# Properties

 Label 80.2.j.b.43.9 Level $80$ Weight $2$ Character 80.43 Analytic conductor $0.639$ Analytic rank $0$ Dimension $18$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$80 = 2^{4} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 80.j (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.638803216170$$ Analytic rank: $$0$$ Dimension: $$18$$ Relative dimension: $$9$$ over $$\Q(i)$$ Coefficient field: $$\mathbb{Q}[x]/(x^{18} + \cdots)$$ Defining polynomial: $$x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + 74 x^{8} + 24 x^{7} - 80 x^{6} - 224 x^{5} - 160 x^{4} - 256 x^{3} + 256 x^{2} + 512$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2^{6}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 43.9 Root $$1.41303 - 0.0578659i$$ of defining polynomial Character $$\chi$$ $$=$$ 80.43 Dual form 80.2.j.b.67.9

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.29521 - 0.567819i) q^{2} +1.96251i q^{3} +(1.35516 - 1.47090i) q^{4} +(-1.72581 - 1.42182i) q^{5} +(1.11435 + 2.54187i) q^{6} +(-1.60205 + 1.60205i) q^{7} +(0.920026 - 2.67461i) q^{8} -0.851447 q^{9} +O(q^{10})$$ $$q+(1.29521 - 0.567819i) q^{2} +1.96251i q^{3} +(1.35516 - 1.47090i) q^{4} +(-1.72581 - 1.42182i) q^{5} +(1.11435 + 2.54187i) q^{6} +(-1.60205 + 1.60205i) q^{7} +(0.920026 - 2.67461i) q^{8} -0.851447 q^{9} +(-3.04263 - 0.861621i) q^{10} +(0.754587 - 0.754587i) q^{11} +(2.88665 + 2.65952i) q^{12} -5.94580 q^{13} +(-1.16532 + 2.98467i) q^{14} +(2.79034 - 3.38692i) q^{15} +(-0.327065 - 3.98661i) q^{16} +(1.95574 - 1.95574i) q^{17} +(-1.10281 + 0.483468i) q^{18} +(-0.780680 + 0.780680i) q^{19} +(-4.43011 + 0.611680i) q^{20} +(-3.14404 - 3.14404i) q^{21} +(0.548884 - 1.40582i) q^{22} +(4.93121 + 4.93121i) q^{23} +(5.24896 + 1.80556i) q^{24} +(0.956833 + 4.90759i) q^{25} +(-7.70109 + 3.37614i) q^{26} +4.21656i q^{27} +(0.185408 + 4.52748i) q^{28} +(1.44802 + 1.44802i) q^{29} +(1.69094 - 5.97120i) q^{30} -3.60859i q^{31} +(-2.68729 - 4.97780i) q^{32} +(1.48089 + 1.48089i) q^{33} +(1.42260 - 3.64361i) q^{34} +(5.04266 - 0.486998i) q^{35} +(-1.15385 + 1.25239i) q^{36} +10.2364 q^{37} +(-0.567864 + 1.45443i) q^{38} -11.6687i q^{39} +(-5.39062 + 3.30776i) q^{40} -6.93334i q^{41} +(-5.85745 - 2.28696i) q^{42} -9.91344 q^{43} +(-0.0873298 - 2.13251i) q^{44} +(1.46944 + 1.21061i) q^{45} +(9.18700 + 3.58694i) q^{46} +(-0.104270 - 0.104270i) q^{47} +(7.82376 - 0.641868i) q^{48} +1.86688i q^{49} +(4.02593 + 5.81308i) q^{50} +(3.83816 + 3.83816i) q^{51} +(-8.05753 + 8.74565i) q^{52} -4.03213i q^{53} +(2.39424 + 5.46135i) q^{54} +(-2.37516 + 0.229383i) q^{55} +(2.81093 + 5.75878i) q^{56} +(-1.53209 - 1.53209i) q^{57} +(2.69771 + 1.05328i) q^{58} +(3.46736 + 3.46736i) q^{59} +(-1.20043 - 8.69413i) q^{60} +(0.680578 - 0.680578i) q^{61} +(-2.04902 - 4.67390i) q^{62} +(1.36406 - 1.36406i) q^{63} +(-6.30711 - 4.92142i) q^{64} +(10.2613 + 8.45388i) q^{65} +(2.75894 + 1.07719i) q^{66} -9.04721 q^{67} +(-0.226341 - 5.52703i) q^{68} +(-9.67754 + 9.67754i) q^{69} +(6.25480 - 3.49408i) q^{70} -3.64007 q^{71} +(-0.783353 + 2.27729i) q^{72} +(2.94030 - 2.94030i) q^{73} +(13.2583 - 5.81242i) q^{74} +(-9.63120 + 1.87779i) q^{75} +(0.0903496 + 2.20625i) q^{76} +2.41777i q^{77} +(-6.62570 - 15.1135i) q^{78} -10.7140 q^{79} +(-5.10380 + 7.34515i) q^{80} -10.8294 q^{81} +(-3.93688 - 8.98016i) q^{82} -4.23845i q^{83} +(-8.88523 + 0.363865i) q^{84} +(-6.15595 + 0.594515i) q^{85} +(-12.8400 + 5.62904i) q^{86} +(-2.84176 + 2.84176i) q^{87} +(-1.32399 - 2.71247i) q^{88} -0.0426256 q^{89} +(2.59064 + 0.733625i) q^{90} +(9.52546 - 9.52546i) q^{91} +(13.9359 - 0.570698i) q^{92} +7.08189 q^{93} +(-0.194258 - 0.0758455i) q^{94} +(2.45730 - 0.237315i) q^{95} +(9.76898 - 5.27383i) q^{96} +(-1.91173 + 1.91173i) q^{97} +(1.06005 + 2.41802i) q^{98} +(-0.642491 + 0.642491i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} + O(q^{10})$$ $$18 q - 4 q^{2} - 4 q^{4} - 4 q^{5} - 8 q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 12 q^{10} - 2 q^{11} + 4 q^{12} + 12 q^{14} + 20 q^{15} - 6 q^{17} + 16 q^{18} + 2 q^{19} - 4 q^{20} - 16 q^{21} + 4 q^{22} - 2 q^{23} + 4 q^{24} + 6 q^{25} - 16 q^{26} - 4 q^{28} - 14 q^{29} + 20 q^{30} - 4 q^{32} - 8 q^{33} - 28 q^{34} - 6 q^{35} - 4 q^{36} + 8 q^{37} + 16 q^{38} + 20 q^{40} + 28 q^{42} - 44 q^{43} + 44 q^{44} - 4 q^{45} + 12 q^{46} - 38 q^{47} + 60 q^{48} + 20 q^{50} + 8 q^{51} - 40 q^{52} - 4 q^{54} - 6 q^{55} + 20 q^{56} + 24 q^{57} - 20 q^{58} - 10 q^{59} - 68 q^{60} + 14 q^{61} + 6 q^{63} - 16 q^{64} + 4 q^{66} + 12 q^{67} + 36 q^{68} + 32 q^{69} - 36 q^{70} + 24 q^{71} - 36 q^{72} + 14 q^{73} + 48 q^{74} + 64 q^{75} - 16 q^{76} - 84 q^{78} + 16 q^{79} - 20 q^{80} + 2 q^{81} - 28 q^{82} - 24 q^{84} - 10 q^{85} - 36 q^{86} + 24 q^{87} - 96 q^{88} - 12 q^{89} - 64 q^{90} + 52 q^{92} + 16 q^{93} + 28 q^{94} - 34 q^{95} - 40 q^{96} + 18 q^{97} + 32 q^{98} - 22 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/80\mathbb{Z}\right)^\times$$.

