0.508237 0.0856956i
\(709\) −1.58968 1.58968i −0.0597015 0.0597015i 0.676626 0.736327i \(-0.263442\pi\)
−0.736327 + 0.676626i \(0.763442\pi\)
\(710\) 23.4151 9.58574i 0.878754 0.359747i
\(711\) 20.9900 0.787186
\(712\) −26.6606 + 35.5651i −0.999147 + 1.33286i
\(713\) 17.3502 + 17.3502i 0.649771 + 0.649771i
\(714\) −0.275601 + 0.0880329i −0.0103141 + 0.00329455i
\(715\) −11.0977 9.46198i −0.415029 0.353858i
\(716\) 13.1511 + 2.21745i 0.491478 + 0.0828699i
\(717\) 0.00411819i 0.000153797i
\(718\) −12.2269 38.2781i −0.456302 1.42853i
\(719\) 22.8919 0.853722 0.426861 0.904317i \(-0.359619\pi\)
0.426861 + 0.904317i \(0.359619\pi\)
\(720\) 13.0587 50.1587i 0.486670 1.86931i
\(721\) 0.998472 0.0371850
\(722\) 3.77002 + 11.8027i 0.140306 + 0.439249i
\(723\) 38.1313i 1.41812i
\(724\) 6.20023 36.7718i 0.230430 1.36661i
\(725\) −1.20107 + 1.65906i −0.0446065 + 0.0616158i
\(726\) 26.0452 8.31939i 0.966628 0.308762i
\(727\) 20.1893 + 20.1893i 0.748780 + 0.748780i 0.974250 0.225470i \(-0.0723919\pi\)
−0.225470 + 0.974250i \(0.572392\pi\)
\(728\) 0.710175 0.101626i 0.0263208 0.00376653i
\(729\) 32.0425 1.18676
\(730\) 4.62377 + 1.93764i 0.171133 + 0.0717154i
\(731\) −2.01572 2.01572i −0.0745540 0.0745540i
\(732\) 1.71588 10.1764i 0.0634209 0.376132i
\(733\) −14.3253 −0.529118 −0.264559 0.964370i \(-0.585226\pi\)
−0.264559 + 0.964370i \(0.585226\pi\)
\(734\) −2.10592 + 4.08270i −0.0777311 + 0.150695i
\(735\) −46.0978 + 3.66744i −1.70034 + 0.135276i
\(736\) 22.8605 + 24.0286i 0.842648 + 0.885705i
\(737\) 7.37954 + 7.37954i 0.271829 + 0.271829i
\(738\) −18.9924 59.4587i −0.699119 2.18870i
\(739\) 32.3401 + 32.3401i 1.18965 + 1.18965i 0.977164 + 0.212487i \(0.0681564\pi\)
0.212487 + 0.977164i \(0.431844\pi\)
\(740\) −5.60798 + 4.70197i −0.206153 + 0.172848i
\(741\) −10.4557 + 10.4557i −0.384100 + 0.384100i
\(742\) 1.20646 2.33894i 0.0442906 0.0858651i
\(743\) −6.06842 + 6.06842i −0.222629 + 0.222629i −0.809605 0.586976i \(-0.800318\pi\)
0.586976 + 0.809605i \(0.300318\pi\)
\(744\) 21.0560 28.0887i 0.771952 1.02978i
\(745\) 6.23662 + 5.31741i 0.228492 + 0.194815i
\(746\) −7.77947 24.3549i −0.284827 0.891696i
\(747\) 9.42414i 0.344811i
\(748\) 2.05657 + 2.89075i 0.0751955 + 0.105696i
\(749\) −1.37898 + 1.37898i −0.0503870 + 0.0503870i
\(750\) 24.4030 + 40.0401i 0.891072 + 1.46206i
\(751\) 49.6431i 1.81150i 0.423810 + 0.905751i \(0.360692\pi\)
−0.423810 + 0.905751i \(0.639308\pi\)
\(752\) 10.8155 + 22.3149i 0.394400 + 0.813740i
\(753\) 27.1090 27.1090i 0.987907 0.987907i
\(754\) 0.413816 0.802256i 0.0150703 0.0292164i
\(755\) 37.8029 3.00752i 1.37579 0.109455i
\(756\) −0.448644 + 2.66078i −0.0163170 + 0.0967718i
\(757\) −9.18443 −0.333814 −0.166907 0.985973i \(-0.553378\pi\)
−0.166907 + 0.985973i \(0.553378\pi\)
\(758\) −2.55828 + 4.95968i −0.0929211 + 0.180144i
\(759\) 72.7759i 2.64160i
\(760\) 19.7429 4.44655i 0.716150 0.161293i
\(761\) 4.75310i 0.172300i −0.996282 0.0861499i \(-0.972544\pi\)
0.996282 0.0861499i \(-0.0274564\pi\)
\(762\) −64.7080 33.3774i −2.34412 1.20914i
\(763\) 0.924267 0.0334607
\(764\) 16.2167 + 22.7945i 0.586698 + 0.824675i
\(765\) 4.17872 + 3.56282i 0.151082 + 0.128814i
\(766\) −14.4367 7.44668i −0.521619 0.269060i
\(767\) −2.54765 + 2.54765i −0.0919902 + 0.0919902i
\(768\) 29.3975 37.2461i 1.06079 1.34400i
\(769\) 19.4153i 0.700135i 0.936724 + 0.350067i \(0.113841\pi\)
−0.936724 + 0.350067i \(0.886159\pi\)
\(770\) −0.816270 1.99391i −0.0294163 0.0718554i
\(771\) −63.0884 + 63.0884i −2.27207 + 2.27207i
\(772\) 1.82877 10.8460i 0.0658190 0.390355i
\(773\) 26.0890i 0.938356i −0.883104 0.469178i \(-0.844550\pi\)
0.883104 0.469178i