 $$n$$ $$17$$ $$21$$ $$31$$ $$\chi(n)$$ $$e\left(\frac{3}{4}\right)$$ $$e\left(\frac{1}{4}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.29521 0.567819i 0.915855 0.401509i
$$3$$ 1.96251i 1.13306i 0.824043 + 0.566528i $$0.191714\pi$$
−0.824043 + 0.566528i $$0.808286\pi$$
$$4$$ 1.35516 1.47090i 0.677582 0.735448i
$$5$$ −1.72581 1.42182i −0.771805 0.635859i
$$6$$ 1.11435 + 2.54187i 0.454932 + 1.03772i
$$7$$ −1.60205 + 1.60205i −0.605517 + 0.605517i −0.941771 0.336254i $$-0.890840\pi$$
0.336254 + 0.941771i $$0.390840\pi$$
$$8$$ 0.920026 2.67461i 0.325278 0.945618i
$$9$$ −0.851447 −0.283816
$$10$$ −3.04263 0.861621i −0.962165 0.272468i
$$11$$ 0.754587 0.754587i 0.227517 0.227517i −0.584138 0.811654i $$-0.698567\pi$$
0.811654 + 0.584138i $$0.198567\pi$$
$$12$$ 2.88665 + 2.65952i 0.833303 + 0.767738i
$$13$$ −5.94580 −1.64907 −0.824534 0.565812i $$-0.808563\pi$$
−0.824534 + 0.565812i $$0.808563\pi$$
$$14$$ −1.16532 + 2.98467i −0.311446 + 0.797687i
$$15$$ 2.79034 3.38692i 0.720464 0.874498i
$$16$$ −0.327065 3.98661i −0.0817662 0.996652i
$$17$$ 1.95574 1.95574i 0.474336 0.474336i −0.428978 0.903315i $$-0.641126\pi$$
0.903315 + 0.428978i $$0.141126\pi$$
$$18$$ −1.10281 + 0.483468i −0.259934 + 0.113954i
$$19$$ −0.780680 + 0.780680i −0.179100 + 0.179100i −0.790964 0.611863i $$-0.790420\pi$$
0.611863 + 0.790964i $$0.290420\pi$$
$$20$$ −4.43011 + 0.611680i −0.990602 + 0.136776i
$$21$$ −3.14404 3.14404i −0.686085 0.686085i
$$22$$ 0.548884 1.40582i 0.117022 0.299722i
$$23$$ 4.93121 + 4.93121i 1.02823 + 1.02823i 0.999590 + 0.0286378i $$0.00911693\pi$$
0.0286378 + 0.999590i $$0.490883\pi$$
$$24$$ 5.24896 + 1.80556i 1.07144 + 0.368558i
$$25$$ 0.956833 + 4.90759i 0.191367 + 0.981519i
$$26$$ −7.70109 + 3.37614i −1.51031 + 0.662115i
$$27$$ 4.21656i 0.811477i
$$28$$ 0.185408 + 4.52748i 0.0350388 + 0.855614i
$$29$$ 1.44802 + 1.44802i 0.268891 + 0.268891i 0.828653 0.559762i $$-0.189108\pi$$
−0.559762 + 0.828653i $$0.689108\pi$$
$$30$$ 1.69094 5.97120i 0.308722 1.09019i
$$31$$ 3.60859i 0.648121i −0.946036 0.324061i $$-0.894952\pi$$
0.946036 0.324061i $$-0.105048\pi$$
$$32$$ −2.68729 4.97780i −0.475050 0.879959i
$$33$$ 1.48089 + 1.48089i 0.257789 + 0.257789i
$$34$$ 1.42260 3.64361i 0.243973 0.624874i
$$35$$ 5.04266 0.486998i 0.852365 0.0823177i
$$36$$ −1.15385 + 1.25239i −0.192308 + 0.208732i
$$37$$ 10.2364 1.68285 0.841427 0.540371i $$-0.181716\pi$$
0.841427 + 0.540371i $$0.181716\pi$$
$$38$$ −0.567864 + 1.45443i −0.0921197 + 0.235940i
$$39$$ 11.6687i 1.86849i
$$40$$ −5.39062 + 3.30776i −0.852331 + 0.523002i
$$41$$ 6.93334i 1.08281i −0.840763 0.541403i $$-0.817893\pi$$
0.840763 0.541403i $$-0.182107\pi$$
$$42$$ −5.85745 2.28696i −0.903823 0.352885i
$$43$$ −9.91344 −1.51179 −0.755893 0.654695i $$-0.772797\pi$$
−0.755893 + 0.654695i $$0.772797\pi$$
$$44$$ −0.0873298 2.13251i −0.0131655 0.321488i
$$45$$ 1.46944 + 1.21061i 0.219050 + 0.180467i
$$46$$ 9.18700 + 3.58694i 1.35455 + 0.528865i
$$47$$ −0.104270 0.104270i −0.0152093 0.0152093i 0.699461 0.714671i $$-0.253423\pi$$
−0.714671 + 0.699461i $$0.753423\pi$$
$$48$$ 7.82376 0.641868i 1.12926 0.0926457i
$$49$$ 1.86688i 0.266698i
$$50$$ 4.02593 + 5.81308i 0.569352 + 0.822094i
$$51$$ 3.83816 + 3.83816i 0.537450 + 0.537450i
$$52$$ −8.05753 + 8.74565i −1.11738 + 1.21280i
$$53$$ 4.03213i 0.553856i −0.960891 0.276928i $$-0.910684\pi$$
0.960891 0.276928i $$-0.0893164\pi$$
$$54$$ 2.39424 + 5.46135i 0.325815 + 0.743195i
$$55$$ −2.37516 + 0.229383i −0.320267 + 0.0309300i
$$56$$ 2.81093 + 5.75878i 0.375627 + 0.769550i
$$57$$ −1.53209 1.53209i −0.202931 0.202931i
$$58$$ 2.69771 + 1.05328i 0.354227 + 0.138303i
$$59$$ 3.46736 + 3.46736i 0.451412 + 0.451412i 0.895823 0.444411i $$-0.146587\pi$$
−0.444411 + 0.895823i $$0.646587\pi$$
$$60$$ −1.20043 8.69413i −0.154975 1.12241i
$$61$$ 0.680578 0.680578i 0.0871391 0.0871391i −0.662194 0.749333i $$-0.730374\pi$$
0.749333 + 0.662194i $$0.230374\pi$$
$$62$$ −2.04902 4.67390i −0.260226 0.593585i
$$63$$ 1.36406 1.36406i 0.171855 0.171855i
$$64$$ −6.30711 4.92142i −0.788388 0.615178i
$$65$$ 10.2613 + 8.45388i 1.27276 + 1.04857i
$$66$$ 2.75894 + 1.07719i 0.339602 + 0.132593i
$$67$$ −9.04721 −1.10529 −0.552646 0.833416i $$-0.686382\pi$$
−0.552646 + 0.833416i $$0.686382\pi$$
$$68$$ −0.226341 5.52703i −0.0274479 0.670251i
$$69$$ −9.67754 + 9.67754i −1.16504 + 1.16504i
$$70$$ 6.25480 3.49408i 0.747592 0.417623i
$$71$$ −3.64007 −0.431997 −0.215998 0.976394i $$-0.569301\pi$$
−0.215998 + 0.976394i $$0.569301\pi$$
$$72$$ −0.783353 + 2.27729i −0.0923191 + 0.268381i
$$73$$ 2.94030 2.94030i 0.344136 0.344136i −0.513784 0.857920i $$-0.671757\pi$$
0.857920 + 0.513784i $$0.171757\pi$$
$$74$$ 13.2583 5.81242i 1.54125 0.675681i
$$75$$ −9.63120 + 1.87779i −1.11212 + 0.216829i
$$76$$ 0.0903496 + 2.20625i 0.0103638 + 0.253074i
$$77$$ 2.41777i 0.275530i
$$78$$ −6.62570 15.1135i −0.750213 1.71126i
$$79$$ −10.7140 −1.20542 −0.602711 0.797960i $$-0.705913\pi$$
−0.602711 + 0.797960i $$0.705913\pi$$
$$80$$ −5.10380 + 7.34515i −0.570622 + 0.821213i
$$81$$ −10.8294 −1.20326
$$82$$ −3.93688 8.98016i −0.434756 0.991693i
$$83$$ 4.23845i 0.465230i −0.972569 0.232615i $$-0.925272\pi$$
0.972569 0.232615i $$-0.0747282\pi$$
$$84$$ −8.88523 + 0.363865i −0.969458 + 0.0397009i
$$85$$ −6.15595 + 0.594515i −0.667707 + 0.0644842i
$$86$$ −12.8400 + 5.62904i −1.38458 + 0.606995i
$$87$$ −2.84176 + 2.84176i −0.304668 + 0.304668i
$$88$$ −1.32399 2.71247i −0.141138 0.289150i
$$89$$ −0.0426256 −0.00451831 −0.00225915 0.999997i $$-0.500719\pi$$
−0.00225915 + 0.999997i $$0.500719\pi$$
$$90$$ 2.59064 + 0.733625i 0.273078 + 0.0773308i
$$91$$ 9.52546 9.52546i 0.998539 0.998539i
$$92$$ 13.9359 0.570698i 1.45292 0.0594993i
$$93$$ 7.08189 0.734358
$$94$$ −0.194258 0.0758455i −0.0200362 0.00782287i
$$95$$ 2.45730 0.237315i 0.252113 0.0243480i
$$96$$ 9.76898 5.27383i 0.997042 0.538258i
$$97$$ −1.91173 + 1.91173i −0.194106 + 0.194106i −0.797468 0.603362i $$-0.793828\pi$$
0.603362 + 0.797468i $$0.293828\pi$$
$$98$$ 1.06005 + 2.41802i 0.107081 + 0.244257i
$$99$$ −0.642491 + 0.642491i −0.0645728 + 0.0645728i
$$100$$ 8.51522 + 5.24319i 0.851522 + 0.524319i
$$101$$ 4.96537 + 4.96537i 0.494073 + 0.494073i 0.909587 0.415514i $$-0.136398\pi$$
−0.415514 + 0.909587i $$0.636398\pi$$
$$102$$ 7.15062 + 2.79186i 0.708017 + 0.276435i
$$103$$ 0.442220 + 0.442220i 0.0435733 + 0.0435733i 0.728558 0.684984i $$-0.240191\pi$$
−0.684984 + 0.728558i $$0.740191\pi$$
$$104$$ −5.47029 + 15.9027i −0.536406 + 1.55939i
$$105$$ 0.955739 + 9.89627i 0.0932706 + 0.965777i
$$106$$ −2.28952 5.22248i −0.222378 0.507252i
$$107$$ 17.5924i 1.70072i −0.526204 0.850359i $$-0.676385\pi$$
0.526204 0.850359i $$-0.323615\pi$$
$$108$$ 6.20211 + 5.71412i 0.596799 + 0.549842i
$$109$$ −0.345161 0.345161i −0.0330605 0.0330605i 0.690383 0.723444i $$-0.257442\pi$$
−0.723444 + 0.690383i $$0.757442\pi$$
$$110$$ −2.94610 + 1.64576i −0.280900 + 0.156917i
$$111$$ 20.0890i 1.90677i
$$112$$ 6.91071 + 5.86276i 0.653001 + 0.553979i
$$113$$ −5.43662 5.43662i −0.511435 0.511435i 0.403531 0.914966i $$-0.367783\pi$$
−0.914966 + 0.403531i $$0.867783\pi$$
$$114$$ −2.85434 1.11444i −0.267334 0.104377i
$$115$$ −1.49901 15.5216i −0.139784 1.44740i
$$116$$ 4.09219 0.167582i 0.379950 0.0155596i
$$117$$ 5.06253 0.468031
$$118$$ 6.45981 + 2.52214i 0.594673 + 0.232182i
$$119$$ 6.26638i 0.574438i
$$120$$ −6.49151 10.5791i −0.592591 0.965739i
$$121$$ 9.86120i 0.896472i
$$122$$ 0.495050 1.26794i 0.0448197 0.114794i
$$123$$ 13.6067 1.22688
$$124$$ −5.30785 4.89023i −0.476659 0.439155i
$$125$$ 5.32642 9.83002i 0.476410 0.879223i
$$126$$ 0.992211 2.54129i 0.0883932 0.226396i
$$127$$ 6.27150 + 6.27150i 0.556505 + 0.556505i 0.928311 0.371805i $$-0.121261\pi$$
−0.371805 + 0.928311i $$0.621261\pi$$
$$128$$ −10.9635 2.79301i −0.969049 0.246869i
$$129$$ 19.4552i 1.71294i
$$130$$ 18.0909 + 5.12302i 1.58667 + 0.449319i
$$131$$ 1.61521 + 1.61521i 0.141122 + 0.141122i 0.774138 0.633017i $$-0.218184\pi$$
−0.633017 + 0.774138i $$0.718184\pi$$
$$132$$ 4.18507 0.171386i 0.364263 0.0149172i
$$133$$ 2.50138i 0.216897i
$$134$$ −11.7181 + 5.13718i −1.01229 + 0.443785i
$$135$$ 5.99520 7.27697i 0.515985 0.626302i
$$136$$ −3.43152 7.03018i −0.294250 0.602833i
$$137$$ −6.83585 6.83585i −0.584026 0.584026i 0.351981 0.936007i $$-0.385508\pi$$
−0.936007 + 0.351981i $$0.885508\pi$$
$$138$$ −7.03941 + 18.0296i −0.599234 + 1.53478i
$$139$$ 13.7427 + 13.7427i 1.16564 + 1.16564i 0.983220 + 0.182423i $$0.0583940\pi$$
0.182423 + 0.983220i $$0.441606\pi$$
$$140$$ 6.11730 8.07718i 0.517006 0.682647i
$$141$$ 0.204631 0.204631i 0.0172330 0.0172330i
$$142$$ −4.71467 + 2.06690i −0.395647 + 0.173450i
$$143$$ −4.48662 + 4.48662i −0.375190 + 0.375190i
$$144$$ 0.278479 + 3.39439i 0.0232066 + 0.282865i
$$145$$ −0.440176 4.55784i −0.0365547 0.378508i
$$146$$ 2.13876 5.47788i 0.177005 0.453353i
$$147$$ −3.66378 −0.302184
$$148$$ 13.8720 15.0567i 1.14027 1.23765i
$$149$$ 1.73811 1.73811i 0.142391 0.142391i −0.632318 0.774709i $$-0.717896\pi$$
0.774709 + 0.632318i $$0.217896\pi$$
$$150$$ −11.4082 + 7.90093i −0.931478 + 0.645108i
$$151$$ 5.83522 0.474864 0.237432 0.971404i $$-0.423694\pi$$
0.237432 + 0.971404i $$0.423694\pi$$
$$152$$ 1.36977 + 2.80626i 0.111103 + 0.227618i
$$153$$ −1.66521 + 1.66521i −0.134624 + 0.134624i
$$154$$ 1.37286 + 3.13153i 0.110628 + 0.252346i
$$155$$ −5.13078 + 6.22773i −0.412114 + 0.500223i
$$156$$ −17.1634 15.8130i −1.37417 1.26605i
$$157$$ 3.14732i 0.251183i −0.992082 0.125592i $$-0.959917\pi$$
0.992082 0.125592i $$-0.0400829\pi$$
$$158$$ −13.8770 + 6.08363i −1.10399 + 0.483987i
$$159$$ 7.91310 0.627550
$$160$$ −2.43980 + 12.4116i −0.192883 + 0.981222i
$$161$$ −15.8001 −1.24522
$$162$$ −14.0264 + 6.14913i −1.10202 + 0.483121i
$$163$$ 7.82117i 0.612601i 0.951935 + 0.306301i $$0.0990913\pi$$
−0.951935 + 0.306301i $$0.900909\pi$$
$$164$$ −10.1982 9.39580i −0.796347 0.733689i
$$165$$ −0.450167 4.66128i −0.0350454 0.362880i
$$166$$ −2.40667 5.48970i −0.186794 0.426083i
$$167$$ −9.88460 + 9.88460i −0.764893 + 0.764893i −0.977203 0.212309i $$-0.931902\pi$$
0.212309 + 0.977203i $$0.431902\pi$$
$$168$$ −11.3017 + 5.51649i −0.871943 + 0.425606i
$$169$$ 22.3525 1.71942
$$170$$ −7.63570 + 4.26549i −0.585632 + 0.327148i
$$171$$ 0.664708 0.664708i 0.0508315 0.0508315i
$$172$$ −13.4343 + 14.5816i −1.02436 + 1.11184i
$$173$$ 3.49245 0.265526 0.132763 0.991148i $$-0.457615\pi$$
0.132763 + 0.991148i $$0.457615\pi$$
$$174$$ −2.06708 + 5.29429i −0.156705 + 0.401359i
$$175$$ −9.39509 6.32931i −0.710202 0.478451i
$$176$$ −3.25504 2.76144i −0.245358 0.208152i
$$177$$ −6.80473 + 6.80473i −0.511475 + 0.511475i
$$178$$ −0.0552094 + 0.0242036i −0.00413812 + 0.00181414i
$$179$$ 13.0809 13.0809i 0.977713 0.977713i −0.0220444 0.999757i $$-0.507018\pi$$
0.999757 + 0.0220444i $$0.00701753\pi$$
$$180$$ 3.77200 0.520813i 0.281148 0.0388191i
$$181$$ 13.6393 + 13.6393i 1.01380 + 1.01380i 0.999903 + 0.0138952i $$0.00442312\pi$$
0.0138952 + 0.999903i $$0.495577\pi$$
$$182$$ 6.92878 17.7462i 0.513595 1.31544i
$$183$$ 1.33564 + 1.33564i 0.0987335 + 0.0987335i
$$184$$ 17.7259 8.65223i 1.30677 0.637851i
$$185$$ −17.6661 14.5544i −1.29884 1.07006i
$$186$$ 9.17257 4.02123i 0.672565 0.294851i
$$187$$ 2.95155i 0.215839i
$$188$$ −0.294673 + 0.0120674i −0.0214912 + 0.000880102i
$$189$$ −6.75513 6.75513i −0.491363 0.491363i
$$190$$ 3.04797 1.70267i 0.221123 0.123525i
$$191$$ 2.92523i 0.211662i 0.994384 + 0.105831i $$0.0337503\pi$$
−0.994384 + 0.105831i $$0.966250\pi$$
$$192$$ 9.65835 12.3778i 0.697031 0.893288i
$$193$$ 0.0830702 + 0.0830702i 0.00597953 + 0.00597953i 0.710090 0.704111i $$-0.248654\pi$$
−0.704111 + 0.710090i $$0.748654\pi$$
$$194$$ −1.39058 + 3.56161i −0.0998379 + 0.255709i
$$195$$ −16.5908 + 20.1379i −1.18809 + 1.44211i
$$196$$ 2.74599 + 2.52993i 0.196142 + 0.180710i
$$197$$ 7.80487 0.556074 0.278037 0.960570i $$-0.410316\pi$$
0.278037 + 0.960570i $$0.410316\pi$$
$$198$$ −0.467346 + 1.19698i −0.0332128 + 0.0850659i
$$199$$ 10.9740i 0.777924i −0.921254 0.388962i $$-0.872834\pi$$
0.921254 0.388962i $$-0.127166\pi$$
$$200$$ 14.0062 + 1.95595i 0.990389 + 0.138307i
$$201$$ 17.7552i 1.25236i
$$202$$ 9.25065 + 3.61179i 0.650873 + 0.254125i
$$203$$ −4.63960 −0.325636
$$204$$ 10.8469 0.444197i 0.759432 0.0311000i
$$205$$ −9.85799 + 11.9656i −0.688512 + 0.835715i
$$206$$ 0.823871 + 0.321669i 0.0574018 + 0.0224118i
$$207$$ −4.19866 4.19866i −0.291827 0.291827i
$$208$$ 1.94466 + 23.7036i 0.134838 + 1.64355i
$$209$$ 1.17818i 0.0814966i
$$210$$ 6.85718 + 12.2751i 0.473190 + 0.847063i
$$211$$ −8.92204 8.92204i −0.614218 0.614218i 0.329824 0.944042i $$-0.393011\pi$$
−0.944042 + 0.329824i $$0.893011\pi$$
$$212$$ −5.93085 5.46420i −0.407332 0.375283i
$$213$$ 7.14367i 0.489477i
$$214$$ −9.98927 22.7859i −0.682853 1.55761i
$$215$$ 17.1087 + 14.0952i 1.16680 + 0.961283i
$$216$$ 11.2777 + 3.87934i 0.767347 + 0.263956i
$$217$$ 5.78113 + 5.78113i 0.392449 + 0.392449i
$$218$$ −0.643047 0.251069i −0.0435527 0.0170045i
$$219$$ 5.77037 + 5.77037i 0.389926 + 0.389926i
$$220$$ −2.88134 + 3.80447i −0.194260 + 0.256497i
$$221$$ −11.6284 + 11.6284i −0.782213 + 0.782213i
$$222$$ 11.4069 + 26.0196i 0.765584 + 1.74632i
$$223$$ 13.1678 13.1678i 0.881784 0.881784i −0.111931 0.993716i $$-0.535704\pi$$
0.993716 + 0.111931i $$0.0357037\pi$$
$$224$$ 12.2798 + 3.66950i 0.820481 + 0.245179i
$$225$$ −0.814693 4.17856i −0.0543129 0.278570i
$$226$$ −10.1286 3.95458i −0.673745 0.263055i
$$227$$ 19.3432 1.28385 0.641927 0.766766i $$-0.278135\pi$$
0.641927 + 0.766766i $$0.278135\pi$$
$$228$$ −4.32979 + 0.177312i −0.286747 + 0.0117428i
$$229$$ −13.2143 + 13.2143i −0.873223 + 0.873223i −0.992822 0.119599i $$-0.961839\pi$$
0.119599 + 0.992822i $$0.461839\pi$$
$$230$$ −10.7550 19.2527i −0.709165 1.26948i
$$231$$ −4.74490 −0.312191
$$232$$ 5.20511 2.54068i 0.341732 0.166804i
$$233$$ −20.6884 + 20.6884i −1.35534 + 1.35534i −0.475769 + 0.879570i $$0.657830\pi$$
−0.879570 + 0.475769i $$0.842170\pi$$
$$234$$ 6.55707 2.87460i 0.428649 0.187919i
$$235$$ 0.0316965 + 0.328204i 0.00206765 + 0.0214096i
$$236$$ 9.79896 0.401284i 0.637858 0.0261214i
$$237$$ 21.0264i 1.36581i
$$238$$ 3.55817 + 8.11630i 0.230642 + 0.526102i
$$239$$ −14.1053 −0.912395 −0.456198 0.889878i $$-0.650789\pi$$
−0.456198 + 0.889878i $$0.650789\pi$$
$$240$$ −14.4149 10.0163i −0.930480 0.646547i
$$241$$ 12.8011 0.824592 0.412296 0.911050i $$-0.364727\pi$$
0.412296 + 0.911050i $$0.364727\pi$$
$$242$$ 5.59937 + 12.7724i 0.359941 + 0.821039i
$$243$$ 8.60310i 0.551889i
$$244$$ −0.0787646 1.92335i −0.00504238 0.123130i
$$245$$ 2.65438 3.22189i 0.169582 0.205839i
$$246$$ 17.6237 7.72617i 1.12364 0.492603i
$$247$$ 4.64177 4.64177i 0.295349 0.295349i
$$248$$ −9.65157 3.31999i −0.612876 0.210820i
$$249$$ 8.31800 0.527132
$$250$$ 1.31719 15.7564i 0.0833066 0.996524i
$$251$$ −6.84118 + 6.84118i −0.431812 + 0.431812i −0.889244 0.457433i $$-0.848769\pi$$
0.457433 + 0.889244i $$0.348769\pi$$
$$252$$ −0.157865 3.85491i −0.00994457 0.242837i
$$253$$ 7.44205 0.467878
$$254$$ 11.6840 + 4.56186i 0.733120 + 0.286237i
$$255$$ −1.16674 12.0811i −0.0730642 0.756549i
$$256$$ −15.7861 + 2.60776i −0.986629 + 0.162985i
$$257$$ −6.66524 + 6.66524i −0.415766 + 0.415766i −0.883742 0.467975i $$-0.844984\pi$$
0.467975 + 0.883742i $$0.344984\pi$$
$$258$$ −11.0471 25.1987i −0.687759 1.56880i
$$259$$ −16.3992 + 16.3992i −1.01900 + 1.01900i
$$260$$ 26.3405 3.63693i 1.63357 0.225553i
$$261$$ −1.23291 1.23291i −0.0763154 0.0763154i
$$262$$ 3.00919 + 1.17490i 0.185908 + 0.0725854i
$$263$$ −7.32015 7.32015i −0.451380 0.451380i 0.444432 0.895812i $$-0.353405\pi$$
−0.895812 + 0.444432i $$0.853405\pi$$
$$264$$ 5.32325 2.59834i 0.327623 0.159917i
$$265$$ −5.73298 + 6.95869i −0.352174 + 0.427469i
$$266$$ −1.42033 3.23982i −0.0870859 0.198646i
$$267$$ 0.0836533i 0.00511950i
$$268$$ −12.2604 + 13.3075i −0.748926 + 0.812885i
$$269$$ 15.9801 + 15.9801i 0.974321 + 0.974321i 0.999678 0.0253576i $$-0.00807242\pi$$
−0.0253576 + 0.999678i $$0.508072\pi$$
$$270$$ 3.63307 12.8294i 0.221102 0.780774i
$$271$$ 3.59684i 0.218492i −0.994015 0.109246i $$-0.965156\pi$$
0.994015 0.109246i $$-0.0348437\pi$$
$$272$$ −8.43642 7.15711i −0.511533 0.433963i
$$273$$ 18.6938 + 18.6938i 1.13140 + 1.13140i
$$274$$ −12.7354 4.97237i −0.769375 0.300392i
$$275$$ 4.42522 + 2.98119i 0.266851 + 0.179773i
$$276$$ 1.12000 + 27.3493i 0.0674161 + 1.64623i
$$277$$ −20.9416 −1.25826 −0.629131 0.777300i $$-0.716589\pi$$
−0.629131 + 0.777300i $$0.716589\pi$$
$$278$$ 25.6032 + 9.99640i 1.53558 + 0.599545i
$$279$$ 3.07252i 0.183947i
$$280$$ 3.33684 13.9352i 0.199415 0.832788i
$$281$$ 3.26699i 0.194892i −0.995241 0.0974462i $$-0.968933\pi$$
0.995241 0.0974462i $$-0.0310674\pi$$
$$282$$ 0.148848 0.381234i 0.00886375 0.0227022i
$$283$$ 0.000151619 0 9.01279e−6 0 4.50640e−6 1.00000i $$-0.499999\pi$$
4.50640e−6 1.00000i $$0.499999\pi$$
$$284$$ −4.93289 + 5.35416i −0.292713 + 0.317711i
$$285$$ 0.465733 + 4.82247i 0.0275877 + 0.285658i
$$286$$ −3.26355 + 8.35873i −0.192978 + 0.494262i
$$287$$ 11.1075 + 11.1075i 0.655657 + 0.655657i
$$288$$ 2.28809 + 4.23833i 0.134827 + 0.249746i
$$289$$ 9.35017i 0.550010i
$$290$$ −3.15815 5.65344i −0.185453 0.331981i
$$291$$ −3.75178 3.75178i −0.219933 0.219933i
$$292$$ −0.340287 8.30947i −0.0199138 0.486275i
$$293$$ 11.0593i 0.646091i −0.946384 0.323045i $$-0.895293\pi$$
0.946384 0.323045i $$-0.104707\pi$$
$$294$$ −4.74538 + 2.08036i −0.276756 + 0.121329i
$$295$$ −1.05402 10.9140i −0.0613677 0.635436i
$$296$$ 9.41775 27.3784i 0.547396 1.59134i
$$297$$ 3.18176 + 3.18176i 0.184624 + 0.184624i
$$298$$ 1.26429 3.23815i 0.0732384 0.187581i
$$299$$ −29.3200 29.3200i −1.69562 1.69562i
$$300$$ −10.2898 + 16.7112i −0.594083 + 0.964822i
$$301$$ 15.8818 15.8818i 0.915413 0.915413i
$$302$$ 7.55787 3.31335i 0.434906 0.190662i
$$303$$ −9.74459 + 9.74459i −0.559812 + 0.559812i
$$304$$ 3.36760 + 2.85693i 0.193145 + 0.163856i
$$305$$ −2.14221 + 0.206885i −0.122663 + 0.0118462i
$$306$$ −1.21127 + 3.10234i −0.0692435 + 0.177349i
$$307$$ 15.1317 0.863613 0.431806 0.901966i $$-0.357876\pi$$
0.431806 + 0.901966i $$0.357876\pi$$
$$308$$ 3.55629 + 3.27647i 0.202638 + 0.186694i
$$309$$ −0.867862 + 0.867862i −0.0493709 + 0.0493709i
$$310$$ −3.10923 + 10.9796i −0.176593 + 0.623600i
$$311$$ −27.1556 −1.53985 −0.769925 0.638134i $$-0.779707\pi$$
−0.769925 + 0.638134i $$0.779707\pi$$
$$312$$ −31.2092 10.7355i −1.76687 0.607778i
$$313$$ 13.6695 13.6695i 0.772646 0.772646i −0.205922 0.978568i $$-0.566019\pi$$
0.978568 + 0.205922i $$0.0660194\pi$$
$$314$$ −1.78711 4.07645i −0.100852 0.230048i
$$315$$ −4.29356 + 0.414653i −0.241915 + 0.0233631i
$$316$$ −14.5193 + 15.7592i −0.816772 + 0.886525i
$$317$$ 25.8314i 1.45084i 0.688307 + 0.725419i $$0.258354\pi$$
−0.688307 + 0.725419i $$0.741646\pi$$
$$318$$ 10.2492 4.49321i 0.574745 0.251967i
$$319$$ 2.18532 0.122354
$$320$$ 3.88746 + 17.4610i 0.217316 + 0.976101i
$$321$$ 34.5252 1.92701
$$322$$ −20.4645 + 8.97157i −1.14044 + 0.499966i
$$323$$ 3.05361i 0.169908i
$$324$$ −14.6756 + 15.9289i −0.815310 + 0.884938i
$$325$$ −5.68914 29.1796i −0.315576 1.61859i
$$326$$ 4.44101 + 10.1301i 0.245965 + 0.561054i
$$327$$ 0.677383 0.677383i 0.0374594 0.0374594i
$$328$$ −18.5440 6.37885i −1.02392 0.352213i
$$329$$ 0.334091 0.0184190
$$330$$ −3.22983 5.78175i −0.177796 0.318275i
$$331$$ −13.6207 + 13.6207i −0.748659 + 0.748659i −0.974227 0.225568i $$-0.927576\pi$$
0.225568 + 0.974227i $$0.427576\pi$$
$$332$$ −6.23431 5.74379i −0.342152 0.315231i
$$333$$ −8.71576 −0.477621
$$334$$ −7.19002 + 18.4153i −0.393420 + 1.00764i
$$335$$ 15.6138 + 12.8635i 0.853071 + 0.702810i
$$336$$ −11.5057 + 13.5623i −0.627689 + 0.739886i
$$337$$ 16.0911 16.0911i 0.876536 0.876536i −0.116638 0.993174i $$-0.537212\pi$$
0.993174 + 0.116638i $$0.0372119\pi$$
$$338$$ 28.9513 12.6922i 1.57474 0.690364i
$$339$$ 10.6694 10.6694i 0.579484 0.579484i
$$340$$ −7.46785 + 9.86042i −0.405001 + 0.534756i
$$341$$ −2.72299 2.72299i −0.147458 0.147458i
$$342$$ 0.483506 1.23837i 0.0261450 0.0669636i
$$343$$ −14.2052 14.2052i −0.767007 0.767007i
$$344$$ −9.12062 + 26.5146i −0.491751 + 1.42957i
$$345$$ 30.4614 2.94183i 1.63998 0.158383i
$$346$$ 4.52347 1.98308i 0.243183 0.106611i
$$347$$ 5.57562i 0.299315i −0.988738 0.149658i $$-0.952183\pi$$
0.988738 0.149658i $$-0.0478171\pi$$
$$348$$ 0.328882 + 8.03097i 0.0176299 + 0.430505i
$$349$$ −15.0811 15.0811i −0.807273 0.807273i 0.176947 0.984220i $$-0.443378\pi$$
−0.984220 + 0.176947i $$0.943378\pi$$
$$350$$ −15.7626 2.86310i −0.842544 0.153039i
$$351$$ 25.0708i 1.33818i
$$352$$ −5.78398 1.72839i −0.308287 0.0921234i
$$353$$ 2.57880 + 2.57880i 0.137256 + 0.137256i 0.772397 0.635141i $$-0.219058\pi$$
−0.635141 + 0.772397i $$0.719058\pi$$
$$354$$ −4.94973 + 12.6774i −0.263075 + 0.673798i
$$355$$ 6.28206 + 5.17554i 0.333417 + 0.274689i
$$356$$ −0.0577647 + 0.0626979i −0.00306152 + 0.00332298i
$$357$$ −12.2978 −0.650870
$$358$$ 9.51500 24.3702i 0.502883 1.28800i
$$359$$ 5.77227i 0.304649i 0.988331 + 0.152324i $$0.0486758\pi$$
−0.988331 + 0.152324i $$0.951324\pi$$
$$360$$ 4.58983 2.81638i 0.241905 0.148436i
$$361$$ 17.7811i 0.935846i
$$362$$ 25.4104 + 9.92115i 1.33554 + 0.521444i
$$363$$ −19.3527 −1.01575
$$364$$ −1.10240 26.9195i −0.0577814 1.41096i
$$365$$ −9.25499 + 0.893807i −0.484428 + 0.0467840i
$$366$$ 2.48835 + 0.971540i 0.130068 + 0.0507832i
$$367$$ −8.30496 8.30496i −0.433516 0.433516i 0.456307 0.889822i $$-0.349172\pi$$
−0.889822 + 0.456307i $$0.849172\pi$$
$$368$$ 18.0460 21.2716i 0.940710 1.10886i
$$369$$ 5.90337i 0.307317i
$$370$$ −31.1456 8.81990i −1.61918 0.458525i
$$371$$ 6.45967 + 6.45967i 0.335369 + 0.335369i
$$372$$ 9.59712 10.4167i 0.497587 0.540082i
$$373$$ 16.0484i 0.830953i 0.909604 + 0.415477i $$0.136385\pi$$
−0.909604 + 0.415477i $$0.863615\pi$$
$$374$$ −1.67595 3.82289i −0.0866612 0.197677i
$$375$$ 19.2915 + 10.4532i 0.996209 + 0.539799i
$$376$$ −0.374813 + 0.182951i −0.0193295 + 0.00943496i
$$377$$ −8.60964 8.60964i −0.443419 0.443419i
$$378$$ −12.5850 4.91365i −0.647304 0.252731i
$$379$$ 8.91367 + 8.91367i 0.457865 + 0.457865i 0.897954 0.440089i $$-0.145053\pi$$
−0.440089 + 0.897954i $$0.645053\pi$$
$$380$$ 2.98097 3.93602i 0.152921 0.201914i
$$381$$ −12.3079 + 12.3079i −0.630552 + 0.630552i
$$382$$ 1.66100 + 3.78880i 0.0849841 + 0.193852i
$$383$$ 24.8928 24.8928i 1.27196 1.27196i 0.326904 0.945057i $$-0.393995\pi$$
0.945057 0.326904i $$-0.106005\pi$$
$$384$$ 5.48131 21.5161i 0.279717 1.09799i
$$385$$ 3.43764 4.17261i 0.175199 0.212656i
$$386$$ 0.154763 + 0.0604250i 0.00787721 + 0.00307555i
$$387$$ 8.44078 0.429069
$$388$$ 0.221247 + 5.40265i 0.0112321 + 0.274278i
$$389$$ 16.5819 16.5819i 0.840738 0.840738i −0.148217 0.988955i $$-0.547353\pi$$
0.988955 + 0.148217i $$0.0473534\pi$$
$$390$$ −10.0540 + 35.5035i −0.509103 + 1.79779i
$$391$$ 19.2883 0.975452
$$392$$ 4.99319 + 1.71758i 0.252194 + 0.0867510i
$$393$$ −3.16987 + 3.16987i −0.159899 + 0.159899i
$$394$$ 10.1090 4.43176i 0.509284 0.223269i
$$395$$ 18.4904 + 15.2335i 0.930351 + 0.766478i
$$396$$ 0.0743567 + 1.81572i 0.00373656 + 0.0912432i
$$397$$ 8.62531i 0.432892i 0.976295 + 0.216446i $$0.0694465\pi$$
−0.976295 + 0.216446i $$0.930553\pi$$
$$398$$ −6.23123 14.2137i −0.312343 0.712466i
$$399$$ 4.90897 0.245756
$$400$$ 19.2517 5.41962i 0.962585 0.270981i
$$401$$ 19.7107 0.984307 0.492153 0.870508i $$-0.336210\pi$$
0.492153 + 0.870508i $$0.336210\pi$$
$$402$$ −10.0818 22.9969i −0.502833 1.14698i
$$403$$ 21.4559i 1.06880i
$$404$$ 14.0324 0.574651i 0.698139 0.0285900i
$$405$$ 18.6894 + 15.3975i 0.928686 + 0.765107i
$$406$$ −6.00928 + 2.63445i −0.298235 + 0.130746i
$$407$$ 7.72426 7.72426i 0.382877 0.382877i
$$408$$ 13.7968 6.73438i 0.683043 0.333402i
$$409$$ −26.7930 −1.32483 −0.662414 0.749138i $$-0.730468\pi$$
−0.662414 + 0.749138i $$0.730468\pi$$
$$410$$ −5.97391 + 21.0956i −0.295030 + 1.04184i
$$411$$ 13.4154 13.4154i 0.661734 0.661734i
$$412$$ 1.24974 0.0511790i 0.0615703 0.00252141i
$$413$$ −11.1098 −0.546675
$$414$$ −7.82225 3.05409i −0.384443 0.150100i
$$415$$ −6.02633 + 7.31475i −0.295821 + 0.359067i
$$416$$ 15.9781 + 29.5970i 0.783390 + 1.45111i
$$417$$ −26.9702 + 26.9702i −1.32074 + 1.32074i
$$418$$ 0.668995 + 1.52600i 0.0327216 + 0.0746391i
$$419$$ −11.0752 + 11.0752i −0.541061 + 0.541061i −0.923840 0.382779i $$-0.874967\pi$$
0.382779 + 0.923840i $$0.374967\pi$$
$$420$$ 15.8516 + 12.0053i 0.773477 + 0.585797i
$$421$$ −0.243092 0.243092i −0.0118476 0.0118476i 0.701158 0.713006i $$-0.252667\pi$$
−0.713006 + 0.701158i $$0.752667\pi$$
$$422$$ −16.6221 6.48985i −0.809149 0.315921i
$$423$$ 0.0887804 + 0.0887804i 0.00431665 + 0.00431665i
$$424$$ −10.7844 3.70967i −0.523737 0.180157i
$$425$$ 11.4693 + 7.72666i 0.556342 + 0.374798i
$$426$$ −4.05631 9.25259i −0.196529 0.448290i
$$427$$ 2.18064i 0.105528i
$$428$$ −25.8765 23.8405i −1.25079 1.15237i
$$429$$ −8.80505 8.80505i −0.425112 0.425112i
$$430$$ 30.1630 + 8.54163i 1.45459 + 0.411914i
$$431$$ 20.7024i 0.997200i −0.866832 0.498600i $$-0.833848\pi$$
0.866832 0.498600i $$-0.166152\pi$$
$$432$$ 16.8098 1.37909i 0.808760 0.0663514i
$$433$$ −5.68221 5.68221i −0.273069 0.273069i 0.557265 0.830335i $$-0.311851\pi$$
−0.830335 + 0.557265i $$0.811851\pi$$
$$434$$ 10.7704 + 4.20517i 0.516998 + 0.201855i
$$435$$ 8.94480 0.863851i 0.428871 0.0414185i
$$436$$ −0.975446 + 0.0399462i −0.0467154 + 0.00191307i
$$437$$ −7.69939 −0.368312
$$438$$ 10.7504 + 4.19735i 0.513674 + 0.200557i
$$439$$ 18.7902i 0.896808i 0.893831 + 0.448404i $$0.148007\pi$$
−0.893831 + 0.448404i $$0.851993\pi$$
$$440$$ −1.57170 + 6.56368i −0.0749279 + 0.312911i
$$441$$ 1.58955i 0.0756930i
$$442$$ −8.45848 + 21.6642i −0.402329 + 1.03046i
$$443$$ 12.1641 0.577934 0.288967 0.957339i $$-0.406688\pi$$
0.288967 + 0.957339i $$0.406688\pi$$
$$444$$ 29.5489 + 27.2239i 1.40233 + 1.29199i
$$445$$ 0.0735637 + 0.0606062i 0.00348725 + 0.00287301i
$$446$$ 9.57824 24.5321i 0.453543 1.16163i
$$447$$ 3.41105 + 3.41105i 0.161337 + 0.161337i
$$448$$ 17.9886 2.21993i 0.849884 0.104882i
$$449$$ 27.2708i 1.28699i −0.765452 0.643493i $$-0.777484\pi$$
0.765452 0.643493i $$-0.222516\pi$$
$$450$$ −3.42787 4.94953i −0.161591 0.233323i
$$451$$ −5.23181 5.23181i −0.246356 0.246356i
$$452$$ −15.3642 + 0.629191i −0.722672 + 0.0295946i
$$453$$ 11.4517i 0.538047i
$$454$$ 25.0536 10.9834i 1.17582 0.515479i
$$455$$ −29.9826 + 2.89559i −1.40561 + 0.135748i
$$456$$ −5.50732 + 2.68819i −0.257904 + 0.125886i
$$457$$ −19.7514 19.7514i −0.923933 0.923933i 0.0733714 0.997305i $$-0.476624\pi$$
−0.997305 + 0.0733714i $$0.976624\pi$$
$$458$$ −9.61200 + 24.6186i −0.449139 + 1.15035i
$$459$$ 8.24649 + 8.24649i 0.384913 + 0.384913i
$$460$$ −24.8621 18.8295i −1.15920 0.877928i
$$461$$ 12.9262 12.9262i 0.602035 0.602035i −0.338818 0.940852i $$-0.610027\pi$$
0.940852 + 0.338818i $$0.110027\pi$$
$$462$$ −6.14566 + 2.69424i −0.285922 + 0.125348i
$$463$$ −14.5647 + 14.5647i −0.676879 + 0.676879i −0.959293 0.282414i $$-0.908865\pi$$
0.282414 + 0.959293i $$0.408865\pi$$
$$464$$ 5.29909 6.24629i 0.246004 0.289977i
$$465$$ −12.2220 10.0692i −0.566781 0.466948i
$$466$$ −15.0486 + 38.5431i −0.697114 + 1.78547i
$$467$$ −42.3556 −1.95998 −0.979991 0.199040i $$-0.936218\pi$$
−0.979991 + 0.199040i $$0.936218\pi$$
$$468$$ 6.86056 7.44646i 0.317130 0.344213i
$$469$$ 14.4941 14.4941i 0.669274 0.669274i
$$470$$ 0.227414 + 0.407096i 0.0104898 + 0.0187779i
$$471$$ 6.17665 0.284605
$$472$$ 12.4639 6.08378i 0.573698 0.280029i
$$473$$ −7.48056 + 7.48056i −0.343956 + 0.343956i
$$474$$ −11.9392 27.2337i −0.548385 1.25088i
$$475$$ −4.57824 3.08428i −0.210064 0.141517i
$$476$$ 9.21718 + 8.49196i 0.422469 + 0.389229i
$$477$$ 3.43315i 0.157193i
$$478$$ −18.2694 + 8.00925i −0.835622 + 0.366335i
$$479$$ −27.0905 −1.23780 −0.618899 0.785470i $$-0.712421\pi$$
−0.618899 + 0.785470i $$0.712421\pi$$
$$480$$ −24.3579 4.78814i −1.11178 0.218548i
$$481$$ −60.8636 −2.77514
$$482$$ 16.5802 7.26871i 0.755207 0.331081i
$$483$$ 31.0078i 1.41090i
$$484$$ 14.5048 + 13.3635i 0.659308 + 0.607433i
$$485$$ 6.01741 0.581136i 0.273236 0.0263880i
$$486$$ −4.88500 11.1429i −0.221588 0.505450i
$$487$$ 21.9674 21.9674i 0.995436 0.995436i −0.00455390 0.999990i $$-0.501450\pi$$
0.999990 + 0.00455390i $$0.00144956\pi$$
$$488$$ −1.19413 2.44643i −0.0540559 0.110745i
$$489$$ −15.3491 −0.694111
$$490$$ 1.60855 5.68024i 0.0726667 0.256607i
$$491$$ −6.11955 + 6.11955i −0.276171 + 0.276171i −0.831579 0.555407i $$-0.812562\pi$$
0.555407 + 0.831579i $$0.312562\pi$$
$$492$$ 18.4394 20.0141i 0.831311 0.902305i
$$493$$ 5.66390 0.255089
$$494$$ 3.37640 8.64777i 0.151912 0.389082i
$$495$$ 2.02233 0.195308i 0.0908968 0.00877842i
$$496$$ −14.3860 + 1.18024i −0.645951 + 0.0529945i
$$497$$ 5.83157 5.83157i 0.261581 0.261581i
$$498$$ 10.7736 4.72312i 0.482776 0.211648i
$$499$$ −15.4115 + 15.4115i −0.689914 + 0.689914i −0.962213 0.272298i $$-0.912216\pi$$
0.272298 + 0.962213i $$0.412216\pi$$
$$500$$ −7.24075 21.1559i −0.323816 0.946120i
$$501$$ −19.3986 19.3986i −0.866667 0.866667i
$$502$$ −4.97625 + 12.7454i −0.222101 + 0.568853i
$$503$$ 26.4312 + 26.4312i 1.17851 + 1.17851i 0.980124 + 0.198387i $$0.0635704\pi$$
0.198387 + 0.980124i $$0.436430\pi$$
$$504$$ −2.39336 4.90330i −0.106609 0.218410i
$$505$$ −1.50940 15.6292i −0.0671673 0.695488i
$$506$$ 9.63905 4.22574i 0.428508 0.187857i
$$507$$ 43.8671i 1.94820i
$$508$$ 17.7236 0.725812i 0.786358 0.0322027i
$$509$$ 0.233714 + 0.233714i 0.0103592 + 0.0103592i 0.712267 0.701908i $$-0.247668\pi$$
−0.701908 + 0.712267i $$0.747668\pi$$
$$510$$ −8.37107 14.9851i −0.370677 0.663553i
$$511$$ 9.42101i 0.416761i
$$512$$ −18.9656 + 12.3412i −0.838169 + 0.545410i
$$513$$ −3.29178 3.29178i −0.145336 0.145336i
$$514$$ −4.84827 + 12.4176i −0.213848 + 0.547716i
$$515$$ −0.134428 1.39195i −0.00592362 0.0613365i
$$516$$ −28.6166 26.3650i −1.25978 1.16066i
$$517$$ −0.157362 −0.00692075
$$518$$ −11.9287 + 30.5523i −0.524118 + 1.34239i
$$519$$ 6.85397i 0.300856i
$$520$$ 32.0515 19.6673i 1.40555 0.862466i
$$521$$ 4.50147i 0.197213i −0.995127 0.0986064i $$-0.968562\pi$$
0.995127 0.0986064i $$-0.0314385\pi$$
$$522$$ −2.29696 0.896816i −0.100535 0.0392526i
$$523$$ −12.6042 −0.551141 −0.275571 0.961281i $$-0.588867\pi$$
−0.275571 + 0.961281i $$0.588867\pi$$
$$524$$ 4.56468 0.186931i 0.199409 0.00816613i
$$525$$ 12.4213 18.4380i 0.542111 0.804699i
$$526$$ −13.6377 5.32465i −0.594632 0.232166i
$$527$$ −7.05746 7.05746i −0.307428 0.307428i
$$528$$ 5.41936 6.38805i 0.235847 0.278004i
$$529$$ 25.6336i 1.11450i
$$530$$ −3.47417 + 12.2683i −0.150908 + 0.532901i
$$531$$ −2.95227 2.95227i −0.128118 0.128118i
$$532$$ −3.67926 3.38977i −0.159516 0.146965i
$$533$$ 41.2242i 1.78562i
$$534$$ −0.0474999 0.108349i −0.00205552 0.00468872i
$$535$$ −25.0132 + 30.3610i −1.08142 + 1.31262i
$$536$$ −8.32367 + 24.1978i −0.359528 + 1.04519i
$$537$$ 25.6714 + 25.6714i 1.10780 + 1.10780i
$$538$$ 29.7714 + 11.6238i 1.28354 + 0.501139i
$$539$$ 1.40873 + 1.40873i 0.0606782 + 0.0606782i
$$540$$ −2.57918 18.6798i −0.110990 0.803851i
$$541$$ 14.5013 14.5013i 0.623459 0.623459i −0.322955 0.946414i $$-0.604676\pi$$
0.946414 + 0.322955i $$0.104676\pi$$
$$542$$ −2.04235 4.65868i −0.0877266 0.200107i
$$543$$ −26.7672 + 26.7672i −1.14869 + 1.14869i
$$544$$ −14.9909 4.47964i −0.642730 0.192063i
$$545$$ 0.104924 + 1.08644i 0.00449444 + 0.0465380i
$$546$$ 34.8272 + 13.5978i 1.49047 + 0.581932i
$$547$$ 30.2936 1.29526 0.647630 0.761955i $$-0.275760\pi$$
0.647630 + 0.761955i $$0.275760\pi$$
$$548$$ −19.3185 + 0.791125i −0.825246 + 0.0337952i
$$549$$ −0.579476 + 0.579476i −0.0247314 + 0.0247314i
$$550$$ 7.42439 + 1.34856i 0.316577 + 0.0575029i
$$551$$ −2.26088 −0.0963169
$$552$$ 16.9801 + 34.7873i 0.722721 + 1.48064i
$$553$$ 17.1644 17.1644i 0.729904 0.729904i
$$554$$ −27.1239 + 11.8911i −1.15239 + 0.505203i
$$555$$ 28.5631 34.6699i 1.21244 1.47165i
$$556$$ 38.8378 1.59047i 1.64709 0.0674510i
$$557$$ 9.72758i 0.412171i 0.978534 + 0.206085i $$0.0660725\pi$$
−0.978534 + 0.206085i $$0.933928\pi$$
$$558$$ 1.74464 + 3.97958i 0.0738563 + 0.168469i
$$559$$ 58.9433 2.49304
$$560$$ −3.59075 19.9438i −0.151737 0.842780i
$$561$$ 5.79245 0.244557
$$562$$ −1.85506 4.23146i −0.0782510 0.178493i
$$563$$ 17.7853i 0.749562i −0.927113 0.374781i $$-0.877718\pi$$
0.927113 0.374781i $$-0.122282\pi$$
$$564$$ −0.0236823 0.578299i −0.000997205 0.0243508i
$$565$$ 1.65265 + 17.1125i 0.0695276 + 0.719928i
$$566$$ 0.000196379 0 8.60919e-5i 8.25441e−6 0 3.61871e-6i
$$567$$ 17.3492 17.3492i 0.728597 0.728597i
$$568$$ −3.34896 + 9.73578i −0.140519 + 0.408504i
$$569$$ −15.7897 −0.661938 −0.330969 0.943642i $$-0.607376\pi$$
−0.330969 + 0.943642i $$0.607376\pi$$
$$570$$ 3.34151 + 5.98168i 0.139961 + 0.250545i
$$571$$ 23.3108 23.3108i 0.975528 0.975528i −0.0241793 0.999708i $$-0.507697\pi$$
0.999708 + 0.0241793i $$0.00769727\pi$$
$$572$$ 0.519245 + 12.6795i 0.0217107 + 0.530155i
$$573$$ −5.74079 −0.239825
$$574$$ 20.6937 + 8.07958i 0.863739 + 0.337235i
$$575$$ −19.4820 + 28.9187i −0.812456 + 1.20599i
$$576$$ 5.37017 + 4.19033i 0.223757 + 0.174597i
$$577$$ 25.7383 25.7383i 1.07150 1.07150i 0.0742597 0.997239i $$-0.476341\pi$$
0.997239 0.0742597i $$-0.0236594\pi$$
$$578$$ 5.30920 + 12.1105i 0.220834 + 0.503729i
$$579$$ −0.163026 + 0.163026i −0.00677514 + 0.00677514i
$$580$$ −7.30061 5.52916i −0.303141 0.229586i
$$581$$ 6.79020 + 6.79020i 0.281705 + 0.281705i
$$582$$ −6.98969 2.72903i −0.289732 0.113122i
$$583$$ −3.04260 3.04260i −0.126011 0.126011i
$$584$$ −5.15902 10.5693i −0.213482 0.437362i
$$585$$ −8.73697 7.19803i −0.361229 0.297602i
$$586$$ −6.27967 14.3242i −0.259411 0.591725i
$$587$$ 23.1327i 0.954790i −0.878689 0.477395i $$-0.841581\pi$$
0.878689 0.477395i $$-0.158419\pi$$
$$588$$ −4.96502 + 5.38904i −0.204754 + 0.222240i
$$589$$ 2.81715 + 2.81715i 0.116079 + 0.116079i
$$590$$ −7.56235 13.5374i −0.311337 0.557328i
$$591$$ 15.3171i 0.630063i
$$592$$ −3.34797 40.8085i −0.137601 1.67722i
$$593$$ −25.5047 25.5047i −1.04735 1.04735i −0.998822 0.0485322i $$-0.984546\pi$$
−0.0485322 0.998822i $$-0.515454\pi$$
$$594$$ 5.92773 + 2.31440i 0.243218 + 0.0949609i
$$595$$ 8.90969 10.8146i 0.365261 0.443354i
$$596$$ −0.201154 4.91199i −0.00823960 0.201203i
$$597$$ 21.5365 0.881432
$$598$$ −54.6241 21.3272i −2.23374 0.872135i
$$599$$ 11.0699i 0.452304i −0.974092 0.226152i $$-0.927385\pi$$
0.974092 0.226152i $$-0.0726146\pi$$
$$600$$ −3.83858 + 27.4874i −0.156709 + 1.12217i
$$601$$ 13.7579i 0.561197i 0.959825 + 0.280599i $$0.0905330\pi$$
−0.959825 + 0.280599i $$0.909467\pi$$
$$602$$ 11.5524 29.5884i 0.470839 1.20593i
$$603$$ 7.70322 0.313700
$$604$$ 7.90768 8.58300i 0.321759 0.349237i
$$605$$ 14.0209 17.0185i 0.570030 0.691902i
$$606$$ −7.08817 + 18.1545i −0.287937 + 0.737476i
$$607$$ 18.4675 + 18.4675i 0.749573 + 0.749573i 0.974399 0.224826i $$-0.0721813\pi$$
−0.224826 + 0.974399i $$0.572181\pi$$
$$608$$ 5.98398 + 1.78815i 0.242683 + 0.0725193i
$$609$$ 9.10526i 0.368964i
$$610$$ −2.65715 + 1.48435i −0.107585 + 0.0600995i
$$611$$ 0.619968 + 0.619968i 0.0250812 + 0.0250812i
$$612$$ 0.192718 + 4.70598i 0.00779015 + 0.190228i
$$613$$ 11.6810i 0.471790i −0.971779 0.235895i $$-0.924198\pi$$
0.971779 0.235895i $$-0.0758021\pi$$
$$614$$ 19.5988 8.59208i 0.790944 0.346748i
$$615$$ −23.4826 19.3464i −0.946912 0.780122i
$$616$$ 6.46660 + 2.22441i 0.260547 + 0.0896240i
$$617$$ 29.1000 + 29.1000i 1.17152 + 1.17152i 0.981847 + 0.189677i $$0.0607441\pi$$
0.189677 + 0.981847i $$0.439256\pi$$
$$618$$ −0.631279 + 1.61686i −0.0253938 + 0.0650395i
$$619$$ −4.23279 4.23279i −0.170130 0.170130i 0.616906 0.787036i $$-0.288386\pi$$
−0.787036 + 0.616906i $$0.788386\pi$$
$$620$$ 2.20730 + 15.9864i 0.0886474 + 0.642030i
$$621$$ −20.7927 + 20.7927i −0.834383 + 0.834383i
$$622$$ −35.1723 + 15.4194i −1.41028 + 0.618263i
$$623$$ 0.0682883 0.0682883i 0.00273591 0.00273591i
$$624$$ −46.5185 + 3.81642i −1.86223 + 0.152779i
$$625$$ −23.1689 + 9.39149i −0.926758 + 0.375660i
$$626$$ 9.94314 25.4668i 0.397408 1.01786i
$$627$$ −2.31220 −0.0923402
$$628$$ −4.62938 4.26513i −0.184732 0.170197i
$$629$$ 20.0197 20.0197i 0.798239 0.798239i
$$630$$ −5.32563 + 2.97503i −0.212178 + 0.118528i
$$631$$ −1.33886 −0.0532991 −0.0266496 0.999645i $$-0.508484\pi$$
−0.0266496 + 0.999645i $$0.508484\pi$$
$$632$$ −9.85718 + 28.6559i −0.392097 + 1.13987i
$$633$$ 17.5096 17.5096i 0.695944 0.695944i
$$634$$ 14.6676 + 33.4573i 0.582524 + 1.32876i
$$635$$ −1.90644 19.7404i −0.0756548 0.783373i
$$636$$ 10.7235 11.6393i 0.425216 0.461530i
$$637$$ 11.1001i 0.439803i
$$638$$ 2.83045 1.24086i 0.112059 0.0491263i
$$639$$ 3.09933 0.122608
$$640$$ 14.9498 + 20.4084i 0.590943 + 0.806713i
$$641$$ 24.5069 0.967965 0.483982 0.875078i $$-0.339190\pi$$
0.483982 + 0.875078i $$0.339190\pi$$
$$642$$ 44.7175 19.6041i 1.76486 0.773710i
$$643$$ 10.8979i 0.429771i −0.976639 0.214885i $$-0.931062\pi$$
0.976639 0.214885i $$-0.0689378\pi$$
$$644$$ −21.4117 + 23.2402i −0.843738 + 0.915793i
$$645$$ −27.6619 + 33.5760i −1.08919 + 1.32205i
$$646$$ 1.73390 + 3.95509i 0.0682194 + 0.155611i
$$647$$ −11.6612 + 11.6612i −0.458448 + 0.458448i −0.898146 0.439698i $$-0.855085\pi$$
0.439698 + 0.898146i $$0.355085\pi$$
$$648$$ −9.96331 + 28.9644i −0.391396 + 1.13783i
$$649$$ 5.23285 0.205407
$$650$$ −23.9374 34.5634i −0.938901 1.35569i
$$651$$ −11.3455 + 11.3455i −0.444666 + 0.444666i
$$652$$ 11.5041 + 10.5990i 0.450536 + 0.415087i
$$653$$ 5.28393 0.206776 0.103388 0.994641i $$-0.467032\pi$$
0.103388 + 0.994641i $$0.467032\pi$$
$$654$$ 0.492726 1.26199i 0.0192671 0.0493476i
$$655$$ −0.491000 5.08409i −0.0191849 0.198652i
$$656$$ −27.6405 + 2.26765i −1.07918 + 0.0885369i
$$657$$ −2.50351 + 2.50351i −0.0976713 + 0.0976713i
$$658$$ 0.432720 0.189703i 0.0168692 0.00739540i
$$659$$ 16.2902 16.2902i 0.634578 0.634578i −0.314635 0.949213i $$-0.601882\pi$$
0.949213 + 0.314635i $$0.101882\pi$$
$$660$$ −7.46631 5.65465i −0.290626 0.220107i
$$661$$ −12.7924 12.7924i −0.497566 0.497566i 0.413114 0.910679i $$-0.364441\pi$$
−0.910679 + 0.413114i $$0.864441\pi$$
$$662$$ −9.90761 + 25.3757i −0.385070 + 0.986256i
$$663$$ −22.8209 22.8209i −0.886291 0.886291i
$$664$$ −11.3362 3.89948i −0.439930 0.151329i
$$665$$ −3.55652 + 4.31690i −0.137916 + 0.167402i
$$666$$ −11.2888 + 4.94897i −0.437431 + 0.191769i
$$667$$ 14.2810i 0.552962i
$$668$$ 1.14396 + 27.9344i 0.0442613 + 1.08082i
$$669$$ 25.8420 + 25.8420i 0.999111 + 0.999111i
$$670$$ 27.5273 + 7.79526i 1.06347 + 0.301157i
$$671$$ 1.02711i 0.0396512i
$$672$$ −7.20144 + 24.0993i −0.277802 + 0.929651i
$$673$$ 11.9553 + 11.9553i 0.460841 + 0.460841i 0.898931 0.438090i $$-0.144345\pi$$
−0.438090 + 0.898931i $$0.644345\pi$$
$$674$$ 11.7046 29.9782i 0.450843 1.15472i
$$675$$ −20.6931 + 4.03454i −0.796480 + 0.155290i
$$676$$ 30.2913 32.8782i 1.16505 1.26455i
$$677$$ −3.18699 −0.122486 −0.0612430 0.998123i $$-0.519506\pi$$
−0.0612430 + 0.998123i $$0.519506\pi$$
$$678$$ 7.76090 19.8775i 0.298056 0.763391i
$$679$$ 6.12535i 0.235069i
$$680$$ −4.07353 + 17.0118i −0.156213 + 0.652371i
$$681$$ 37.9613i 1.45468i
$$682$$ −5.07303 1.98069i −0.194256 0.0758447i
$$683$$ 35.1661 1.34559 0.672797 0.739827i $$-0.265093\pi$$
0.672797 + 0.739827i $$0.265093\pi$$
$$684$$ −0.0769279 1.87850i −0.00294141 0.0718264i
$$685$$ 2.07799 + 21.5167i 0.0793961 + 0.822112i
$$686$$ −26.4647 10.3328i −1.01043 0.394508i
$$687$$ −25.9331 25.9331i −0.989410 0.989410i
$$688$$ 3.24234 + 39.5210i 0.123613 + 1.50672i
$$689$$ 23.9743i 0.913346i
$$690$$ 37.7836 21.1068i 1.43840 0.803523i
$$691$$ 2.90121 + 2.90121i 0.110367 + 0.110367i 0.760134 0.649767i $$-0.225133\pi$$
−0.649767 + 0.760134i $$0.725133\pi$$
$$692$$ 4.73284 5.13703i 0.179916 0.195280i
$$693$$ 2.05860i 0.0781999i
$$694$$ −3.16594 7.22163i −0.120178 0.274129i
$$695$$ −4.17758 43.2571i −0.158465 1.64083i
$$696$$ 4.98611 + 10.2151i 0.188998 + 0.387202i
$$697$$ −13.5598 13.5598i −0.513614 0.513614i
$$698$$ −28.0966 10.9699i −1.06347 0.415218i
$$699$$ −40.6011 40.6011i −1.53568 1.53568i
$$700$$ −22.0416 + 5.24195i −0.833095 + 0.198127i
$$701$$ 15.7397 15.7397i 0.594481 0.594481i −0.344358 0.938839i $$-0.611903\pi$$
0.938839 + 0.344358i $$0.111903\pi$$
$$702$$ −14.2357 32.4721i −0.537291 1.22558i
$$703$$ −7.99136 + 7.99136i −0.301400 + 0.301400i
$$704$$ −8.47290 + 1.04562i −0.319335 + 0.0394082i
$$705$$ −0.644103 + 0.0622047i −0.0242583 + 0.00234276i
$$706$$ 4.80440 + 1.87581i 0.180816 + 0.0705971i
$$707$$ −15.9095 −0.598339
$$708$$ 0.787524 + 19.2306i 0.0295970 + 0.722729i
$$709$$ −1.95755 + 1.95755i −0.0735172 + 0.0735172i −0.742909 0.669392i $$-0.766555\pi$$
0.669392 + 0.742909i $$0.266555\pi$$
$$710$$ 11.0754 + 3.13636i 0.415652 + 0.117705i
$$711$$ 9.12243 0.342118
$$712$$ −0.0392167 + 0.114007i −0.00146971 + 0.00427260i
$$713$$ 17.7947 17.7947i 0.666416 0.666416i
$$714$$ −15.9283 + 6.98294i −0.596103 + 0.261330i
$$715$$ 14.1222 1.36387i 0.528142 0.0510057i
$$716$$ −1.51388 36.9674i −0.0565762 1.38154i
$$717$$ 27.6818i 1.03379i
$$718$$ 3.27760 + 7.47633i 0.122319 + 0.279014i
$$719$$ −0.0658604 −0.00245618 −0.00122809 0.999999i $$-0.500391\pi$$
−0.00122809 + 0.999999i $$0.500391\pi$$
$$720$$ 4.34562 6.25401i 0.161952 0.233073i
$$721$$ −1.41692 −0.0527687
$$722$$ 10.0964 + 23.0303i 0.375750 + 0.857100i
$$723$$ 25.1223i 0.934309i
$$724$$ 38.5454 1.57850i 1.43253 0.0586644i
$$725$$ −5.72078 + 8.49181i −0.212465 + 0.315378i
$$726$$ −25.0659 + 10.9888i −0.930283 + 0.407834i
$$727$$ −16.2286 + 16.2286i −0.601885 + 0.601885i −0.940813 0.338927i $$-0.889936\pi$$
0.338927 + 0.940813i $$0.389936\pi$$
$$728$$ −16.7132 34.2406i −0.619434 1.26904i
$$729$$ −15.6045 −0.577943
$$730$$ −11.4797 + 6.41283i −0.424882 + 0.237350i
$$731$$ −19.3881 + 19.3881i −0.717095 + 0.717095i
$$732$$ 3.77460 0.154576i 0.139513 0.00571330i
$$733$$ −0.669106 −0.0247140 −0.0123570 0.999924i $$-0.503933\pi$$
−0.0123570 + 0.999924i $$0.503933\pi$$
$$734$$ −15.4724 6.04100i −0.571098 0.222977i
$$735$$ 6.32298 + 5.20925i 0.233227 + 0.192146i
$$736$$ 11.2950 37.7981i 0.416338 1.39326i
$$737$$ −6.82691 + 6.82691i −0.251472 + 0.251472i
$$738$$ 3.35205 + 7.64614i 0.123391 + 0.281458i
$$739$$ 23.4183 23.4183i 0.861454 0.861454i −0.130053 0.991507i $$-0.541515\pi$$
0.991507 + 0.130053i $$0.0415147\pi$$
$$740$$ −45.3484 + 6.26141i −1.66704 + 0.230174i
$$741$$ 9.10952 + 9.10952i 0.334647 + 0.334647i
$$742$$ 12.0346 + 4.69874i 0.441804 + 0.172496i
$$743$$ 30.0968 + 30.0968i 1.10414 + 1.10414i 0.993905 + 0.110238i $$0.0351614\pi$$
0.110238 + 0.993905i $$0.464839\pi$$
$$744$$ 6.51552 18.9413i 0.238871 0.694422i
$$745$$ −5.47092 + 0.528358i −0.200439 + 0.0193575i
$$746$$ 9.11257 + 20.7861i 0.333635 + 0.761033i
$$747$$ 3.60882i 0.132040i
$$748$$ −4.34142 3.99983i −0.158738 0.146248i
$$749$$ 28.1838 + 28.1838i 1.02981 + 1.02981i
$$750$$ 30.9222 + 2.58501i 1.12912 + 0.0943911i
$$751$$ 53.2724i 1.94394i 0.235107 + 0.971970i $$0.424456\pi$$
−0.235107 + 0.971970i $$0.575544\pi$$
$$752$$ −0.381580 + 0.449786i −0.0139148 + 0.0164020i
$$753$$ −13.4259 13.4259i −0.489267 0.489267i
$$754$$ −16.0401 6.26262i −0.584144 0.228071i
$$755$$ −10.0705 8.29666i −0.366502 0.301946i
$$756$$ −19.0904 + 0.781783i −0.694311 + 0.0284332i
$$757$$ −27.1717 −0.987574 −0.493787 0.869583i $$-0.664388\pi$$
−0.493787 + 0.869583i $$0.664388\pi$$
$$758$$ 16.6065 + 6.48377i 0.603174 + 0.235501i
$$759$$ 14.6051i 0.530132i
$$760$$ 1.62605 6.79065i 0.0589830 0.246323i
$$761$$ 12.9068i 0.467870i −0.972252 0.233935i $$-0.924840\pi$$
0.972252 0.233935i $$-0.0751604\pi$$
$$762$$ −8.95270 + 22.9300i −0.324322 + 0.830666i
$$763$$ 1.10593 0.0400374
$$764$$ 4.30270 + 3.96416i 0.155666 + 0.143418i
$$765$$ 5.24147 0.506198i 0.189506 0.0183016i
$$766$$ 18.1069 46.3761i 0.654229 1.67564i
$$767$$ −20.6162 20.6162i −0.744409 0.744409i
$$768$$ −5.11775 30.9803i −0.184671 1.11791i
$$769$$ 34.4858i 1.24359i 0.783180 + 0.621795i $$0.213596\pi$$
−0.783180 + 0.621795i $$0.786404\pi$$
$$770$$ 2.08320 7.35638i 0.0750733 0.265106i
$$771$$ −13.0806 13.0806i −0.471087 0.471087i
$$772$$ 0.234761 0.00961387i 0.00844925 0.000346011i
$$773$$ 26.6789i 0.959574i 0.877385 + 0.479787i $$0.159286\pi$$
−0.877385